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Abstract

We study a sequence of polynomials orthogonal with respect to a one-parameter family of weights

w(x) := w(x, t) = e−t/x xα(1 − x)β , t ≥ 0,

defined for x ∈ [0, 1]. If t = 0, this reduces to a shifted Jacobi weight. Our ladder operator formalism and
the associated compatibility conditions give an easy determination of the recurrence coefficients.

For t > 0, the factor e−t/x induces an infinitely strong zero at x = 0. With the aid of the compatibility
conditions, the recurrence coefficients are expressed in terms of a set of auxiliary quantities that satisfy a
system of difference equations. These, when suitably combined with a pair of Toda-like equations derived
from the orthogonality principle, show that the auxiliary quantities are particular Painlevé V and/or allied
functions.

It is also shown that the logarithmic derivative of the Hankel determinant,

Dn(t) := det

∫ 1

0
x i+ j e−t/x xα(1 − x)βdx

n−1

i, j=0

,

satisfies the Jimbo–Miwa–Okamoto σ -form of the Painlevé V equation and that the same quantity satisfies
a second-order non-linear difference equation which we believe to be new.
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1. Introduction

For polynomials orthogonal with respect to weights w absolutely continuous on [−1, 1] and
satisfying the Szegő condition∫ 1

−1

| ln w(x)|
√

1 − x2
dx < ∞,

a general theory of Szegő [26, pp 296–312] gives a comprehensive description of the large n
behavior of the polynomials both for x ∈ (−1, 1) and for x ∉ [−1, 1] and the recurrence
coefficients; see also [16]. For a recent account and extension of Szegő’s theory, see [21,13,22].

With the introduction of a deformation parameter t ≥ 0, we have a Pollaczek–Jacobi type
weight defined as

w(x) := w(x; t) = e−t/x xα(1 − x)β , x ∈ [0, 1], α > 0, β > 0, (1.1)

which violates the Szegő condition. For convenience we have taken the interval of orthogonality
to be [0, 1]. The weight function of the Pollaczek polynomial and a generalization due to Szegő
behave like

exp


−
c

√
1 − x2


, as x → ±1,

where c is a positive constant; see [26, pp 393–400] for a detailed description. We should like to
mention, as a brief guide to the reader, some recent literature on the Pollaczek polynomials; see
[27] for the asymptotic behavior of the polynomials for x ∉ [−1, 1], [2,29] for the asymptotic
behavior of their zeros and [19,20,28] for applications to physical problems. Regarding weighted
polynomial approximation in L p with respect to a class of exponential weights on [−1, 1] that
violate the Szegő conditions, see [9,18].

Note that our weight is in some sense more “singular” since the Szegő condition is strongly
violated.

The purpose of this paper is to give a complete description of the recurrence coefficients of
the associated orthogonal polynomials. As can be seen later these are expressed in terms of a set
of auxiliary quantities which are ultimately particular Painlevé V and allied functions.

In Section 2, with the aid of certain supplementary conditions (S1), (S2) and (S′

2) derived
from a pair of operators and the recurrence relations, we obtain a system of difference equations
satisfied by certain auxiliary quantities (Rn, R∗

n , rn, r∗
n ) and the recurrence coefficients (αn, βn).

More importantly, the equation (S′

2) is in some sense the “first integral” of (S1) and (S2), and
automatically performs a sum of R∗

j from j = 0 to j = n − 1 (see (2.35)). This turns out to
be the logarithmic derivative of the Hankel determinant (generated by our Pollaczek–Jacobi type
weight) with respect to t ; see (4.4).

We should mention here that a similar approach was adopted in [1,8] where (S1) and (S′

2) were
sufficient for the purpose. However, for the problem at hand, taking into account the difference
equations, there are ultimately three auxiliary quantities Rn, r∗

n and rn . The equation (S2) turns
out to be crucial for later development.

In Section 3, we make use of the results of Section 2 to express αn and βn in terms of the
auxiliary quantities and show that these reduce to recurrence coefficients of the “shifted” Jacobi
polynomials when t = 0 through an easy computation.

The t dependences of the recurrence coefficients and the auxiliary quantities are derived in
Section 4, resulting in a pair of Toda-like equations.
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In Section 5, combining the results from previous sections we express r∗
n , rn and Rn in terms

of

Hn(t) := t
d
dt

ln Dn(t) (1.2)

and H ′
n(t). We show that a functional equation f (Hn, H ′

n, H ′′
n ) = 0 resulting from eliminating

the auxiliary quantities in favor of Hn and H ′
n is the Jimbo–Miwa–Okamoto σ -form of a Painlevé

V equation.
In Section 6, from the difference equations found in Section 2 and the expressions for αn and

βn found in Section 3, we express Rn, βn in terms of p1(n), the coefficients of zn−1 of our monic
polynomials Pn(z). And since p1(n) is easily related to Hn , the resulting functional equation
g(Hn, Hn+1, Hn−1) = 0 is the discrete analog of the σ -form mentioned in the abstract; see
(6.13). We believe that this equation is new.

In Section 7 we derive a second-order o.d.e. satisfied by Rn which is also a Painlevé V form
since Hn is shown to satisfy the σ -form.

The large n behavior of the recurrence coefficients will be described in a future publication.

2. Preliminaries

Let Pn(x) be the monic polynomials of degree n in x and orthogonal with respect to the weight
function w(x; t) defined in (1.1), that is∫ 1

0
Pm(x)Pn(x)w(x; t)dx = hnδm,n . (2.1)

(The polynomials Pn(x) and the constant hn all depend on t , but we suppress the dependence for
brevity.) An immediate consequence of the orthogonality condition is the recurrence relation

x Pn(x) = Pn+1(x) + αn Pn(x) + βn Pn−1(x), n = 0, 1, . . . . (2.2)

Here we take the “initial” conditions to be P0(z) := 1 and β0 P−1(z) := 0. Note that Pn(z) has
the following form:

Pn(z) = zn
+ p1(n)zn−1

+ · · · . (2.3)

Substituting (2.3) into (2.2) we see that

αn = p1(n) − p1(n + 1). (2.4)

Taking a telescopic sum of above equation and noting that p1(0) := 0, we have

−

n−1−
j=0

α j = p1(n). (2.5)

The Hankel determinant generated by our weight is

Dn(t) := det

µ j+k(t)

n−1
j,k=0

=

n−1∏
j=0

h j , (2.6)
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where

µk(t) :=

∫ 1

0
xke−t/x xα(1 − x)βdx

= e−tΓ (1 + β)U (1 + β, −α − k, t)

and U (a, b, z) is the Kummer function of the second kind; see [25].
The Hankel determinant will turn out to play an important role in our determination of αn

and βn for the weight given by (1.1). Furthermore, through several auxiliary variables (which
naturally appear in the theory) we obtain expressions for the αn and βn terms of Hn(t) given in
(1.2) and its derivatives with respect to t . Eqs. (2.1)–(2.6) can be found in Szegő’s treatise [26]
on orthogonal polynomials.

If w(x), the weight function, is Lipschitz continuous then the following ladder operator
relations hold:

d
dz

+ Bn(z)


Pn(z) = βn An(z)Pn−1(z), (2.7)

d
dz

− Bn(z) − v′(z)


Pn−1(z) = −An−1(z)Pn(z) (2.8)

with

An(z) :=
1

hn

∫ 1

0

v′(z) − v′(y)

z − y
[Pn(y)]2w(y)dy, (2.9)

Bn(z) :=
1

hn−1

∫ 1

0

v′(z) − v′(y)

z − y
Pn−1(y)Pn(y)w(y)dy (2.10)

and v(z) := − ln w(z).
Note that, as a consequence of the recurrence relation and the Christoffel–Darboux formula,

An(z) and Bn(z) are not independent but must satisfy the following supplementary conditions
valid for z ∈ C ∪ {∞}.

Theorem 2.1. The functions An(z) and Bn(z) defined by (2.9) and (2.10) satisfy the identities

Bn+1(z) + Bn(z) = (z − αn)An(z) − v′(z), (S1)

1 + (z − αn)[Bn+1(z) − Bn(z)] = βn+1 An+1(z) − βn An−1(z). (S2)

Proof. The ladder operator relations (2.7) and (2.8) and the supplementary conditions (S1) and
(S2) have been derived by many authors in different forms over the years [3–5,24]. Also, see [6,7]
for a recent proof. �

It turns out that there is another identity involving
∑n−1

j=0 A j which will provide further insight
into the determination of αn and βn . We state the result in the following theorem.

Theorem 2.2.

B2
n (z) + v′(z)Bn(z) +

n−1−
j=0

A j (z) = βn An(z)An−1(z). (S
′

2)
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Proof. This can be obtained as follows: First, we multiply (S2) by An(z) and replace (z −

αn)An(z) in the resulting equation by Bn+1(z) + Bn(z) + v′(z) with (S1) to get

B2
n+1(z) − B2

n (z) + v′(z)(Bn+1(z) − Bn(z)) + An(z)

= βn+1 An+1(z)An(z) − βn An(z)An−1(z).

Taking the sum of the above equation from 0 to n − 1, we obtain our theorem with the initial
conditions B0(z) = 0 and β0 A−1(z) = 0.

Let us explain a little more about the way in which we get the above initial conditions. In
(2.10) we rewrite

Pn−1(y)

hn−1
,

as
βn

hn
Pn−1(y).

Consequently B0(z) = 0, since β0 P−1(y) = 0 according to the initial condition associated with
the recurrence relations (2.2). β0 A−1(z) = 0 for the same reason. �

For the problem at hand,

v(z) := − ln w(z) =
t

z
− α ln z − β ln(1 − z). (2.11)

Then we immediately have

v′(z) = −
t

z2 −
α

z
−

β

z − 1
(2.12)

and

v′(z) − v′(y)

z − y
=

t

z2 y
+

αy + t

zy2 +
β

(z − 1)(y − 1)
. (2.13)

Substituting the above formula into the definitions of An(z) and Bn(z) in (2.9) and (2.10), we
have the following proposition.

Proposition 2.3. We have

An(z) =
R∗

n

z2 +
Rn

z
−

Rn

z − 1
, (2.14)

Bn(z) =
r∗

n

z2 −
n − rn

z
−

rn

z − 1
, (2.15)

where

R∗
n :=

t

hn

∫ 1

0
[Pn(y)]2w(y)

dy

y
, (2.16)

Rn :=
β

hn

∫ 1

0
[Pn(y)]2w(y)

dy

1 − y
, (2.17)

r∗
n :=

t

hn−1

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

y
, (2.18)
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rn :=
β

hn−1

∫ 1

0
Pn−1(y)Pn(y)w(y)

dy

1 − y
. (2.19)

Proof. Using (2.13), (2.9) can be rewritten as

An(z) =
1

hn


1

z2

∫ 1

0
[Pn(y)]2w(y)

t

y
dy +

1
z

∫ 1

0
[Pn(y)]2w(y)

αy + t

y2 dy

+
1

z − 1

∫ 1

0
[Pn(y)]2w(y)

β

y − 1
dy


. (2.20)

Applying integration by parts, we have∫ 1

0
[Pn(y)]2w(y)v′(y)dy = −

∫ 1

0
[Pn(y)]2dw(y) =

∫ 1

0
2P ′

n(y)Pn(y)w(y)dy = 0.(2.21)

Then it follows from (2.12) and the above formula that∫ 1

0
[Pn(y)]2w(y)

αy + t

y2 dy = −

∫ 1

0
[Pn(y)]2w(y)

β

y − 1
dy. (2.22)

Combining (2.20) and (2.22) gives us (2.14).
In a very similar way, we get (2.15) from (2.10). One just needs to take into account the

following equality:∫ 1

0
Pn−1(y)Pn(y)w(y)

αy + t

y2 dy

= −nhn−1 −

∫ 1

0
Pn−1(y)Pn(y)w(y)

β

y − 1
dy. � (2.23)

Now we have four more auxiliary quantities Rn, R∗
n , rn, r∗

n , in addition to the two unknowns
αn and βn . However, from (S1), (S2) and (S′

2), we obtain relations among these quantities.

Proposition 2.4. From (S1), we obtain the following equations:

r∗

n+1 + r∗
n = t − αn R∗

n , (2.24)

R∗
n − Rn = −2n − 1 − α − β, (2.25)

rn+1 + rn = (1 − αn)Rn − β, (2.26)

where the constants Rn, R∗
n , rn and r∗

n are defined in (2.16)–(2.19), respectively.

Proof. Substituting (2.14) and (2.15) into (S1), we get

Bn+1(z) + Bn(z) =
r∗

n+1 + r∗
n

z2 −
−rn+1 − rn + 2n + 1

z
−

rn+1 + rn

z − 1
(2.27)

and

(z − αn)An(z) − v′(z) = (z − αn)

[
R∗

n

z2 +
Rn

z
−

Rn

z − 1

]
−

[
−

t

z2 −
α

z
+

β

1 − z

]
=

t − αn R∗
n

z2 +
α + R∗

n − αn Rn

z
+

β − (1 − αn)Rn

z − 1
. (2.28)
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Comparing the coefficients in the above two formulas, it follows that

r∗

n+1 + r∗
n = t − αn R∗

n , (2.29)

−rn+1 − rn + 2n + 1 = −α − R∗
n + αn Rn, (2.30)

−rn+1 − rn = β − (1 − αn)Rn . (2.31)

Combining the above three formulas immediately proves our proposition. �

Proposition 2.5. From (S′

2), we obtain the following equations:

(r∗
n )2

− tr∗
n = βn R∗

n R∗

n−1, (2.32)

r2
n + βrn = βn Rn Rn−1, (2.33)

(t − 2r∗
n )(n − rn) − αr∗

n = βn(R∗
n Rn−1 + R∗

n−1 Rn) (2.34)

and

n−1−
j=0

R∗

j = n(t − α − n) − (2n + α + β)(r∗
n − rn), (2.35)

where the constants Rn, R∗
n , rn and r∗

n are defined in (2.16)–(2.19), respectively.

Proof. From (2.14) and (2.15), we know that

B2
n (z) + v′(z)Bn(z) +

n−1−
j=0

A j (z)

=
(r∗

n )2
− tr∗

n

z4 +
(t − 2r∗

n )(n − rn) − αr∗
n

z3 +
(n − rn)2

+ α(n − rn)

z2

+
r2

n + βrn

(z − 1)2 +
−2rnr∗

n − βr∗
n + trn

z2(z − 1)
+

(β + 2rn)(n − rn) + αrn

z(z − 1)

+

n−1−
j=0


R∗

j

z2 +
R j

z
−

R j

z − 1


. (2.36)

Using (2.14) again, we have

βn An(z)An−1(z) =
βn R∗

n R∗

n−1

z4 + βn Rn Rn−1

[
1

z2 −
2

z(z − 1)
+

1

(z − 1)2

]
+ βn(R∗

n Rn−1 + R∗

n−1 Rn)

[
1

z3 −
1

z2(z − 1)

]
. (2.37)

Note that (2.36) equals (2.37) due to (S′

2). Then let us compare their coefficients. At
O(z−4), O(z − 1)−2 and O(z−3), equating the coefficients we have (2.32)–(2.34) in our
proposition, respectively. At O(z−2), using the fact that

1
z − 1

= −1 − z − z2
− · · · , as z → 0,

we obtain

(n − rn)2
+ α(n − rn) − (−2rnr∗

n − βr∗
n + trn)
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= βn Rn Rn−1 + βn(R∗
n Rn−1 + R∗

n−1 Rn) −

n−1−
j=0

R∗

j . (2.38)

Combining (2.34) and the above formula yields

n−1−
j=0

R∗

j = βn Rn Rn−1 + (t − 2r∗
n − α)(n − rn) − (n − rn)2

+ (t − 2r∗
n )rn − (α + β)r∗

n . (2.39)

Substituting (2.33) into (2.39) gives us (2.35). �

Remark 2.6. From (S2), using calculations similar to those in the above proposition, we get one
more equation as follows:

− rn+1 + rn + r∗

n+1 − r∗
n + αn = 0. (2.40)

To continue, we rewrite (2.40) as

−αn = r∗

n+1 − r∗
n − (rn+1 − rn).

Performing a telescopic sum and recalling (2.5), we find the very handy relation

p1(n) = r∗
n − rn, (2.41)

where we have used the initial conditions r0(t) = r∗

0 (t) := 0. As we shall see later, (2.41) will
play a crucial role in the derivation of the Painlevé equation.

Remark 2.7. We may expect that (S1) and (S2) should “contain” all that is necessary. However,
these are non-linear equations and their combination (S′

2) carries extra information. It transpires
that all three are needed to provide a complete description of the recurrence coefficients.

3. The recurrence coefficients

In this section we shall express the recurrence coefficients αn and βn in terms of the auxiliary
quantities Rn, rn and r∗

n . Note that we do not require R∗
n since it is Rn up to a linear form in n;

see (2.25).

Lemma 3.1. The diagonal recurrence coefficients αn are expressed in terms of Rn, rn and r∗
n as

follows:

(2n + 2 + α + β)αn = 2(r∗
n − rn) + Rn − β − t. (3.1)

Proof. We eliminate R∗
n from (2.24) with the aid of (2.25) and find

r∗

n+1 + r∗
n = t + αn(2n + 1 + α + β − Rn). (3.2)

Subtracting the above formula from (2.26), we get

rn+1 − r∗

n+1 + rn − r∗
n = Rn − β − t − (2n + 1 + α + β)αn . (3.3)

Recalling (2.40), we see that the left hand side of the above formula is αn + 2(rn − r∗
n ). Then

(3.1) immediately follows. �
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Remark 3.2. For n = 0, we find, from the definition of α0(t) and R0(t), that

α0(t) =
U (1 + β, −α − 1, t)

U (1 + β, −α, t)
, (3.4)

R0(t) =
U (β, −α, t)

U (1 + β, −α, t)
, (3.5)

where U is the second solution of Kummer’s equation; see [25]. We verify the validity of (3.1)
at n = 0 by substituting the above two formulas.

Remark 3.3. For t → ∞,

R0(t) = t


1 +

α + 2(1 + β)

t
+ O


1/t2


. (3.6)

The next lemma gives an expression for βn .

Lemma 3.4. The off-diagonal recurrence coefficients βn are expressed in terms of rn and r∗
n as

follows:

{1 − (2n + α + β)2
}βn = −(r∗

n − rn)2
− (β + t)rn + (t − α − 2n)r∗

n + nt. (3.7)

Proof. We eliminate R∗
n in favor of Rn using (2.32) and replace βn Rn Rn−1 by r2

n + βrn with
(2.33) to find

(r∗
n )2

− tr∗
n = r2

n + βrn + βn[(2n + α + β)2
− 1]

− βn[(2n + 1 + α + β)Rn−1 + (2n − 1 + α + β)Rn].

The same substitutions as that made in (2.34) produce

(t − 2r∗
n )(n − rn) − αr∗

n

= 2(r2
n + βrn) − βn[(2n + 1 + α + β)Rn−1 + Rn(2n − 1 + α + β)]. (3.8)

Subtracting the above two formulas gives us (3.7). �

Remark 3.5. We consider the case when t = 0. In this situation R∗
n(0) = r∗

n (0) = 0. Therefore,
from (2.25) and (2.35) we find

Rn(0) = 2n + 1 + α + β

and

rn(0) =
n(n + α)

2n + α + β
,

respectively. Finally, from (3.1) and (3.7), we have

αn(0) =
2n2

+ 2n(α + β + 1) + (1 + α)(α + β)

(2n + α + β)(2n + α + β + 2)
, (3.9)

βn(0) =
n(n + α)[n2

+ (α + 2β)n + β(α + β)]

(2n + α + β)2[(2n + α + β)2 − 1]
. (3.10)
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Note that

lim
n→∞

αn(0) =
1
2
,

lim
n→∞

βn(0) =
1

16
.

They are in agreement with the classical theory in [21].

4. The t dependence

Note that our weight function depends on t . As a consequence, the coefficients of our
polynomials, the recurrence coefficients and the auxiliary quantities defined in (2.16)–(2.19) all
depend on t . In this section, we are going to study the evolution of auxiliary quantities in t . First
of all, we state a lemma which concerns the derivative of p1(n) with respect to t .

Lemma 4.1. We have

t
d
dt

p1(n) = r∗
n . (4.1)

Proof. By the orthogonal property (2.1), we know that∫ 1

0
Pn(x)Pn−1(x)w(x; t)dx = 0.

Differentiating the above formula with respect to t gives us∫ 1

0

d
dt

Pn(x)Pn−1(x)w(x; t)dx +

∫ 1

0
Pn(x)Pn−1(x)

d
dt

w(x; t)dx = 0.

Using (1.1), (2.1) and (2.3), we get

hn−1
d
dt

p1(n) −

∫ 1

0
Pn(x)Pn−1(x)w(x)

dx

x
= 0.

Taking into account (2.18), (4.1) follows immediately. �

From (2.41) and the above lemma, it is easily seen that

t
d
dt

p1(n) = r∗
n = t

d
dt

r∗
n − t

d
dt

rn (4.2)

or

t
d
dt

r∗
n = r∗

n + t
d
dt

rn . (4.3)

Next, we have the following property concerning the Hankel determinant Dn .

Lemma 4.2. We have

t
d
dt

ln Dn(t) = −

n−1−
j=0

R∗

j , (4.4)

where R∗

j is defined in (2.16).
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Proof. Note that the constant hn defined in (2.1) depends on the parameter t . Then, from (1.1)
and (2.1), we have

h′
n = −

∫ 1

0
[Pn(x)]2w(x)

dx

x
. (4.5)

Recalling (2.16), we get from the above formula

h′
n = −

R∗
n hn

t
, (4.6)

which gives us

t
d
dt

ln hn = −R∗
n . (4.7)

Then, our lemma immediately follows from the above formula and (2.6). �

From the above lemmas, we also derive differential relations for the recurrence coefficients
αn and βn . These are the non-standard Toda equations.

Lemma 4.3. The recurrence coefficients αn and βn satisfy the following differential equations:

t
d
dt

αn = r∗
n − r∗

n+1, (T1)

t
d
dt

βn = (R∗

n−1 − R∗
n)βn, (T2)

where R∗
n and r∗

n are defined in (2.16) and (2.18), respectively.

Proof. (T1) follows from (2.4) and (4.1). And (T2) follows from (4.6) and the fact that βn =

hn/hn−1. �

5. A non-linear differential equation satisfied by Hn

In this section we express Rn, r∗
n and rn in terms of Hn and its derivative with respect to t ,

and obtain a functional equation involving Hn, H ′
n and H ′′

n . For this purpose, we first express rn
and r∗

n in terms of Hn and H ′
n in the next lemma.

Lemma 5.1.

r∗
n =

nt + t H ′
n

2n + α + β
, (5.1)

rn =
n(n + α) + t H ′

n − Hn

2n + α + β
. (5.2)

Proof. From (2.35) and (4.4) we have

− Hn = nt − n(n + α) − (2n + α + β)(r∗
n − rn)

= nt − n(n + α) − (2n + α + β)p1(n). (5.3)

Taking the derivative of the above formula with respect to t and using (4.1), we find

− H ′
n = n − (2n + α + β)

r∗
n

t
. (5.4)
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Eq. (5.1) then follows from the above one. And Eq. (5.2) follows from eliminating r∗
n from (5.3)

and (5.4). �

Then we try to get a similar lemma for Rn . To achieve this, we first derive the relations among
Rn, rn , and r∗

n .

Proposition 5.2. The auxiliary quantity Rn(t) satisfies the following quadratic equations:

2n + 1 + α + β

Rn
(r2

n + βrn) +
Rn

2n + 1 + α + β

×


(r∗

n − rn)2
+ (2n + α − t)r∗

n + (β + t)rn − nt


= 2r2
n + (t + 2β − 2r∗

n )rn + (2n + α)r∗
n − nt (5.5)

and

1 − (2n + α + β)2

Rn
(r2

n + βrn)

+


(r∗

n − rn)2
− t (r∗

n − rn) + βrn + (2n + α)r∗
n − nt


Rn

= 2r2
n + (t + 2β − 2r∗

n )rn + (2n + α)r∗
n − nt − (2n + α + β)t

d
dt

rn . (5.6)

Proof. In (3.8), we replace βn Rn−1 by (r2
n + βrn)/Rn with (2.33) and get

(2n + 1 + α + β)
r2

n + βrn

Rn
+ (2n − 1 + α + β)βn Rn

= 2(r2
n + βrn) + αr∗

n + (t − 2r∗
n )(rn − n).

Replacing βn in the above formula with the aid of (3.7), we have (5.5).
Then, we look back to (T2) by using (2.25) and (2.33):

t
d
dt

βn = (R∗

n−1 − R∗
n)βn

= (Rn−1 − Rn + 2)βn

= (2 − Rn)βn +
r2

n + βrn

Rn
. (5.7)

Applying t d
dt to (3.7) gives us

[1 − (2n + α + β)2
]t

d
dt

βn

= −2(r∗
n − rn)r∗

n + t (r∗
n − rn) + tr∗

n − βt
d
dt

rn − (2n + α)t
d
dt

r∗
n + nt,

where we have made use of (4.2) to arrive at the last step. Substituting (5.7) into the above
formula gives us (5.6). �

Directly from the above proposition, we express Rn and 1/Rn in terms of rn, r∗
n and tr ′

n(t).
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Proposition 5.3. The auxiliary quantity Rn has the following representations:

Rn(t) =
(2n + 1 + α + β)[2r2

n + (t + 2β − 2r∗
n )rn + (2n + α)r∗

n − nt − tr ′
n(t)]

2[(r∗
n − rn)2 + (2n + α − t)r∗

n + (β + t)rn − nt]
, (5.8)

1
Rn(t)

=
2r2

n + (t + 2β − 2r∗
n )rn + (2n + α)r∗

n − nt + tr ′
n(t)

2(2n + 1 + α + β)(β + rn)rn
. (5.9)

Proof. These are found by solving for Rn and 1/Rn from (5.5) and (5.6). �

Finally we arrive at the following theorem.

Theorem 5.4. The logarithmic derivative of the Hankel determinant with respect to t ,

Hn(t) := t
d
dt

ln Dn(t),

satisfies the following non-linear second-order ordinary differential equation:

(t H ′′
n )2

= [n(n + α + β) − Hn + (α + t)H ′
n]

2
+ 4H ′

n(t H ′
n − Hn)(β − H ′

n). (5.10)

Proof. Multiplying (5.8) and (5.9) gives us

t2
[r ′

n(t)]2
= t2r2

n + 2rn[−2(2n + α + β)(r∗
n )2

+ (4n + α + 2β)tr∗
n − nt2

] + [(2n + α)r∗
n − nt]2. (5.11)

Substituting (5.1) and (5.2) into (5.11) gives us (5.10). �

Remark 5.5. It turns out that Hn satisfies the Jimbo–Miwa–Okamoto σ -form of PV for a special
choice for parameters.

If Hn := Hn − n(n + α + β), (5.12)

then (5.10) becomes

(t H ′′
n )2

= −4t (H ′
n)3

+ (H ′
n)2


4Hn + (α + 2β + t)2

+ 4n(n + α + β) − 4β(α + β)


+ 2H ′
n


−(α + 2β + t)Hn − 2nβ(n + α + β)


+ H2

n .

Comparing the above formula with the Jimbo–Miwa–Okamoto [17,23] σ -form of PV , we can
choose a possible identification of the parameters of [17] as

ν0 = 0, ν1 = −(n + α + β), ν2 = n, ν3 = −β. (5.13)

When a suitable limit is taken, (5.10) can be reduced to the σ -form of a Painlevé III equation
given in [8]. To see this, we replace x by y/β, and t by s/β, in∫ 1

0
e−t/x xα(1 − x)β P2

n (x)dx = hn(t),

resulting in∫ β

0
e−s/y yα


1 −

y

β

β P2
n (y)dy = β2n+α+1hn(s/β), (5.14)



2162 Y. Chen, D. Dai / Journal of Approximation Theory 162 (2010) 2149–2167

where Pn(y) = βn Pn(y/β). Now since the left hand side of (5.14) tends to∫
∞

0
e−s/y−y yαP2

n (y)dy,

as β → ∞, we see that

lim
β→∞

β2n+1+αhn(s/β)

becomes the square of the L2 norm of the orthogonal polynomial studies in [8]. Consequently,

lim
β→∞

βn(n+α) Dn(s/β)

becomes the Hankel determinant

det
∫

∞

0
yi+ j e−s/y−y yαdy

n−1

i, j=0
.

Indeed on replacing t by s/β and letting β → ∞, (5.10) becomes, keeping only the highest order
term in β,

(s H ′′
n )2

= (n + αH ′
n)2

+ 4(s H ′
n − Hn)H ′

n(1 − H ′
n), (5.15)

which is (3.24) of [8] in a slightly different form.
Note that we have abused the notation: retaining Hn after the limit to avoid introducing extra

symbols.

6. A non-linear difference equation satisfied by Hn

On the basis of the recent papers [1,8], we expect to find a second-order non-linear difference
equation satisfied by Hn . To arrive at the difference equation, we want to express the recurrence
coefficients αn and βn in terms of Hn and Hn±1. First, let us find a useful relation between Hn
and p1(n).

Lemma 6.1. We have

Hn = (2n + α + β)p1(n) + n(n + α − t) (6.1)

or

p1(n) =
Hn − n(n + α − t)

2n + α + β
. (6.2)

Proof. From (2.35) and (4.4) and the definition of Hn , we have

Hn = t
d
dt

ln Dn(t) = −

n−1−
j=0

R∗

j (6.3)

= (2n + α + β)(r∗
n − rn) + n(n + α − t). (6.4)

Using (2.41) and rewriting the above formula gives our proposition. �

Note that since αn = p1(n) − p1(n + 1), we have a very simple expression for αn in terms of
Hn and Hn+1. Furthermore we can also obtain Rn in terms of Hn or p1(n):
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Lemma 6.2.

Rn = Hn − Hn+1 + 2n + 1 + α + β (6.5)

= (2n + α + β)p1(n) − (2n + 2 + α + β)p1(n + 1) + t + β. (6.6)

Proof. These forms are found by combining (2.25), (6.3) and (6.1) together. �

For the formulas involving rn and βn , we have results as follows.

Lemma 6.3. We have

rn =
−[p1(n)]2

− (2n + α − t)p1(n) + nt − [1 − (2n + α + β)2
]βn

2n + α + β
(6.7)

with

βn =
Xn

Yn
, (6.8)

where

Xn :=
1

2n + α + β


−2[p1(n)]3

+ (3t − α + 2β − 2n)[p1(n)]2
− (t2

− 2(n − β)t

− (2n + α)β)p1(n) − (t + β)nt


(6.9)

and

Yn := (2n − 1 + α + β)(2n + 1 + α + β) +
2

2n + α + β
p1(n)

+ (2n − 1 + α + β)(2n + 2 + α + β)p1(n + 1) − (2n + 1 + α + β)

× (2n − 2 + α + β)p1(n − 1) − (t + β)


1

2n + α + β
+ 2n + α + β


. (6.10)

Proof. To obtain (6.7) and (6.8), first we use (2.32) and (2.41) to get

r2
n + (2p1(n) − t)rn + [p1(n)]2

− tp1(n) = βn R∗
n R∗

n−1. (6.11)

Subtracting the above formula from (2.33), we have

(2p1(n) − t − β)rn + [p1(n)]2
− tp1(n) = βn(R∗

n R∗

n−1 − Rn Rn−1), (6.12)

which is a linear equation with respect to rn and βn . Recall that (3.7) is also linear in rn and βn .
Solving this linear system and taking into account (2.25) and (6.6), we prove our lemma. �

Finally, we obtain the following theorem.

Theorem 6.4. Hn satisfies the following non-linear second-order ordinary difference equation:

nt −
(2n + α)(Hn + n(β + t))

2n + α + β
+

Zn

2n + α + β


−2n − α − t +

2(Hn + n(β + t))

2n + α + β
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+
2Z2

n

(2n + α + β)2 =
1

Zn


−2H2

n + 2Hn(1 + Hn+1) + Hn+1(2n − 1 + α + β)

− Hn−1(2n + 1 + α + β − 2Hn + 2Hn+1)



×


−nt (β + t) +

(αβ + 2β(n − t) + (2n − t)t)(Hn + n(β + t))

2n + α + β

+
(−α + 2β − 2n + 3t)(Hn + n(β + t))2

(2n + α + β)2 −
2(Hn + n(β + t))3

(2n + α + β)3


, (6.13)

where

Zn := (2n + α + β)


(2n − 1 + α + β)(2n + 1 + α + β)

−


2n + α + β +

1
2n + α + β


(β + t)

− (2n + 1 + α + β)(Hn−1 + (n − 1)(β + t))

+
2(Hn + n(β + t))

(2n + α + β)2 + (2n − 1 + α + β)(Hn+1 + (n + 1)(β + t))


,

Zn := nt +
(−2n − α + t)(Hn + n(β + t))

2n + α + β
−

(Hn + n(β + t))2

(2n + α + β)2 −
1 − (2n + α + β)2

Zn

×


−nt (β + t) +

(αβ + 2β(n − t) + (2n − t)t)(Hn + n(β + t))

2n + α + β

+
(−α + 2β − 2n + 3t)(Hn + n(β + t))2

(2n + α + β)2 −
2(Hn + n(β + t))3

(2n + α + β)3


.

Proof. The non-linear difference equation for p1(n) is obtained by substituting (2.25), (2.41)
and (6.6)–(6.8) into (2.34). Due to the relations among p1(n), Hn and Hn in (5.12) and (6.1), the
non-linear difference equation for Hn follows. �

7. PV ((2n + 1 + α + β)2/2, −β2/2, α,−1/2)

We end this paper with the derivation of a second-order ordinary differential equation for
Rn which is expected for PV since we have seen that Hn satisfies the Jimbo–Miwa–Okamoto
σ -form.

For this purpose we state in the next lemma a Riccati equation satisfied by Rn .

Lemma 7.1. The auxiliary quantity Rn(t) satisfies the following Riccati equation:

t R′
n = 2Rn(r∗

n − rn) + (2n + 1 + α + β)(2rn − Rn + β) + (Rn − β − t)Rn . (7.1)

Proof. First we apply t d
dt to Eq. (3.1) and make use of (T1) to replace t d

dt αn by r∗
n − r∗

n+1.
In the next step we replace r∗

n+1 by t − αn R∗
n − rn using (2.24). Finally, noting (3.1) and

R∗
n = Rn − (2n + 1 + α + β), we arrive at (7.1). �
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From (7.1) we see that

r∗
n =

1
2Rn


t R′

n − (2n + 1 + α + β)(2rn − Rn + β)

+ rn −

Rn − β − t

2
. (7.2)

Substituting the above formula into (5.8) and (5.9), we find a pair of linear equations in rn and
r ′

n . Solving this system we have

rn = F(Rn, R′
n), (7.3)

r ′
n = G(Rn, R′

n), (7.4)

where F(·, ·) and G(·, ·) are functions that are explicitly known. Because the expressions are
unwieldy, we have decided not to write them down.

By equating the derivative of (7.3) with respect to t and (7.4), we find the following:

[(2n + α + β)(2n + 1 + α + β) − (4n + 2α + 2β + 1)Rn + R2
n − t R′

n]

×


2t2(2n + 1 + α + β − Rn)Rn R′′

n + t2(3Rn − 2n − 1 − α − β)(R′
n)2

+ 2t (2n + 1 + α + β − Rn)Rn R′
n + R5

n − 3(2n + 1 + α + β)R4
n

+ C1(t)R3
n + C2(t)R2

n − 3β2(2n + 1 + α + β)2 Rn + β2(2n + 1 + α + β)3


= 0,

(7.5)

where

C1(t) := −t2
+ 2αt + 3(2n + 1 + α + β)2

− β2

C2(t) := −(2n + 1 + α + β)

t2

+ 2αt + (2n + 1 + α + β)2
− 3β2


.

From (7.5) we have two equations, one of which is a Riccati equation whose solution is

Rn(t) =
(2n + α + β)γn t − (2n + 1 + α + β)

γn t − 1
, (7.6)

where γn is an integration constant. Note that Rn(t) tends to 2n + α + β as t → ∞. Because
R0(t) ∼ t from Remark 3.3, we discard this equation.

It turns out that the above differential equation for Rn(t) is a particular Painlevé V one.

Theorem 7.2. Let

Sn(t) :=
Rn(t)

2n + 1 + α + β
. (7.7)

Then Sn(t) satisfies the following differential equation:

S′′
n =

3Sn − 1
2Sn(Sn − 1)

(S′
n)2

−
S′

n

t
+

(Sn − 1)2

t2

[
(2n + 1 + α + β)2

2
Sn −

β2

2Sn

]
+

αSn

t
−

Sn(Sn + 1)

2(Sn − 1)
, (7.8)

which is PV ((2n + 1 + α + β)2/2, −
β2

2 , α,−1/2).
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Proof. Eq. (7.8) follows if we substitute

Rn(t) = (2n + 1 + α + β)Sn(t)

into the second-order ODE implied by (7.5). �

Remark 7.3. The isomonodromy theory of Jimbo and Miwa [17], and the Riemann–Hilbert
approach to orthogonal polynomials of Fokas et al. [14,15] and others may also be applied.
We have made use of the ladder operator approach, with the associated compatibility conditions
(S1), (S2) and (S′

2), since it is relatively straightforward to express the recurrence coefficients
in terms of the auxiliary variables. This allows us to investigate the “time” evolution of such
quantities and discover the Painlevé V of our problem.

Regarding the asymptotic analysis which arises for large n, the Riemann–Hilbert approach
of Deift et al. [11,10,12] is particularly suited for this purpose. However, the appearance of an
extra irregular singularity at the origin requires further study since the conventional paramatrix
associated with milder singularities would no longer be appropriate.
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