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Summary

The liver has the unique capacity to regenerate in response to a
damaging event. Liver regeneration is hereby largely driven by
hepatocyte proliferation, which in turn relies on cell cycling.
The hepatocyte cell cycle is a complex process that is tightly reg-
ulated by several well-established mechanisms. In vitro, isolated
hepatocytes do not longer retain this proliferative capacity.
However, in vitro cell growth can be boosted by immortalization
of hepatocytes. Well-defined immortalization genes can be
artificially overexpressed in hepatocytes or the cells can be con-
ditionally immortalized leading to controlled cell proliferation.
This paper discusses the current immortalization techniques
and provides a state-of-the-art overview of the actually
available immortalized hepatocyte-derived cell lines and their
applications.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

In the field of hepatology, when orthotopic liver transplantation
is not possible, human primary hepatocytes represent the ‘gold
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standard’, in particular for the establishment of bioartificial liver
(BAL) support systems [1,2]. They also serve as an important tool
in research and are of particular interest for in vitro pharmaco-
toxicology [3,4]. Consequently, there is a considerable and
increasing demand for human primary hepatocytes, yet their
use is hampered by inadequate supply, high cost, high variability
and low in vitro proliferation capacity. These constraints have
prompted a large-scale search for alternative cell sources, such
as hepatic cell lines and stem-cell derived hepatocytes [2,5–9].
In contrast to primary cells, cell lines are readily available, and
usually have an unlimited growth potential and high reproduc-
ibility [10,11]. Hepatic cell lines are either derived directly from
liver tumor tissue or artificially generated from primary hepato-
cytes in vitro [5,6]. Several hepatoma-derived cell lines preserve
some liver-specific functions, but most of them, with exception
of the HepaRG� cells, do not exhibit sufficient functionality to
be of pharmaco-toxicological relevance [12–18]. Immortalized
hepatocytes are typically derived from healthy primary hepato-
cytes by using a defined immortalization strategy. Both fetal
and adult hepatocytes from different species have already been
successfully immortalized, whether or not using a combination
of viral oncogenes and the human telomerase reverse transcrip-
tase (hTERT) protein [7,9,19–25]. The purpose of this paper is
to discuss the different current immortalization strategies and
to provide an overview of the actually available immortalized
hepatic cell lines and their applications. To fully understand
these immortalization techniques, the processes of hepatocyte
proliferation and senescence are briefly outlined in the preceding
part.
Key Points

Hepatocyte immortalization strategies

• Commonly used immortalization genes include viral 
oncogenes and hTERT

• Gene transfer is accomplished by viral and non-viral 
methods

• Conditional immortalization enables the production of 
growth-controlled cell lines
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Fig. 1. The hepatocyte cell cycle and its regulation. (A) The hepatocyte cell cycle, as in other eukaryotic cells, is composed of four phases namely the G1, S, G2, and M
phase. Under physiological conditions, most hepatocytes in the adult liver escape the active cell cycle and enter a quiescent stage, known as the G0 phase. In this state,
hepatocytes do not proliferate, but remain metabolically active. Upon appropriate stimulation, hepatocytes re-enter the cell cycle in the G1 phase [42,174]. Progression
through the mid-late G1 phase is growth factor-dependent. Once beyond the mitogen-dependent restriction point (RP), the cell cycle is completed autonomously, driven by
the sequential activation of a series of structurally related serine/threonine protein kinases, the cyclin dependent kinases (cdk) [42]. In contrast with other mammalian cells,
hepatocytes possess active cyclin A-cdk1 and cyclin B-cdk1 complexes during the S-phase of their cell cycle, which is suggested to allow rapid and efficient hepatocyte
proliferation [175]. (B) The kinase activity of the cdks is tightly regulated by several different mechanisms, including binding to cyclins, binding by cdk inhibitors (cdki) and
various phosphorylation/dephosphorylation events. For example full activation of the cyclin B-cdk1 complex requires its phosphorylation (P) on threonine 161 by the cdk-
activating kinase (CAK). Other phosphorylation/dephosphorylation events fine-tune kinase activity and thereby facilitate proper mitotic action. The kinases Myt1 and Wee1
negatively affect kinase activity by phosphorylating cdk1 on threonine 14 (T14) and tyrosine 15 (Y15), whereas cdc25 phosphatase restores kinase activity by
dephosphorylation of the same amino acids. Furthermore, Cip/Kip cdki can bind to the cyclin B/ckd1 complexes and inhibit their action [39,42,51,55]. Adapted from
[28,42,51]. CAK, cdk-activating kinase; cdk(i), cyclin dependent kinase (inhibitor); G, gap; M, mitosis; P, phosphorylated; RP, restriction point; S, synthesis; T, threonine; Y,
tyrosine.
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Hepatocyte proliferation

Priming phase and commitment to hepatocyte cell cycle progression

Under normal conditions, the adult liver has very little prolifera-
tive activity. However, upon partial removal of liver tissue, the
remaining intact hepatic lobes start to grow and liver mass is
restored within seven to ten days due to the proliferation of
mature hepatocytes [26,27]. Multiple genes involved in cytokine
networks become differentially expressed and regulate the initi-
ation of this liver regeneration, a process called the ‘‘priming
phase’’ [28–30]. During this step, G0/G1 cell cycle transition
926 Journal of Hepatology 201
and early G1 progression are accomplished and hepatocytes
become responsive to mitogenic signals, which leads to deoxyri-
bonucleic acid (DNA) replication [28,30,31]. During collagenase
perfusion of the liver, a critical step in the isolation procedure
of hepatocytes, the messenger ribonucleic acid (mRNA) levels of
the proto-oncogenes c-Jun and c-Fos rapidly increase, suggesting
that enzymatic liver dissociation triggers the G0/G1 cell cycle
transition of hepatocytes [32,33]. Indeed, collagenase perfusion
of the liver, which is accompanied by release of the cytokine
tumor necrosis factor a as well as activation of the intracellular
nuclear factor kappa-light-chain-enhancer of activated B cells
and mitogen-activated protein kinase (MAPK) pathways, can
4 vol. 61 j 925–943



Fig. 2. Hepatocyte immortalization strategies. Several hepatocyte immortalization strategies are available, including transduction or transfection of prototypical
immortalization genes. Conditional immortalization by temperature-based regulation, recombinase-based control and transcriptional regulation have been introduced to
establish growth-controlled cell lines. Adapted from [10]. rtTA, reverse tetracycline transactivator; TRE, tetracycline responsive element; tTA, tetracycline transactivator.
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induce priming of quiescent hepatocytes [28,32,34–36]. When
the freshly isolated hepatocytes are plated, the sequentially
increased expression of other proto-oncogenes, such as JunB,
JunD, c-Myc, p53 and c-Ki-ras, indicates that the hepatocytes
can proceed to the mid-late G1 phase [28,32]. However, further
progression towards the G1/S cell cycle boundary is only possible
after stimulation with appropriate growth factors to overcome
the mitogen-dependent mid-late G1 restriction point [32]. This
major checkpoint is regulated by the tumor suppressor retino-
blastoma protein (pRB) and controls whether the cellular envi-
ronment supports proliferation [37–39]. The need for mitogenic
signals to pursue cell cycling has also been shown in vivo, though
intrinsic differences exist between the in vivo and in vitro condi-
tions [31,40]. In vivo, normal adult hepatocytes return to the G0
state in the absence of growth factor stimulation, but that is
not the case in vitro [26,36,40]. After attaching to the culture dish,
surviving cells remain at the mid-late G1 restriction point, do not
proliferate and die early [36,41].

Several studies designated cyclin D1 as the major intracellular
mediator of the mitogenic signals responsible for the regulation
of hepatocyte proliferation [32,40,42–45]. As such, overexpres-
sion of D-type cyclins seems sufficient to overcome the mid-late
G1 restriction point and trigger hepatocyte proliferation both,
in vivo and in vitro, in the absence of mitogens [43,45,46]. Though,
the latter has been challenged by Wierod et al. [47]. Interestingly,
fetal hepatocytes, which express both cyclin D2 and D3, possess a
high proliferation rate that is, at least partly, independent of
mitogenic pathways and characterized by the constitutive phos-
phorylation of pRB [48,49].

Critical growth factors involved in hepatocyte cell cycling
include hepatocyte growth factor (HGF), epidermal growth factor
(EGF), transforming growth factor (TGF) a, heparin-binding EGF-
like growth factor and amphiregulin [29,50]. Once past the mid-
late G1 restriction point, hepatocytes are irreversibly committed
to replicate and no longer require growth factors to complete the
first cycle of cell proliferation [40,42]. From this point onwards,
progression through the cell cycle proceeds autonomously and
is driven by the sequential formation, activation and destruction
of a series of structurally related serine/threonine protein kinase
complexes, each composed of a regulatory and a catalytic sub-
unit, cyclin and cyclin-dependent kinase (cdk), respectively
[28,42].

Hepatocyte cell cycle regulation and control

To date, at least 20 different cdk proteins and 30 cyclins have
been identified in mammalian cells. However, only some are
involved in cell cycle regulation [28,51,52]. Whereas the cdks
are expressed throughout the hepatocyte cell cycle, with the
notable exception of cdk1, most cyclins display a temporal
expression profile, leading to periodic activation of their respec-
tive cdk counterparts [36,42,53]. Since these individual cyclin/
cdk complexes perform unique functions in the cell cycle, their
sequential assembly and activation dictates the order in which
the cell cycle events occur [28,51,54,55] (Fig. 1). Nevertheless,
subsequent progression through the S, G2 and M phases can be
impeded by additional cell cycle checkpoints, which are switched
on in response to unfavourable conditions [42]. In this context,
checkpoints at the G1/S and G2/M boundaries ensure the orderly
unfolding of different cell cycle events and inhibit cell cycling in
response to DNA damage. Overall, mechanisms associated with
928 Journal of Hepatology 201
activation of the p53/p21 pathway and suppression of the
cdc25 family phosphatase activity are initiated, which results in
reduced cdk activity and cell cycle arrest [38,42,55]. Indeed, in
addition to cyclin binding, cdk activity is also regulated by a crit-
ical phosphorylation/dephosphorylation equilibrium and coun-
teracted by cell cycle inhibitory proteins, called the cdk
inhibitors (cdki) [42,51,55] (Fig. 1). Based on their structure and
the identity of their cdk targets, two families of cdki have been
described, namely the Ink4 family and the Cip/Kip family. The
former comprises four distinct proteins, namely p15, p16, p18,
and p19, which are specific inhibitors of cdk4/6. The Cip/Kip fam-
ily proteins, including p21, p27, and p57, bind and inhibit differ-
ent cdk/cyclin complexes [42,55].
Hepatocyte senescence

Following partial hepatectomy (PH), the remaining hepatocyte
population needs to divide on average 1.6 times before the nor-
mal liver mass is restored and the regeneration is put back on
hold [26,31,56]. It has been suggested that TGFb and activin A,
known inhibitors of hepatocyte proliferation, as well as extracel-
lular matrix-driven signals, underlie the termination of hepato-
cyte growth when the liver regeneration is completed [57–59].
During chronic liver injury, human hepatocytes are repeatedly
stimulated to proliferate due to iterative waves of liver destruc-
tion and regeneration [60]. This in vivo proliferation capacity
was further highlighted by the efficient repopulation of Fah�/�/
Rag2�/�/Il2rg�/� mice with human adult hepatocytes for at least
four sequential rounds [61]. However, human hepatocytes cannot
proliferate indefinitely. Liver cirrhosis is accompanied by a signif-
icant rate of hepatocellular senescence and characterized by con-
siderable short hepatocyte telomeres [60]. In humans, telomerase
activity of most cell types is repressed early during development.
Consequently, telomere DNA in proliferating somatic cells under-
goes progressive attrition. Once a critical minimal length is
reached, cellular growth is arrested irreversibly, a process known
as replicative senescence, which was first described by Hayflick
and Moorhead nearly 50 years ago [2,62–64]. One way to over-
come telomere-dependent senescence is by reactivating the telo-
merase activity with exogenous hTERT [65–67]. In contrast to
humans, rodents display substantial telomerase activity in sev-
eral somatic tissues, including the liver [62,68–71]. Their telome-
rase activity increases 24 h after PH and is enhanced by the
preoperative treatment with EGF and HGF, but repressed by
MAPK kinase inhibitors [72]. In primary rodent hepatocyte cul-
tures, upregulation of telomerase activity was only notable or
further enhanced after addition of growth factors to the culture
medium [70,72]. The high regeneration capacity, characteristic
of rodent livers, may be linked to this strong telomerase activity
[71]. In this regard, serially transplanted adult mouse hepato-
cytes have been demonstrated to divide as many as 69 times
[31,73].

However, in vitro, both human and rat adult hepatocytes do
not possess spontaneous cell growth and their proliferation
capacity remains usually quite limited even when cultured under
growth promoting conditions [31,36,68,74–76]. The in vitro pre-
mature growth arrest, observed in primary hepatocyte cultures
could be related to a telomere-independent senescence mecha-
nism, which remains to be fully elucidated, but is suggested to
involve tumour suppressor proteins and cdkis [63,77]. Indeed,
4 vol. 61 j 925–943



Table 1. Overview of the functionality and immortalization strategy of in vitro established human and rodent hepatic cell lines.

Human hepatic cell lines
Cell line Immortalization strategy Functionality [Ref.]
Fa2N-4 Adult hepatocytes • Possessed, in comparison with cryopreserved human hepatocytes:

• Significantly lower basal mRNA expression levels of the nuclear receptor 
CAR and several drug metabolizing enzymes and transporters, namely 
CYP1A2/2D6/2E1/1A1, UGT1A1/1A6/2B15/2B4, sulfotransferase, SLC10A1, 
SLC22A1, SLCO1B1/1B3, ABCC2 and ABCB11

• Markedly higher ABCB1 mRNA levels
• Similar basal expression of ABCG2, PXR and AhR
• Apparently higher expression of most transcription factors and coactivators/

corepressors that have been associated with PXR and CAR mediated enzyme 
induction

• Were incapable of metabolizing compounds due to low basal levels of drug-
metabolizing enzymes

• Exhibited, at early passage, inducible CYP1A2/2C9/3A4, UGT1A and ABCB1 mRNA 
levels as well as CYP1A2/2C9/3A4 activities and could distinguish inducers from non-
inducers. At higher passages, the cells lost the ability to induce

• Were not tumorigenic

[22, 86, 176]

Transfection

SV40 Tag

FH-TERT Fetal hepatocytes • Expressed CYP450 mRNA and maintained, in contrast to passaged fetal 
hepatocytes, liver-enriched differentiation markers, especially C/EBPα and HNF4
as well as elevated levels of HGFR

• Possessed glycogen storage and G6P activity, in a pattern similar to primary fetal 
hepatocytes

• Produced urea and retained level of ALB synthesis equivalent to HepG2 cells
• Displayed no in vitro anchorage-independent growth or in vivo tumor formation but 

acquired cytogenetic aberrations (e.g., trisomy 7) in long term cultures
• 4 weeks after intrahepatic transplantation in immunodeficient mice, FH-hTERT 

engrafted, survived and expressed ALB, A1AT, and TF mRNA levels comparable 
with primary human hepatocytes. These experiments illustrated the ability of 
FH-hTERT to differentiate into mature hepatocytes and to display significant 
hepatocellular gene expression

► Culture conditions used in these studies were designed at supporting cell 
proliferation, and conditions have not been optimized for inducing differentiated 
hepatocellular functions

[2, 177]

Retroviral vector

hTERT

Hc3716-hTERT Fetal hepatocytes • Maintained normal mammalian cell morphology 
• Exhibited protein expression of ALB, CK8 and CK18, but not AFP. ALB levels were 

higher than in control, passaged Hc3716 cells
• Possessed inducible CYP3A4/7 mRNA levels
• Exhibited wild-type p53 responsiveness
• Did not show typical oncogenic phenotype traits

► In this study, it is shown that inappropriate culture conditions induce senescence 
programming in human cells. Adapting the culture medium allowed the human fetal 
hepatocytes to extend their lifespan over 80 passage doublings, instead of 10 in normal 
culture conditions

[108]

Retroviral vector

hTERT

HepLi5 Adult hepatocytes • Expressed HBCF-X, GS, GST, ALB and CYP450 mRNA
• Retained ALB secretion and urea production, though at low levels compared to 

primary hepatocytes
• Dislayed CYP1A2 activity
• Were not tumorigenic
•

roller bottles

[141]

Retroviral vector

SV40 Tag

HepLL Adult hepatocytes • Displayed morphologic characteristics of liver parenchymal cells
• Expressed HNF4, HBCF-X, GST-π and ALB mRNA as well as ALB and CYP2E1 

protein but no ASGP mRNA
• Stained positive for human hepatocyte special antigen but negative for AFP
• Secreted ALB and urea at levels not significantly different from primary cultured 

human hepatocytes
• Synthesized glycogen
• Were not tumorigenic after transplantation into SCID mice 
• Possessed a good potential of regeneration and active metabolic function in 

recipient organs

[83]

Lipid mediated gene transfer 
(lipofectamine reagent)

SV40 Tag

Possessed significantly enhanced cellular functions after large-scale culture in

(continued on next page)
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HepZ Adult hepatocytes When grown in bioreactor, cells were able to secrete ALB and A2M and possessed 
inducible CYP450 activity 

► pRB and p53 antisense constructs under control of ALB promoter

[112]

Lipid mediated gene transfer 
(lipofectamine reagent)
Antisense constructions for Rb 
and p53 +  Cotransfection of 
E2F transcription factors and 
cyclin D1

HHE6E7T-1/2 Small hepatocytes • Displayed epithelial-like morphology
• Retained characteristics of differentiated hepatocytes, though functions such 

as ALB secretion as well as mRNA expression levels of ALB, HNF4 and A1AT 
decreased gradually as the passages progressed. CK18 mRNA levels were 
detected throughout the culture period and no AFP expression was observed 

• Were positive for vimentin staining
• Showed chromosomal instability after long-term passage
• Exhibited no tumorigenic properties after transplantation in SCID mice
• Improved survival of acetaminophen-induced ALF mice through possible 

redifferentiation in vivo. It was suggested that once transplanted, cells may support 
ammonia metabolism and gluconeogenesis, even though cells at latter passages 
did not possess ureogenesis or gluconeogenesis

► In this study, transduction of hTERT alone could not extend the life span of normal 
human adult hepatocytes

[20, 153]

Lentiviral and retroviral vectors

HPV16 E6/E7 + hTERT

HHL(-5/-7/-16) Adult hepatocytes • Contained markers of hepatocyte and biliary phenotype (CK7/8/18/19)
• Expressed CYP450 protein at levels comparable to HuH-7 and HepG2 cells
• Produced ALB, though at lower levels than HuH-7 and HepG2 cells
• Stained negative for AFP and did not display elevated nuclear expression of p53 

protein
• Possessed active gap junctions
• Responded to IFN-α stimulation by upregulation of major histocompatibility complex 

I and II
• Exhibited, in contrast to the HuH-7 and HepG2 cells, increased capacity to bind 

recombinant hepatitis C virus-like particles

[19]

Retroviral vector

HPV16 E6/E7

IHH-A5 Adult hepatocytes • Were morphologically and functionally more similar to hepatoma cell lines than 
primary hepatocytes in culture

• 
relatively high rates, within the range observed for early primary human hepatocyte 

secretion and decreased ALB production, demonstrating a proper acute-phase 
response

• Produced detectable amounts of APO-A1
• Exhibited bile-canalicular structures that, in some cases, accumulated the organic 

anion 

vacuoles or on the lateral membranes of adjacent, proliferating cells, respectively
• Did not maintain active Na+ -dependent bile salt uptake
• Displayed similar lipoprotein metabolism as HepG2 cells

[135]

Lipid mediated gene transfer 
(lipofectin reagent)

SV40 Tag

NeHepLxHT Neonatal hepatocytes • Displayed characteristic morphology of primary fetal liver cells
• Maintained epithelial characteristics as evidenced by immunostaining for epithelial 

cell markers, the cytokeratins
• 

positive expression of A1AT, CKIT, CLDN3, EPCAM, NCAM mRNA and no 
detection of AFP, ASGPR or CYP3A4. The very low ALB mRNA levels compared 
to HepG2 cells and the expression of CK19 in early passages, indicated the 
progenitor nature of the cells

• Retained a normal diploid karyotype

[9]

Retroviral vector

hTERT 

OUMS-29 Fetal hepatocytes • Displayed epithelial morphology
• Maintained gene expression of ALB, ASGPR, bil-UGT, GS, 

GST-π, HBCF-X, AhR and Arnt
• Secreted ALB, AFP, TF, A1AT and APO-A1
• Possessed inducible CYP1A1/2 mRNA levels and activity
• Displayed chromosomal abnormalities
• Protected 90% hepatectomized rats from hyperammonemia and prolonged their 

survival after intrasplenic transplantation

► Overexpression of HNF4α2 led to development of OUMS-29/H-11 cell line with 

HNF1α

[21, 122, 136]

Lipid mediated gene transfer 
(lipofectin reagent)

SV40 Tag

Cell line Immortalization strategy Functionality [Ref.]

Secreted different plasma proteins, including ALB, APO-B and fibrinogen at

cultures. Addition of IL-6 to the culture medium resulted in increased fibrinogen

glutathione-methylfluorescein. Cell cultures were partly polarized and
expressed the efflux transporters, MDR1 and MRP1, on the membranes of apical

Possessed gene expression profile similar to human neonatal hepatocytes, with

increased liver-specific gene expression, such as A1AT, apolipoproteins, HBCF-X and

Table 1 (continued)

(continued on next page)
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PH5CH Adult hepatocytes • Displayed epithelial appearance 
• Expressed human CK and ALB protein
• 
• Were not tumorigenic

[137]
Lipid mediated gene transfer 
(lipofectin reagent)
SV40 Tag

THLE-2/-3            Adult hepatocytes • Displayed epithelial morphology
• Secreted ALB and expressed CK18, TF, A1AT, A2M, GST-π and very low levels 

of GGT at early passages. CK19 expression could only be determined at later 
passages. Cells were uniformly negative for AFP and factor VIII. The appearance 
of CK19 and decreased ALB secretion at later passages demonstrated that cells 
undergo dedifferentiation in culture

• Retained mRNA expression of phase II enzymes such as EH, catalase, GPX, SOD 
and GSTs at levels comparable to human liver, with GST-π and α mRNA as the 
dominant form in THLE cells or human liver, respectively

• Maintained NADPH CYP reductase expression at a lower steady-state mRNA level 
than in human liver

• Were able to metabolize three carcinogens, which suggested the presence and 
activity of CYP1A2/1A1, CYP2E1 and CYP3A4. However CYP1A2, CYP2E1, 
CYP3A4, CYP2A3 and CYP2D6 mRNA were not detected. The steady-state 
mRNA levels of CYP1A1 increased after exposure to Aroclor 1254 or B[α] P.

• Displayed chromosomal abnormalities
• Possessed no tumorigenic properties

► Besides the use of viral vectors, strontium phosphate transfection was also applied 
(THLE-1 cells). Immortalization could only be reproducibly established by retroviral 
transduction

[104]

Retroviral vector

SV40 Tag

TPH1 Adult hepatocytes • Exhibited altered cell morphology resembling low-differentiated epithelial cells
• Expressed no A1AT or AFP mRNA
• Secreted ALB
• Possessed G6P activity
• Reactivated telomerase immediately after senescence
• Displayed anchorage-independent growth at latter stages, providing evidence for 

transformed phenotype

[113]

Strontium phosphate 
precipitation

HCV core gene

Conditional immortalization

16T-3 Adult hepatocytes Reverted 16T-3 cells:
• Showed enhanced mRNA levels of transcriptional factors, C/EBPα and HNF4α as 

ALB, 
GST-π, HBCF-X, bil-UGT, CYP3A4, GS and ASGPR

• Possessed increased ALB production and lidocaine metabolism, though at lower 
levels than normal human hepatocytes

• Intraportal transplantation in a pig model of ALF induced by D-galactosamine 
recovered TBL, AST, NH3 and PT levels and prolonged survival without tumor 
formation

[111]

Retroviral vector

hTERT

Tamoxifen-mediated self-excision 
(Cre-LoxP) 

cBAL111 Fetal hepatocytes • Expressed relatively high mRNA levels of immature markers, GST-π and AFP, and 
very low mRNA levels of mature markers, ALB, A1AT and TF. Transcript levels of 
HNF4α increased after prolonged culturing 

• Stained positive for GS, ALB, CK18, CK19, vimentin and the progenitor cell marker 
CD146 but displayed CK18 in a pattern characteristic of dedifferentiated human 
hepatocytes

• Produced urea and ALB, though at lower levels than mature human hepatocytes.
• Retained no CYP1A2 & 3A4 activity (no elimination of lidocaine) but were able to 

eliminate galactose
• Displayed no anchorage-independent growth
• Possessed the ability to differentiate into functional hepatocytes once transplanted 

in vivo, without the occurrence of tumor formation

► cBAL111 cells resembled cells with progenitor characteristics rather than fully 
differentiated hepatocytes.  However, there was a trend of increased and decreased 
expression of mature and immature markers, respectively, with culture time  

[7]

Lentiviral vector

hTERT

Transcriptional regulation (Tet-on 
approach)

HepCL Fetal hepatocytes • Displayed morphological characteristics of liver parenchymal cells
• Stained positive for ALB, CK18 and CK19
• 

human fetal hepatocytes 
• Were not tumorigenic after transplantation into SCID mice
• Transplanted cells rescued mice after 90% hepatectomy, produced ALB and CK18 

and were superior to HepG2 cells regarding metabolic support during ALF

[124]

Retroviral vector

SV40 Tag

Temperature-based regulation

Cell line Immortalization strategy Functionality [Ref.]

Possessed low colony-forming efficiency

well as increased mRNA expression of hepatocyte-specific genes, including

Produced amounts of ALB and urea comparable to those of unmodified primary

(continued on next page)
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HepLi-4 Adult hepatocytes Reverted HepLi-4 cells:
• Expressed similar GS and somewhat lower UGT1A1 mRNA levels than adult 

human liver. ALB and GST-π mRNA levels were extremely lower or higher, 
respectively, compared to the human liver. This indicates that HepLi-4 cells are not 
fully differentiated after reversion

• Prolonged the survival of common bile duct ligated mice after intrasplenic 
transplantation

• Were not tumorigenic

[87]

Retroviral vector

SV40 Tag

Tamoxifen-mediated self-
excision (Cre-LoxP) 

HLTC-7/       
-11/-15/-17/  
-19

Adult hepatocytes • Grew as islands or sheets of cuboidal cells (HLTC-17) or displayed a more 
dispersed cuboidal-elongated morphology (HLTC-7/-11/-15/-19)

•
(33.5°C) and non-permissive (39.5°C) temperature

• Exhibited no ALB, AFP, A1AGP or PT secretion in any cell line at both 
temperatures

• Cell lines HLTC-7,-15 and -19, produced A1AT at permissive temperature. 
However, at non-permissive temperature the secretion of A1AT was upregulated 
or became detectable in all the cell lines

• Cell lines HLTC-17 and -11 possessed no CYP activity at any temperature even 
after induction and stained positive for ALB, CK18, CK7, CK19 and vimentin, but 
negative for CK8, with almost identical patterns at both temperatures 

• HLTC-17 cells showed considerable aneuploidy with chromosomal 
rearrangements. All HLTC cells contained a derivative chromosome with loss of 
the short arms of chromosomes 11 and 12 

• Displayed no anchorage-independent growth

► The results indicated progressive phenotypic instability and loss of differentiated 

expression of a limited repertoire of differentiated functions by the immortalized human 
hepatocytes

[103]

Retroviral vector

SV40 Tag

Temperature-based regulation

IHH10(.3)/12 Adult hepatocytes • Displayed morphology reminiscent of differentiated hepatocytes
• Expressed ALB, A1AT, ASGPR and CYP450 mRNA levels 
•

cells but lower than primary hepatocytes. The IHH12 cell line did only produce 

differentiation status in this setting.  However, Cre-recombinase treatment of 

• Possessed inducible CYP1A1/2 activity
• Were not tumorigenic and rescued mice from lethal doses of acetaminophen 

non-dividing human hepatocytes

[23]

Lentiviral vector

SV40 Tag + hTERT 
(IHH10)
or 
SV40 Tag + hTERT + Bmi-1 
(IHH12)
Recombinase- based control 
(Cre-LoxP)

NKNT-3 Adult hepatocytes • Displayed morphological characteristics of liver parenchymal cells and looked 
more differentiated after reversion 

• Expressed bil-UGT, GS and GST-π mRNA levels, which increased substantially 
after reversion. Contradicting results were published regarding expression of ALB
and HBCF-X mRNA levels. One paper demonstrated that ALB and HBCF-X mRNA 
were newly introduced in the reverted cells whereas several other papers already 
reported expression of these genes and ASGPR mRNA in non-reverted cells. 
Nevertheless, although reversion did stimulate differentiation, mRNA levels of ALB, 
A1AT and TF were maximally 0.1% of primary human hepatocytes

• Were not tumorigenic after transplantation into SCID mice and both NKNT-3 and 

rats, protecting as such 90% hepatectomized rats from hyperammonemia and 
prolonged their survival

► Additional experiments revealed that introduction of p21 into human immortalized 
hepatocytes can increase ALB expression and induce a differentiated morphology

[6, 85, 117, 
136, 140, 
152]

Retroviral vector

SV40 Tag

Recombinase-based control 
(Cre-loxP)

YOCK-13 Adult hepatocytes • Displayed morphological characteristics of normal human hepatocytes.
• Expressed markers of hepatocytic differentiation including ALB, ASGPR, bil-UGT, 

CYP3A4, GS, GST-π, and HBCF-X
• Immortalized and reverted cells possessed no tumorigenic properties in SCID mice
• Xenotransplantation in totally pancreatectomized pigs, decreased hyperglycemia 

and prolonged survival without adverse effects such as portal thrombosis, liver 
necrosis, pulmonary embolism and tumor development

► The YOCK-13 hepatic cell line is derived from the reversible immortalized human 

[110]

Retroviral vector 

hTERT

Tamoxifen-mediated self-
excision (Cre-LoxP) 

Cell line Immortalization strategy Functionality [Ref.]

Secreted fibrinogen at fairly constant rate in all tested cell lines at permissive

functions. Conversion to the non-permissive temperature did only allow significant

Secreted liver-specific proteins, ALB and fibrinogen, at levels similar to HuH-7

fibrinogen after de-immortalization, suggesting the acquirement of a higher

IHH12 cells did not significantly improve the production of ALB

► Combination of immortalizing genes hTERT & Bmi-1 was insufficient to immortalize

reverted NKNT-3 significantly improved biochemical parameters in transplanted

hepatic cell line, TTNT-16-3, by co-expression of modified insulin

(continued on next page)
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Rodent hepatic cell lines
Cell line Immortalization strategy Functionality [Ref.]

AdPX3/4 Rat adult hepatocytes • Secreted ALB at early passage, though at lower levels than primary cultured 
hepatocytes and many CWSV cell lines. Moreover, ALB amounts declined with 
continued passage in culture. The cells also produced additional plasma proteins, 
including TF, hemopexin and C3 complement but no AFP

• AdPX4 cells were, at least at low passage, not tumorigenic

► Use of E1A or E1B
proliferation

► Transformation frequencies were enhanced when growth factors were added to the 
culture medium 

[25]

Calcium phosphate precipitation

E1A & E1B

C3-II-B-2-3
C4-1-B-2
C8-IV
P9
SV40RH1

Rat adult hepatocytes • Produced ALB (SV40RH1/C3-II-B-2-3/C4-1-B-2/C8-IV)
• Possessed bil-UGT activity (SV40RH1/P9) 
• Were able to resynthesize gluthatione from methionine and cysteine (SV40RH1/

P9)
• Expressed low levels of phase II enzymes, GGT and GST-π (SV40RH1/P9)
• Contained cells expressing vimentin. The SV40RH1 was the only cell line in which 

vimentin-negative cells were present

[133]

Calcium phosphate precipitation

SV40 DNA

CWSV Rat adult hepatocytes • Were derived from colonies of ALB-producing epithelial cells, which were 
morphologically more similar to established hepatoma cell lines than cultured 
primary hepatocytes

• At low passage, the cell lines, CWSV1, 2, 14, 16 and 17 expressed high ALB 
mRNA levels and possessed TF, A1AT and PEPCK mRNA levels which were 
similar to the liver but higher than to 2 hepatoma cell lines (H4IIEC3 & McA-
RH7777). At higher passage ALB expression decreased only slightly in the 
CWSV1, 2 and 17 cell lines but markedly in CWSV14 and 16 cells. TF levels were 
marginally diminished in all cell lines whereas A1AT and PEPCK were only highly 
maintained in CWSV1 and 14 cells, respectively. No AFP expression could be 
detected throughout cultivation, except in high passaged CWSV14 cells

• Exhibited variable ALB production, ranging from high (CWSV1, 2, 9, 10, 14, 15, 
16 and 17) to low (CWSV4 and 5) levels. CWSV8 cells did not produce detectable 
ALB amounts from passage 11 onwards. ALB-producing cell lines also secreted 
other plasma proteins, including, TF, hemopexin and C3, but no detectable 
amounts of AFP

• CWSV1, 2, 16 cells were only tumorigenic at higher passages whereas 
transplanted CWSV 14 and 17 cells already formed tumors at low passages

► Transformation frequencies were enhanced when growth factors were added to the 
culture medium 

the differentiated hepatic phenotype of transformed cells. For example formation of ALB 
secreting colonies was greatly increased after addition of DMSO to the culture medium

► Experiments demonstrated that ALB expression was apparently temperature-
independent

[105, 134, 
178]

Calcium phosphate precipitation

SV40 DNA

RH(1-4/6-10) Rat adult hepatocytes • Displayed morphology consistent with that of immature hepatocytes and identical 
to certain cultured undifferentiated hepatoma cells

• Did not express CK19 protein levels
• Retained ALB-positive cells, but mRNA and protein expression were weaker than 

in rat hepatocytes
• Showed AFP protein expression in some cell strains (RH8/9/10), but to a lesser 

extent than HepG2 cells. The functional status of these RH cells was thought to 
resemble that of 10- to 17-day-old fetal rat hepatocytes

► Establishment of unique method to specifically immortalize ALB-expressing cells. 
Cultures were cotransfected with puromycin resistance gene under control of ALB 
enhancer/promoter. Only cells derived from hepatocytes were obtained after drug 
selection

[24]

Electroporation

SV40 Tag

SVHepB4 Rat adult hepatocytes • Displayed a hepatocyte-like morphology
• Maintained significant activity and inducibility of phase I and phase II enzymes.
• Showed low activity of GGT, a hepatocyte dedifferentiation or transformation 

marker, whereas the hepatospecific enzyme TAT was expressed at levels similar 
to those in liver

• Possessed no anchorage-independent growth

[179]

Wild type simian virus strain LP

SV40 Tag

gene expression alone was insufficient to induce hepatocyte

► It was shown that culture conditions used for transformation could greatly influence

(continued on next page)

Table 1 (continued)

JOURNAL OF HEPATOLOGY

Journal of Hepatology 2014 vol. 61 j 925–943 933



Conditional immortalization

Cell line Immortalization strategy Functionality [Ref.]

Rat adult hepatocytes • Immortalized cells cultured at permissive temperature (33°C) expressed low mRNA 
and protein levels of ALB, ASGPR and androsterone-UGT but high mRNA and 
protein levels of GST-Yp, compared to 24 hours primary rat hepatocyte cultures

• Immortalized cells cultured at non-permissive temperature (37°C):
• Displayed morphologic characteristics of differentiated hepatocytes 
• Expressed increased mRNA and protein levels of ALB, ASGPR, and 

androsterone-UGT 
• Possessed markedly decreased GST-Yp expression 

• Transplantation into SCID mice revealed no tumorigenic properties and cells 
retained hepatocellular morphology and G6P activity

► Expression of ASGR was found to be temperature-sensitive with higher expression 
at 37°C compared to 39°C. Consequently after SV40 Tag degradation, cells were 
maintained at 37°C instead of 39°C  

[118]

Retroviral vector

SV40 Tag

Temperature-based regulation

Rat adult hepatocytes • Displayed morphology of primary hepatocytes 
• Expressed ALB, G6P, DPP-IV, GGT mRNA levels similar to normal hepatocytes 

and ALB levels were stable for at least a month 
• Secreted an amount of ALB equivalent to primary hepatocytes, however once 

transplanted in hepatectomized nonalbumin rats, immortalized hepatocytes did not 
generate significantly elevated ALB levels compared with primary hepatocytes. 

• Were not tumorigenic

[129, 147]
Human artificial mini 
chromosome
SV40 Tag
Recombinase-based control 
(FLP/FRT)

BQ1
BV1
WA1
WB6

Rat adult hepatocytes • Displayed typical epithelial cell morphology
• Cultured at non-permissive temperature (37°C) expressed decreased levels of p53 
• Although increased at non-permissive temperature, production of ALB and urea 

was still low compared to primary hepatocytes and reached undetectable levels 
with passage

• Possessed increased telomerase activity following immortalization but no 
anchorage-independent cell growth was visible 

• Distribution of chromosomes was adapted during passaging. Significant 
increase of tetraploid along with passage (WA1/WB6/BQ1). For BV1 cells no 
significant change of chromosome count with passage, though several common 
chromosomal aberrations, namely, trisomy, monosomy and unknown marker 
chromosome were noted only in higher passages

► It was demonstrated that conditionally immortalized hepatocytes become 
dedifferentiated by in vitro passage

[102]

Retroviral vector

SV40 Tag

Temperature-based regulation

C8-B Rat adult hepatocytes • Following Cre-recombinase treatment:
• Regained morphological characteristic of differentiated hepatocytes 
• Showed increased mRNA levels of ALB, HNF4 and UGT1 and newly 

detectable UGT2 and ASGPR mRNA
• Possessed no anchorage-independent colony formation or tumor production.

► Ad-Cre infection was not 100% efficient and some cells did not undergo 
recombination

[84]

Retroviral vector

SV40 Tag

Recombinase-based control 
(Cre-LoxP)

H2.35 Mice adult hepatocytes • Cultured at permissive temperature exhibit extremely low ALB mRNA levels 
• Cultured at non-permissive temperature in serum-free medium and collagen 

substratum possessed dramatically increased ALB mRNA levels

[120]
Simian virus 40
SV40 Tag
Temperature-based regulation

L2A2 Rat adult hepatocytes • Cultured at non-permissive temperature (37°C/39°C) regained the morphological 
characteristics of differentiated hepatocytes

• Possessed increased ALB production at non-permissive temperature
• Integrated normally into line cords and appeared indistinguishable from native liver 

parenchymal cells when transplanted into normal rat liver
• Once engrafted in the spleen of portacaval-shunted rats, displayed normal 

morphology, secreted bile, expressed ALB mRNA and offered protection from 
hyperammonemia-induced hepatic encephalopathy

• Were not tumorigenic

[119, 180]

Retroviral vector

SV40 Tag

Temperature-based regulation

A1AGP, a1-acid glycoprotein; A1AT, a1-antitrypsin; ABC, ATP binding cassette; AFP, a-fetoprotein; AhR, aryl hydrocarbon receptor; ALB, albumin; ALF, acute liver failure;
A2M, a2-macroglobulin; APO, apolipoprotein; Arnt, AhR nuclear translocator; ASGP(R), asialoglycoprotein (receptor); AST, aspartate aminotransferase; Bmi-1, B lymphoma
Mo-MLV insertion region 1 homolog; CAR, constitutive androstane receptor; C/EBP, Ccaat-enhancer-binding protein; CD, cluster of differentiation; CK, cytokeratin; CLDN,
claudin; CYP, cytochrome P450; DMSO, dimethyl sulphoxide; DPP, dipeptidyl peptidase; EH, epoxide hydrolase; EPCAM, epithelial cell adhesion molecule; GGT, c-glutamyl
transpeptidase; G6P, glucose-6-phosphate; GPX, glutathione peroxidase; GS, glutamine synthetase; GST, glutathione S-transferase; HBCF, human blood coagulation factor;
HGFR, hepatocyte growth factor receptor; HNF, hepatocyte nuclear factor; HPV, human papillomavirus; hTERT, human telomerase reverse transcriptase; IL, interleukin; INF,
interferon; MDR, multidrug resistance protein; mRNA, messenger ribonucleic acid; MRP, multidrug resistance-associated protein; NADPH, nicotinamide adenine dinu-
cleotide phosphate; NCAM, neural cell adhesion molecule; NH3, ammonia; PEPCK, phosphoenolpyruvate carboxykinase; PT, prothrombin; PXR, pregnane X receptor; Rb,
retinoblastoma; SCID, severe combined immunodeficiency; SLC, solute carrier; SOD, superoxide dismutase; SV40 Tag, simian virus 40 large T antigen; TAT, tyrosine
aminotransferase; TBL, total bilirubin; TF, transferrin; UGT, uridine diphosphate-glucuronosyltransferase.
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Table 2. Overview of the available immortalization strategies.

Immortalizing genes
Rodent adult hepatocytes Human adult hepatocytes Human fetal hepatocytes

Viral oncogenes • Allow the cells to overcome 
the proposed in vitro telomere-
independent growth arrest

• Immortalization of cells

• Allow the cells to overcome 
the proposed in vitro telomere-
independent growth arrest

• Expansion of in vitro lifespan

• Expansion of in vitro lifespan

hTERT n.a • Contradicting results available
• Does not allow the cells to overcome 

the proposed in vitro telomere-
independent growth arrest

• Immortalization of cells

Viral oncogenes + 
hTERT

n.a • Immortalization of cells • Immortalization of cells 
• Use of viral oncogenes may potentially 

help cells to overcome premature 
growth arrest which can occur when 
cultivated under inappropriate culture 
conditions [77, 108]

Conditional immortalization 
Advantage Disadvantage

Temperature-based regulation • Cell growth can easily be manipulated by 
temperature shift

• SV40 Tag not active at physiological 
temperature

• The method is restricted to the temperature-
sensitive SV40 Tag mutant

• The immortalization gene is not removed 
from genome leading to potential risk for 
tumorigenesis when used in vivo

• Temperature shift can induce changes 
in cellular properties and complicate 
interpretation of study outcome

Recombinase-based regulation • Excision of immortalizing gene upon 
recombinase expression offers more 
possibilities for in vivo applications

• Associated with an irreversible growth arrest
• 

of recombinase gene
• Risk for chromosomal rearrangement by 

recombinase activity
+ negative selection marker (HSV-TK)
+ tamoxifen-mediated self-excision Elevates the need of a secondary virus-mediated transfer of the recombinase gene

Transcriptional regulation • Allows switching between the proliferating and 
growth arrest state 

• Expression of immortalizing gene can be 
controlled in vivo

• Possibility of leaky transgene expression

Gene transfer
Non-viral

Calcium phosphate precipitation High hepatocyte toxicity

Strontium phosphate transfection Low hepatocyte toxicity

Electroporation High hepatocyte toxicity

Lipid-mediated gene transfer
methods

transfections
Viral

Retroviral Not able to transduce non-dividing cells
Lentiviral Transduce both dividing and non-dividing cells

Transduction without affecting the differentiated phenotype

medium 

Mitotically stable episomal maintenance
Allows incorporation of large genes under control of their regulatory elements

Human artificial chromosomes Lower transfer efficiency than viral vectors

Improvement of lentiviral transduction efficiency by addition of growth factors and vitamin E to the culture

Low gene transfer efficiencies

Low gene transfer efficiencies

Low gene transfer efficiencies
When optimized, higher gene transfer efficiencies can be obtained compared to the other non-viral

Use of hepatocyte-specific ligands as transfection vehicle can lead to more hepatocyte-specific

Cells that underwent improper recombination can efficiently be eliminated by ganciclovir exposure

Proper reversion depends on efficient transfer

HSV-TK, herpes simplex virus thymidine kinase; hTERT, human telomerase reverse transcriptase; n.a., not applicable; SV40 Tag, simian virus 40 large T antigen.

JOURNAL OF HEPATOLOGY
several studies support the contribution of cdki p21 and/or p16 to
the inhibition of DNA synthesis in primary hepatocyte cultures
[78–82]. In this respect, it was demonstrated that the second cell
Journal of Hepatology 201
cycle G1 block caused by chronic MAPK pathway activation in
mitogen stimulated primary hepatocyte cultures is partly related
to p21 induction. Of note, transient MAPK pathway inhibition
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allows the establishment of multiple replication rounds in these
hepatocyte cultures [79].
Hepatocyte immortalization strategies

Immortalized hepatocytes are defined as a population of indefi-
nitely dividing parenchymal cells that retain critical liver func-
tions [68]. Since mature hepatocytes normally possess only
limited growth potential when stimulated in vitro, immortaliza-
tion strategies have been developed based mainly on the trans-
duction or transfection of hepatocytes with well-known
immortalizing genes. The most frequently used immortalization
methods are (i) overexpression of viral oncogenes, (ii) forced
expression of hTERT, or (iii) a combination of both [9,68]. More-
over, some other immortalization genes as well as conditional
approaches for hepatocyte immortalization have been described
(Fig. 2, Tables 1 and 2).

Immortalization genes

Viral oncogenes
Viral oncogenes include the adenoviral E1A/E1B genes, the sim-
ian virus 40 large T antigen (SV40 Tag) and the human papilloma-
virus 16 (HPV16) E6/E7 genes [68]. All of them have been used to
establish hepatocyte-derived cell lines, such as C8-B, HepLL, HHL,
AdPX3/4, Fa2N4, HepLi-4, and NKNT-3, suggesting that overex-
pression of viral oncogenes may be sufficient to overcome the
premature in vitro growth arrest of cultured hepatocytes
[19,25,83–87]. These viral oncogenes typically interfere with cell
cycling by inhibiting the p16/pRB and p53 pathways [39,68].
Hepatic cell lines have also been developed from livers of trans-
genic rodents overexpressing the SV40 Tag [88–90].

While the use of viral oncogenes, such as SV40 Tag, has been
shown to be sufficient to immortalize rodent cells, overexpres-
sion of these oncogenes in human cells most likely only extends
lifespan. Immortalization per se requires telomerase reactivation
either through mutations or by the use of a second immortalizing
gene, hTERT [2,10,20,23,68,91,92]. Furthermore, the use of a com-
bined strategy involving a viral oncogene and hTERT, has also
been reported to produce more genetically stable cells
[11,67,68,93,94]. Indeed single use of viral oncogenes has often
been demonstrated to induce chromosomal abnormalities [95–
101]. Even though karyotype analysis of newly produced hepatic
cell lines has not routinely been performed, chromosomal abnor-
malities have been described in different cell lines even with
combined immortalization [20,21,102–104]. It is important to
mention, however, that activation of an additional oncogene,
such as Ras is usually needed to observe tumourigenicity
[84,105–107].

Human telomerase reverse transcriptase
The single use of hTERT for immortalization has been suggested
to avoid some of the genetic and phenotypic instabilities related
to the use of oncogenes but is limited to a number of human
cell types, including fetal and neonatal hepatocytes
[2,6,7,9,10,108,109]. Unlike adult hepatocytes, these immature
cells can still proliferate in vitro and hence do not need cell cycle
stimulation for immortalization [2,6,7,9,49,109]. However, fetal
and neonatal human hepatocytes do not possess indefinite
growth potential because inactivation of telomerase causes
936 Journal of Hepatology 201
replicative senescence. Consequently, they require overexpres-
sion of hTERT to become immortalized [2,7,9,109].

Contradicting results have been reported when only hTERT
was used for immortalization of human adult hepatocytes
[20,110,111]. As telomerase activity probably does not allow
adult hepatocytes to overcome the proposed telomere-indepen-
dent growth arrest, overexpression of hTERT may be insufficient
to drive adult hepatocytes through the cell cycle [5,7,66,68].

Miscellaneous immortalization genes
Specific combinations of immortalization genes, such as SV40 Tag
with hTERT and B lymphoma Moloney Murine Leukemia virus
(Mo-MLV) insertion region 1 homolog (Bmi-1), have been used
to immortalize mature human hepatocytes. Bmi-1, like the viral
oncogene HPV16E7, is involved in the inactivation of the p16/
pRB pathway. On the other hand, simultaneous transduction with
Bmi-1 and hTERT appears insufficient to immortalize the non-
dividing hepatocytes [23]. Likewise, a combined HPV16E7/hTERT
approach did not promote unlimited growth of human adult
hepatocytes [20]. A particular cell line has been produced by
co-transfection of human adult hepatocytes with p53 and pRB
antisense constructs and plasmids that include E2F and cyclin
D1 genes [112]. Furthermore, it seems that the hepatitis C core
protein can also specifically immortalize mature human hepato-
cytes [10,113,114]. This core protein is able to induce c-Myc and
cyclin D1 expression in primary human hepatocytes via activa-
tion of the signal transducer and activator of transcription-3
pathway [115].

In general, most of the generated hepatocyte-derived cell lines
are not tumorigenic, but display reduced or only limited liver-
specific functionality [7,20,102]. Taking into account that prolif-
eration and differentiation are mutually exclusive in vitro, it has
been shown that overexpression of the cdki p21 and the use of
conditional immortalization strategies can stimulate to some
extent differentiation of the cells [6,23,84,85,102,111,116–120].
Other anti-dedifferentiation strategies developed to counteract
the loss of functionality in primary hepatocyte cultures, including
co-culture systems and overexpression of liver-specific genes
have also proven useful [121,122].

Conditional immortalization strategies

Conditional immortalization enables the development of growth-
controlled cell lines. At least three strategies have been reported
to conditionally immortalize hepatocytes, namely (i) tempera-
ture-based regulation, (ii) recombinase-based regulation and
(iii) transcriptional regulation. All these methods rely on the
observation that hepatocyte proliferation only takes place when
immortalizing genes are expressed [10] (Fig. 2, Tables 1 and 2).

Temperature-based regulation
This method uses a temperature-sensitive SV40 Tag mutant. The
immortalizing gene is expressed and active only at the permis-
sive temperature (33 �C), leading to the proliferation of hepato-
cytes. At higher temperatures (37–39 �C), the immortalization
gene is inactivated and cell cycle progression is no longer stimu-
lated [10]. As no other temperature-labile immortalizing genes
have yet been identified, this method is confined to SV40 Tag
[10]. Moreover, the use of this strategy is not accompanied by
the excision of the immortalization gene from the genome and
thus could present a potential risk of tumorigenesis
4 vol. 61 j 925–943
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[84,106,123]. Nevertheless, some conditionally immortalized
hepatic cell lines are based on this principle, and these cell lines
can be transplanted efficiently in rat models of acute liver failure
and chronic hepatic encephalopathy, usually without occurrence
of tumourigenicity [88,90,102,118–120,124,125]. However, con-
cerns related to tumourigenicity form an important restriction
to the clinical appreciation of immortalized human hepatocytes
[20]. Importantly, the temperature shift associated with this
methodology might induce changes in cellular properties, which
can complicate the interpretation of the study outcome. A more
sophisticated system, based on recombinase regulation, is
thought to offer a solution for these issues [10,88,118,126,127].

Recombinase-based control
The site-specific recombinase strategy uses recombinase expres-
sion to excise chromosomal DNA segments flanked by two
recombination sequences and thereby irreversibly reverts
immortalization [10,128]. Numerous site-specific recombination
systems, including the Cre-loxP and the FLP-FRT system, have
been used to establish reversible immortalization. These systems
have different efficiencies, whereby the Cre-loxP system stands
out [123,128]. In this system, immortalization genes are flanked
by two identical DNA sequences, called LoxP sites. The excision
of these genes is regulated by Cre recombinase [68,123]. Proper
reversion thus depends on the efficient transfer of the recombi-
nase gene [10]. More recently, a new method based on tamoxi-
fen-mediated self-excision has been established, rendering
secondary virus-mediated transfer of the recombinase gene
superfluous [87,110,111]. Furthermore, the suicide gene herpes
simplex virus thymidine kinase (HSV-TK) has been introduced
in the recombination construct as negative selection marker.
Using this strategy, cells that still express the immortalization
gene and HSV-TK gene, due to improper recombination, can be
eliminated by exposure to ganciclovir [23,123]. Reversible
immortalization of numerous hepatocyte-derived cell lines,
including C8-B, NKNT-3, IHH, and 16T-3 depends on this recom-
binase-based control approach [23,84,85,110,111,129,130].

Transcriptional regulation
In this method, immortalization reversibility is obtained by tran-
scriptional control of immortalization gene expression and not by
recombinase activity. In this way, the risk of chromosomal rear-
rangement is avoided and repeated cycles of hepatocyte prolifer-
ation and growth arrest are allowed [10,126,127]. Transcription
of immortalizing genes can be controlled by using an artificial
promoter/transactivator system, such as the well-known tetracy-
cline system [10]. Two approaches are currently available, the
tet-off and the tet-on system, which are composed of a tetracy-
cline-regulated promoter and a tetracycline transactivator (tTA)
or reverse tetracycline transactivator (rtTA), respectively. When
doxycycline is added to the cell culture medium, it binds to the
transactivator. In the tet-on systems, bound rtTA interacts with
the tetracycline-regulated promoter and induces the expression
of the regulated gene. When using the tet-off method, immortal-
ization genes are expressed in the absence of doxycycline, since
only unbound tTA can interact with the gene promoter
[126,131]. The tet-on approach has been successfully used to pro-
duce a fetal liver cell line [7]. A drawback of this method, how-
ever, is the possible leaky transgene expression caused by
undesired rtTA-tetracycline promoter binding in the absence of
doxycycline [126,131]. A tighter regulation of the transgene
Journal of Hepatology 201
expression can be obtained by combining the rtTA system with
a tetracycline-controlled transcriptional silencer [131].

Gene transfer

An effective gene transfer method is of utmost importance for
immortalizing hepatocytes [91]. Different non-viral and viral
methods have been used to generate immortalized hepatocyte-
derived cell lines, namely plasmid transfection, viral transduction
and the use of human artificial chromosomes (Table 2).

Plasmid transfection
Various approaches are available for transfecting plasmids into
primary hepatocytes [91,132]. Due to immortalization, stably
transfected cells are selected, allowing simple transfection proce-
dures to be used [132]. Examples of common transfection meth-
ods that have been used to immortalize hepatocytes include
calcium phosphate precipitation and electroporation
[24,25,133,134]. However, both approaches typically display
low gene transfer efficiencies and high hepatocyte toxicity
[91,132]. Replacement of calcium by strontium eliminates toxic-
ity but the gene transfer efficiency remains low [91]. Other
researchers explored liposomes as gene carriers for hepatocyte
immortalization [21,83,112,135–137]. When properly optimized,
lipid-mediated gene transfer can achieve high gene transfer effi-
ciencies compared to other transfection approaches [91]. Further-
more, using hepatocyte-specific ligands, more hepatocyte-
specific transfections can be achieved [132].

Viral transduction
Transduction with viral particles covers a widely used methodol-
ogy for gene transfer. Among the available viral vectors, retroviral
and lentiviral vectors induce stable integration of the immortali-
zation gene and thus generate sustained transgene expression in
the progeny [132,138]. Furthermore, these vectors do not pro-
voke harmful immune responses and allow integration of large
genes [139]. Retroviral vectors, such as the Mo-MLV-derived vec-
tors, have been frequently used to establish human and rodent
hepatic cell lines [2,9,19,84,87,102–104,108,110,111,118,119,
124,140,141]. A major flaw in this system is its inability to trans-
duce non-dividing cells, which makes it unsuitable for non-prolif-
erating cells, including hepatocytes [139,142]. Even when growth
factors are added to the cell culture medium to induce hepato-
cyte mitosis, the efficiency of transduction often remains limited
[132,139,142,143]. Lentiviral vectors derived from the human
immunodeficiency virus (HIV) can tackle these issues and trans-
duce both dividing and non-dividing cells by using virus at a rel-
atively high titer [139,142–144]. Moreover, lentiviral vectors can
provide high transduction efficiencies without affecting the dif-
ferentiated hepatic phenotype [139,143,145]. Although lentiviral
vectors lack hepatocyte specificity, the use of hepatocyte specific
promoters can restrict the expression of lentiviral genes to the
parenchymal liver cells [144]. Several studies have demonstrated
appropriate gene transfer for immortalization of human adult
and fetal hepatocytes [7,20,23]. Rodent hepatocytes, especially
murine hepatocytes are considerably resistant to HIV vector-
mediated transduction. This resistance has been related to a
block in the immediate-early phase of infection [142]. In addition
to the use of higher viral titers, cell culture medium supplied with
growth factors, namely EGF and to a lesser extent HGF, was found
to improve lentiviral transduction efficacy of primary mouse
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hepatocytes [142,146]. Similarly, when transducing human adult
and fetal hepatocytes, the use of growth factors markedly upreg-
ulated the expression of lentiviral genes. Consequently, this
transduction approach offers the possibility to reduce the viral
load, which as such lowers cost and reduces cellular toxicity
[144]. Also the antioxidant, vitamin E proved to significantly
enhance lentiviral transduction rates of human and rat adult
hepatocytes [142].

Human artificial chromosomes
The generation of a particular rat hepatic cell line was made pos-
sible by a more recent gene transfer method, namely through
generation of a human artificial chromosome (HAC) [129,147].
Although this method generally has lower transfer efficiency than
the use of viral vectors, the HACs possess many properties of the
ideal gene delivery vector. These include mitotically stable epi-
somal maintenance and incorporation of large genes under con-
trol of their regulatory elements, allowing a correct,
physiologically regulated transgene expression. Furthermore,
due to their episomal nature, integration-related complications,
such as oncogenesis, should be avoided [138]. Immortalization
of human fibroblasts using HAC-mediated episomal expression
of hTERT has also been described, potentially offering new per-
spectives for hepatocyte immortalization [148].
Application of immortalized hepatic cell lines

It has repeatedly been postulated that immortalized hepatic cell
lines, which could offer an unlimited supply of well-character-
ized, pathogen-free cells, may represent an attractive alternative
for primary hepatocytes in several clinical applications as well as
fundamental and applied research [106,147,149]. So far, multiple
studies based on immortalized hepatocytes have already been
performed.

Clinical application

Hepatocyte transplantation
The use of different animal models of hepatic impairment made it
possible to demonstrate the therapeutic efficiency of trans-
planted cell lines. In this regard, it was shown that transplanta-
tion of conditional immortalized rat hepatocytes could protect
portacaval-shunted rats from hyperammonemia-induced hepatic
encephalopathy [119,149], improve survival of rats with acute
liver failure (ALF) [125], adjust for bilirubin conjugation defect
in Gunn rats [150,151], and correct the global hepatic abnormal-
ities associated with end-stage liver failure in cirrhotic animals
[149]. Likewise, several human adult and fetal hepatic cell lines,
including HHE6E7T1, NKNT-3, IHH, HepCL, 16T-3, and OUMS-
29 were confirmed to promote survival in a pig [111], rat [152]
or mice [23,124,153] model of ALF. Furthermore, YOCK-13, an
insulin-producing human hepatic cell line was reported to con-
trol diabetes when transplanted into totally pancreatectomized
diabetic pigs [110].

Bioartificial liver systems
For large-scale applications that rely on in vitro hepatic function-
ality, such as BAL systems, the development of a hepatic cell line
that combines both in vitro hepatic function and proliferation
capacity would be of great value.
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Two human fetal hepatic cell lines, namely HepLi-4 and
cBAL111, have already been evaluated as a potential cell source
for BAL systems [87,154]. However, it was revealed that both cell
lines possessed insufficient hepatic functionality to be applicable
for in vitro applications. The need for in vitro culture conditions
that mimic the in vivo situation and promote hepatocyte differen-
tiation in vitro was clearly emphasized [7,87,154]. This was fur-
ther supported by experiments, which showed that cBAL111
cells are able to partly differentiate into functional hepatocytes
once transplanted in vivo [7].

Different human adult hepatic cell lines have also been pro-
posed as possible candidates for BAL application, but as for the
modified fetal hepatic cell line, OUMS-29/H-11, data on efficacy
in animal models of severe liver failure are currently lacking
[112,141,155–158]. However, the production of ammonia [155]
or possible inability to eliminate ammonia [141] are undesirable
features for a BAL system [158].

Another modified adult hepatic cell line, composed of TTNT
cells overexpressing IL-1 Ra, has already been tested and was
not able to improve survival of an ALF rat model [158].

Fundamental and applied research

Nowadays, human and rodent hepatic cell lines, such as CWSV
[159,160], H2.35 [161,162], NeHepLxHT [163], OUMS-29 [164],
and THLE [165,166] are still being used for fundamental research.
In this regard, a lot of investigations related to hepatotropic
viruses have been performed on TPH1 cells [167,168]. Further-
more, a murine model of HBV viremia, based on immortalized
human hepatocytes transfected with hepatitis B virus DNA, has
been created and offers the opportunity for in vivo HBV studies
[169]. Several hepatic cell lines have also proven useful as
in vitro tools for screening and safety testing of drug candidates.
For instance, Hc3716-hTERT cells represented the first model for
predicting the side-effects of telomere-targeting drugs in normal
cells and it was suggested that the Fa2N4 cell line could be used
for routine screening during discovery for pregnane X receptor
mediated CYP3A4 induction [108,170].
Conclusions and perspectives

In vitro expansion of human hepatocytes has gained considerable
attention, as it might serve many clinical applications and funda-
mental research purposes. Prominent examples include the
establishment of a bio-artificial human liver device that can be
used to bridge the time until liver transplantation is possible
and the creation of a liver-based in vitro tool for screening and
safety testing of drug candidates. As freshly isolated and cultured
mature hepatocytes inherently have very poor growth potential,
efforts have focused on strategies to immortalize primary hepato-
cytes while maintaining their liver-specific functions. The cur-
rently available methods include transduction or transfection
with prototypical immortalization genes and conditional immor-
talization by temperature-based regulation, recombinase-based
control and transcriptional regulation. Although hepatocyte
immortalization has been explored for years, it is still in its
infancy since no cell lines with high in vivo-like hepatic function-
ality are yet available. As already postulated more attention
should be paid to culture systems that support differentiation
of the immortalized hepatocytes [6,7,87]. The past decade
4 vol. 61 j 925–943
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witnessed the introduction of novel strategies for cell immortal-
ization, based on the use of cell cycle regulators to surmount the
p16-regulated premature growth arrest, observed in several epi-
thelial cells [171,172]. Similarly, human myogenic cells immor-
talized by combined overexpression of hTERT, cyclin D1 and a
mutant cdk4 isoform were able to overcome a p16-regulated pre-
cocious growth arrest without loss of their differentiation poten-
tial [173]. Although direct sequestration of p16 could not induce
hepatocyte proliferation, it is worthwhile to examine the block-
ing of p16 control and pRB activity by overexpression of cell cycle
regulators [20,23]. A prerequisite to develop novel hepatocyte
immortalization strategies is further fundamental research on
the regulation of liver cell growth, especially in vitro. Such efforts
should be strongly encouraged as they could lead to the genera-
tion of a robust hepatocyte-derived cell line with sustained liver-
specific functionality resembling the in vivo situation. It can be
anticipated that such a system will not only trigger a lot of inter-
est among clinicians but also in the area of in vitro pharmaco-
toxicology.
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