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Determination of the Action Spectrum of
UVR-Induced Mitochondrial DNA Damage

in Human Skin Cells
Jennifer A. Latimer', James J. Lloyd®, Brian L. Diffey', Paul J. Matts? and Mark A. Birch-Machin'

Biological responses of human skin to UVR including cancer and aging are largely wavelength-dependent, as
shown by the action spectra of UVR-induced erythema and nuclear DNA (nDNA) damage. A molecular dosimeter
of UVR exposure is therefore required. Although mitochondrial DNA (mtDNA) damage has been shown to be a
reliable and sensitive biomarker of UVR exposure in human skin, its wavelength dependency is unknown. The
current study solves this problem by determining the action spectrum of UVR-induced mtDNA damage in human
skin. Human neonatal dermal fibroblasts and primary human adult keratinocyte cells were irradiated with
increasing doses of UVR. Dose-response curves of mtDNA damage were produced for each of the UVR sources
and cell types, and an action spectrum for each cell type was determined by mathematical induction. Similarities
between these mtDNA damage action spectra and previously determined nDNA damage were observed, with
the most detrimental effects occurring over the shorter UVR wavelengths. Notably, a statistically significant
(P<0.0001) greater sensitivity to mtDNA damage was observed in dermal fibroblasts compared with
keratinocytes at wavelengths >300 nm, possibly indicating a wider picture of depth dependence in sensitivity.

This finding has implications for disease/photodamage mechanisms and interventions.
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INTRODUCTION

Most biological end points induced by exposure to UVR show
a highly wavelength-specific response, often encompassing
3—4 orders of sensitivity over the spectral waveband of solar
UVR (290-400 nm). These include erythema and tanning in
human skin, as well as nuclear DNA (nDNA) damage and
carcinogenesis (Diffey, 1991).

In addition to the nucleus, mitochondria also contain their
own DNA (mitochondrial DNA (mtDNA)), linked indirectly
with longevity. Both mtDNA mutations and deletions have
been implicated in a number of human pathologies including
cancer, and a cause-and-effect relationship between mutated/
deleted mtDNA and aging has been reported in various cell
types (Birch-Machin et al., 1998; Schroeder et al., 2008).

Skin is our main environmental interface with a sig-
nificant increased risk of insult versus most other tissues.

'Dermatological Sciences, Institute of Cellular Medicine, Newcastle University
Medical School, Newcastle upon Tyne, UK; ?Procter and Gamble Greater
London Innovation Centre, Surrey, UK and *Regional Medical Physics
Department, Newcastle Hospitals, Newcastle, UK

Correspondence: Mark A. Birch-Machin, Dermatological Sciences, Institute of
Cellular Medicine, Newcastle University Medical School, Newcastle upon
Tyne, NE2 4HH, UK. E-mail: mark.birch-machin@ncl.ac.uk

This work was performed in Newcastle upon Tyne, Tyne and Wear, UK.

Abbreviations: C(t), cycle threshold; HDfn, human dermal fibroblast neonatal;
mtDNA, mitochondrial DNA; nDNA, nuclear DNA; PK, primary keratinocyte;
QPCR, quantitative real-time PCR

Received 23 January 2015; revised 1 May 2015; accepted 6 May 2015;
accepted article preview online 1 June 2015; published online 25 June 2015

2512 Journal of Investigative Dermatology (2015), Volume 135

Age-associated features including wrinkling, roughness,
laxity, pigmented spots, and diffuse hyperpigmentation are
most prominent in areas of the body that are most exposed to
solar UVR, such as the face and hands. This suggests that
the expression of these characteristics is driven primarily
by exposure to solar radiation, a phenomenon known as
photoaging (Berneburg et al., 2004; Schroeder et al., 2008).
Because of the permanency of mtDNA damage, it is con-
ceivable that exposure to UVR results in an accumulation of
associated damage end points leading to an acceleration in
aging, a notion that has led to the development of mtDNA as a
biomarker of UVR-induced damage (using techniques devel-
oped by our group and adopted by others (Birch-Machin,
2000; Sligh et al., 2002; Berneburg et al., 2004)). In relation to
this, several studies have found an increase in incidence of
specific deletions of mtDNA in skin cancer, as well as in sun-
exposed skin when compared with sun-protected skin (Birch-
Machin et al., 1998; Koch et al., 2001; Krishnan et al., 2004;
Birch-Machin et al., 2013). Furthermore, damage to mtDNA
can be induced in vitro by UVR irradiation of cultured human
skin cells and skin equivalents (Birch-Machin et al., 1998;
Birket and Birch-Machin, 2007).

Although the action spectra of UVR-induced erythema
(McKinlay and Diffey, 1987) and UVR-induced nDNA
damage (Setlow, 1974) have been investigated previously,
UVR-induced mtDNA damage, to our knowledge, has yet to
be studied. This is a significant omission as, apart from
mitochondria being the source of cellular energy and major
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Figure 1. UVR-induced dose curves of damage. Primary keratinocyte (a) and HDFn (b) cells were irradiated with increasing doses of (from left to right) the

TL12 (=), UV6 (), TLOT (

), Helarium (—), Arimed B (—), Cleo— filter (=), and Cleo+ filter (—) UVR sources. Damage was assessed by a reduction in

amplification of an 11-kb product by QPCR and is expressed as a percentage increase when compared with control (UVR protected) cells (n >3 = SEM). HDFn,

human dermal fibroblast neonatal.

determinant of cellular oxidative stress, mtDNA has been
established as a marker of UVR exposure in skin and has a
strong association with aging, as well as with skin cancer.
Studying the action spectrum of UVR-induced mtDNA
damage will provide important mechanistic insight into this
phenomenon and may indicate new biomarkers of carcino-
genesis, as well as helping guide the development of new
therapeutic and behavioral approaches to modulating sun
damage.

RESULTS
UVR-induced mtDNA damage
The initial damage created in mtDNA was determined by the
occurrence of strand breaks / lesions within an 11-kb section
of the 16.5-kb mitochondrial genome. This was quantified by
the reduction in efficiency of the amplification of this product
by quantitative real-time PCR (QPCR) in the damaged DNA.
Damage was induced by irradiating cells with an increasing
dose of UVR from UVR sources with a range of spectral
output, in order to construct a dose-response damage curve.

The complete set of dose-response damage curves created
by the various UVR sources in primary human adult
keratinocytes (primary keratinocyte (PK)) and human dermal
fibroblasts neonatal (HDFn) cells is recorded in Figure 1a and
b, respectively. The dose ranges used were as follows: 0.01-
3Jem™? (TL12), 0.1-4)cm™? (UV6), 0.1-14) cm ™2 (TLO1),
0.3-30)cm~2 (Helarium), 1-73Jcm~2 (Arimed B), 4-74
Jem ™2 (Cleo— filter), and 3-37)cm™2 (Cleo+ filter); this
equates to maximum standard erythemal dose values of
80, 50, 80, 60, 40, 10, and 2, respectively. The standard
erythemal dose (Diffey et al., 1997; CIE Standard, 1998) is a
unit that is being introduced progressively as an erythemally
weighted measure of radiant exposure equivalent to
100)m~2 (in contrast with the Minimum Erythema Dose,
which depends upon several factors such as susceptibility to
sunburn, anatomical site, time of observation, and so on).
Each dose-response curve represents the mtDNA damage
induced by an independent UVR source, and each data point
on the curve denotes a minimum of three biologically
independent experiments, each of which was analyzed
three times. Each dose-response curve, therefore, comprises
72 individual data points.

An index of mtDNA damage was derived by calculating the
percentage change in cycle threshold (C(t) compared with

UVR-protected control cells. Characteristic dose effect
curves could be plotted for all UVR sources in all cell types.
A consistent pattern in results emerged in which curves shifted
toward higher log dose values for UVR sources emitting
longer wavelengths.

Action spectrum modeling

We tested the null hypothesis that the mechanism of the
responses observed in Figure 1 was the same for all UVR
sources (in other words, that the maximum response and
slope of the dose-response curves were independent of the
lamp used for irradiation). Maximum response A and slope
parameter ¢ are shown in Figure 2.

An analysis of variance test (Kruskall-Wallis) was applied to
all lamp data, excluding the effect of the Cleo lamp because
of differences due to issues of cell viability and also omitting a
single value of ¢ (0.59) from TL12 (HDFn), which appeared to
be an outlier. It was concluded that there was no significant
difference (P>0.05) in A and c between lamps, with
mean+SD ¢ values of 0.22+0.078 and 0.25+0.061 for
HDFn and PK, respectively. Finally, the spectral sensitivity
factor b was examined and a significant difference
(P=0.0015) between lamps was found for both HDFn and
PK cells.

Consequently, it was concluded that the mechanism of
response was independent of UVR lamp and could, therefore,
be expressed as the dose-response curve from the i UVR
source as follows: Y;=126/{1+exp[ - (x —b;)/0.22]} and Y=
157/{1+exp[ — (x —by)/0.251} for HDFn and PK cells, respec-
tively. These families of curves are represented in Figure 3.

The action spectrum of UVR-induced mtDNA damage in
HDFn cells (Figure 4) was derived by a process of mathe-
matical induction. The basis of the induction approach is to
estimate an action spectrum that is described by fewer
parameters than the number of sources used, to calculate
the logarithm of the dose expected for a given change in C(t),
and to compare these calculated doses with those actually
observed (Flockhart et al., 2008). The optimization process,
using the SOLVER facility in Excel, involves repeated adjust-
ment of the various parameters until the closest agreement
between the modeled and the observed values is achieved.

The logarithm of the observed dose (x) for which a change
in C(t) is A/2 (i.e., the point of maximum slope) is given by
x=b, with a SD Ax equal to that of the SD on b.
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Figure 2. Differences in maximum response, spectral sensitivity, and slope of the UVR-Induced Dose Curves of Damage. Primary keratinocyte (a) and HDFn (b)
Values taken from those shown in Figure 1. HDFn, human dermal fibroblast neonatal.
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Figure 3. Normalized UVR-induced dose curves of damage. Primary keratinocyte (a) and HDFn (b) cells were irradiated with increasing doses of various UVR
sources. Curves were normalized from those shown in Figure 1 by incorporating a common maximum response and slope. C(t), cycle threshold; HDFn, human
dermal fibroblast neonatal.
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Figure 5. Determination of mitochondrial DNA (mtDNA) content following UVR exposure. Primary keratinocyte (a) and human dermal fibroblast neonatal
(HDFn) (b) cells were exposed to increasing doses of the broadband UVR sources Arimed B and TL12, respectively. mtDNA content was assessed using a QPCR
method to amplify an 83-bp section of mtDNA. Data expressed as the mean n =3 + SEM. Linear regression analysis of these data showed no statistically

significant deviation from control (P=0.054 and P=0.919, respectively).

where O; and E; are the observed and expected log dose for the
i™ lamp, respectively.
Ei is given by the expression:

= log{ | O s/ [ :Osu)ie(z)}

S(\); is the relative spectral irradiance of the jth lamp, and &(4)
is the action spectrum for mtDNA damage expressed as the
reciprocal of the UV dose (in cm?m)~") that results in a
change in C(t) that is 50% of the plateau value (A).

Once a minimum in »* was found, the probability (P)) that
the difference between E; and O; was statistically significant
was determined as 2 Xx NORMSDIST[ — ABS(O; — E;)/Ax]. The
combined significance level (P) over all seven lamps is
expressed as follows:

6
P=KS (=In(K)) /i
i=0

where K = P1X Py X P3XPyXPsXPgXP7.
This analysis resulted in the following expression for the
action spectrum for UVR-induced mtDNA damage in HDFn

cells:

&(2) = exp(8.64x (1/(1 4+ exp((A —295.5)/10.7)) — 1)) cm® m)~".

The combined significance level (P) was calculated as 0.46
(i.e., no statistically significant difference between the cohort
of observed and expected doses).

Repeating the analysis for data obtained with the PK cells
resulted in an action spectrum (Figure 4) defined as follows:

&(A) = exp(12.2x (1/(1 +exp((4 —301.9)/9.68)) — 1)) cm’m)~".

The combined significance level (P) was calculated as 0.47
(i.e., no statistically significant difference between the cohort
of observed and expected doses).

Overall, it is apparent that short-wavelength UVR has the
greatest relative effectiveness in inducing mtDNA damage
action spectra in both PK and HDFn cell types. The same is
true for the action spectra reported previously for nDNA
(Setlow, 1974). mtDNA was found to be more sensitive than
nDNA to damage from UVR >320nm, in both cell types.

Importantly, HDFn cells had a statistically significantly
greater sensitivity to UVR >300 nm than PK cells.

DISCUSSION

Solar UVR is an environmental insult leading to photoaging
and carcinogenesis in human skin. UVR covers a wide
spectrum of wavelengths that have differential effects on
human skin, demonstrated by the determination of a variety of
action spectra, including UVR-induced erythema and nDNA
damage. Over the past 15 years, mtDNA damage has been
shown increasingly to be a reliable and sensitive biomarker of
UVR exposure in human skin. Although mitochondria are
thought to be involved in the aging process and a link
between skin carcinogenesis and mitochondrial damage has
been reported, the wavelength dependence of this effect has
not been reported. Therefore, the aim of this study was to
determine, to our knowledge, the previously unreported
action spectrum for UVR-induced mtDNA damage in human
skin cells.

To rule out any confounding factors, the following steps
were performed. First, differences in mtDNA copy number
owing to UVR exposure or different skin cell type were deter-
mined using the 83-bp assay, amplifying a short amplicon of
mtDNA using QPCR. C(t) values from the QPCR were then
plotted and analyzed by linear regression (Figure 5). No
change in mtDNA copy number was found in either PK or
HDFn cells following irradiation by any of the UVR sources
compared with the control, and therefore no apparent con-
founding effect of increasing doses of UVR were observed.

Further investigation ruled out differences in mtDNA
damage because of media type or because of thermal effects
of the UVR sources. For example, C(t) values did not change
in cells exposed to 48 °C for prolonged exposures (even up to
2 hours). We also found that there was no difference in
broadband UVR-induced threshold damage between the PK
donors.

Clearly, in this present study, native cell types were
harvested from their natural environment and compared
under the same conditions as single monolayer cultures,
whereas, in situ in living skin, these cell types have different
anatomical locations within the skin compartment, i.e., basal
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keratinocytes at an approximate depth of 100 pm and dermal
fibroblasts located within a depth range of 100-2 mm. In vivo,
therefore, dermal fibroblasts are exposed to only relatively
small doses of shorter UVB wavelengths (<10% of incident
radiation), because of Rayleigh scattering and absorption
(Bruls et al., 1984). It might be hypothesized, therefore, that
the mtDNA of dermal fibroblasts cultured in monolayer might
be more sensitive to short-wave UVR than keratinocytes,
given that they are normally exposed to much lower fluxes of
these wavelengths and perhaps, therefore, have not devel-
oped appropriate defense/repair mechanisms. In this study, a
small difference in sensitivity was seen between the two cell
types at wavelengths <300nm. Importantly, however,
differences in sensitivity to UVR-induced mtDNA damage
emerged at UVR wavelengths >300nm where a greater
sensitivity was seen in fibroblasts compared with keratino-
cytes. Cell type—dependent response to UVR has been
reported by others. D'Errico et al. (2007) reported that
keratinocytes were more resistant than fibroblasts to the
lethal effects of UVR and more efficient in the removal of
cyclobutane pyrimidine dimers. Marionnet et al. (2010) found
that there was a greater oxidative response in dermal
fibroblasts in comparison with keratinocytes (demonstrated
by a more rapid induction of related gene expression in these
cells when irradiated with a solar simulator producing UVR
approximating daily, nonzenithal sunlight, proportionally
richer in UVA wavelengths). Bernerd and Asselineau (1998)
have also suggested differential cell type sensitivity to UVA,
supporting the opinion that dermal fibroblasts are less resistant
to UVA in experiments that exposed skin equivalents to
30Jcm ™ UVAL. One hypothesis that might explain this
phenomenon is that keratinocytes contain higher levels of
ferritin, involved in oxidative stress response. Ferritin provides
a protective effect by chelating iron, which might otherwise
catalyze the formation of damaging hydroxyl radicals induced
by UVA (Qian and Van Houten, 2010). Bernerd and Asselineau
(1998) hypothesized that keratinocytes could be “programmed”
for stress resistance, because of their superficial location in the
epidermis and resulting chronic exposure to higher doses of
UVR. An example of keratinocytes being physiologically fit-for-
purpose can be seen in the high concentrations of keratin
protein found in these cells, providing a degree of protection
against short-wave UVR because of absorption by constitutive
amino acids. This notion is supported by Otto et al. (1999) who
reported better survival rates in keratinocytes versus dermal
fibroblasts after exposure to UVR.

The action spectra for UVR-induced mtDNA damage in
both cell types indicated greater sensitivity to UVR wave-
lengths >320nm versus nDNA (Setlow, 1974). Direct
comparisons with the action spectrum for UVR-induced
nDNA damage should be made with some caution, however,
as that work was performed in a prokaryotic model (notably,
the bacterium Escherichia coli). Nonetheless, aside from
anatomical differences such as the presence / absence of a
nuclear membrane, the inferred relatively greater sensitivity of
mtDNA versus nDNA to UVR damage may be because of the
close proximity of mtDNA to the intra-mitochondrial electron
transport chain. Reactive oxygen species generated by longer
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UVR wavelengths would be incremental to the significant
source of reactive oxygen species already generated by the
electron transport chain.

Furthermore, it has been reported previously that there is an
increase in nucleotide excision repair, a major DNA repair
pathway, in keratinocytes exposed to low-dose UVB (Maeda
et al., 2001). When compared with nDNA, the repair of
mtDNA is significantly more limited because of a lack of
nucleotide excision repair (Birch-Machin et al., 2013), and
therefore the apparent relative difference in mtDNA and
nDNA damage may also be partly because of differing
repair mechanisms/efficiency. In addition to limited repair
mechanisms, mtDNA is also more vulnerable to damage, as it
lacks histones that are associated with nDNA protection
(Birch-Machin et al., 2013).

There is an established link between reactive oxygen
species production, mtDNA damage, and skin aging (Anderson
et al., 2014). These new data clearly support the continued
need for systems to manage sun exposure (including appro-
priate clothing, behavior, and sunscreens). Furthermore, it is
not unreasonable to hypothesize that topical supplementation
with antioxidant species designed specifically to reduce
mtDNA damage from oxidative stress may yet prove to have
a useful role in the prevention and management of skin aging.
This is especially important given that there is increasing
evidence of a link between mtDNA dysfunction and a spectrum
of deleterious skin manifestations (Boulton et al., 2014).

This study has confirmed, as seen with the action spectra of
UVR-induced erythema and nDNA damage, that the shorter
UVR wavelengths are the most detrimental to human skin.
Importantly, our analysis found that there was a statistically
significant (P<0.0001) greater sensitivity to UVR-induced
mtDNA damage observed in human dermal fibroblasts
compared with human keratinocyte cells. This finding has
important implications for disease and photodamage mechan-
isms and interventions, as it may indicate a depth dependence
in sensitivity to UVR-induced mtDNA damage in human skin.

MATERIALS AND METHODS
Cell culture
Human neonatal dermal fibroblast cells, HDFn (Invitrogen, Life Tech-
nologies, Paisley, UK), were maintained in DMEM (Lonza, Slough,
UK) containing 10 % fetal calf serum (Lonza), 51U ml~" Penicillin,
and 5gml~" streptomycin (Lonza), at 37 °C with 5% CO,. Human
keratinocyte cells were obtained from 15 adult male patient samples
(aged 24-74 vyears) from the Royal Victoria Infirmary, Newcastle.
Ethics approval was granted for this work by the Newcastle and North
Tyneside Research Ethics Committee (Ref 08/H0906/95), and the
research use of the samples was in accordance with the terms of the
written informed consent. Cells were maintained in EpiLife medium
(Gibco, UK) supplemented with 0.2% Human Keratinocyte Growth
Supplement (HKGS; Gibco, Life Technologies, Paisley, UK), 5 IU ml~T.
Penicillin, and 5gml~" streptomycin (Lonza) at 37 °C with 5%
CO;.

Irradiation method
Cells were irradiated in 60-mm dishes when they had been grown to
confluent monolayers. Before irradiation, the medium was removed
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Figure 6. Spectral Chart. This figure shows the spectral output of the different
UVR lamps used in the study.

and cells were washed with phosphate-buffered saline. Either phenol
red—free DMEM minus fetal calf serum (HDFns) or phosphate-
buffered saline (PK) was then added and the lids of the dishes were
removed. For the mock control, cells were covered in aluminum foil
and placed under the lamps for the same duration as the irradiated
cells. For PK experiments, a minimum of three different donors were
used per irradiation source. The cells were irradiated with various
UVR sources, as shown in Figure 6 and as follows: TLO1 (Philips TL
20W/01 RS; 22% UVA), TL12 (Philips TL 20W/12 RS; 48% UVA),
UV6 (Waldmann F85/100W-UV6; 63% UVA), Helarium (Helarium
R1.01, Osram, Munich, Germany; 88% UVA), Arimed B (Wolff
System Helarium B1-12-40W/BPIN, Wolff System, Kennesaw,
Germany; 96% UVA), and Cleo (Cleo performance 100W-R, IsoLde,
Stuttgart, Germany; 99.3%; 100% UVA when used with a glass filter).
To induce the required threshold damage, irradiation times varied
from 0.5 to 30 minutes. Immediately following UVR treatment, the
medium was removed and the cells were washed with phosphate-
buffered saline before further analysis.

Quantification of mtDNA damage

For damage assessment, DNA was extracted using a QlAamp DNA
mini kit as per the manufacturer’s instructions (Qiagen, Manchester,
UK). The content of mtDNA was determined by amplification of an
83-bp fragment of the 16.5-kb mitochondrial genome by QPCR, as
shown previously (Koch et al., 2001; Oyewole et al., 2014), and no
difference between samples was found. Damage within mtDNA was
established by amplification of a 11-kb segment of the 16.5-kb
mitochondrial genome by QPCR, as previously described (Passos
et al., 2007; Oyewole et al., 2014).

Analysis of mtDNA damage

The number of cycles of PCR required to amplify a consistent amount
of the 11-kb product was measured by fluorescence, and it is known
as the C(t). The change in the C(t) value in samples exposed to a
range of doses of the various UVR sources with differing spectral
emissions was expressed relative to un-irradiated controls. These
changes in C(t) were assumed to be related to UVR dose by a sigmoid
curve of the form:

Y =A/{1 +exp[—(x—b)/c]}
where x is the logarithm to the base 10 of the UV dose at which the
change in C(t) is Y, A is the maximum response corresponding to the
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maximum damage created by each UVR source, b is a parameter
relating to the spectral sensitivity of a particular UV source in
initiating the effect (i.e., aligned to the action spectrum of UVR
induced mtDNA damage), and c is related to the maximum slope of
the dose response curve by the expression c=A/(4x maximum
slope).
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