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Abstract

We consider composition operators in the Dirichlet space of the unit disc in the plane. Various criteria on
boundedness, compactness and Hilbert–Schmidt class membership are established. Some of these criteria
are shown to be optimal.
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1. Introduction

In this note we consider composition operators in the Dirichlet space of the unit disc. A com-
prehensive study of composition operators in function spaces and their spectral behavior could
be found in [3,11,16]. See also [6–8,12,13,17] for a treatment of some of the questions addressed
in this paper.
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Let D be the unit disc in the complex plane and let T = ∂D be its boundary. We denote by D
the classical Dirichlet space. This is the space of all analytic functions f on D such that

D(f ) :=
∫
D

∣∣f ′(z)
∣∣2

dA(z) < ∞,

where dA(z) = dx dy/π stands for the normalized area measure in D. We call D(f ) the Dirichlet
integral of f . The space D is endowed with the norm

‖f ‖2
D := ∣∣f (0)

∣∣2 + D(f ).

It is standard that a function f (z) = ∑∞
n=0 f̂ (n)zn, holomorphic on D, belongs to D if and

only if

∑
n�0

∣∣f̂ (n)
∣∣2

(1 + n) < ∞,

and that this series defines an equivalent norm on D.
Since the Dirichlet space is contained in the Hardy space H2(D), every function f ∈ D has

non-tangential limits f ∗ almost everywhere on T. In this case, however, more can be said. Indeed,
Beurling [2] showed that if f ∈ D then f ∗(ζ ) = limr→1 f (rζ ) exists for ζ ∈ T outside of a set
of logarithmic capacity zero.

Let ϕ be a holomorphic self-map of D. The composition operator Cϕ on D is defined by

Cϕ(f ) = f ◦ ϕ, f ∈ D.

We are interested herein in describing the spectral properties of the composition operator Cϕ ,
such as compactness and Hilbert–Schmidt class membership, in terms of the size of the level set
of ϕ. For s ∈ (0,1), the level set Eϕ(s) of ϕ is given by

Eϕ(s) = {
ζ ∈ T:

∣∣ϕ(ζ )
∣∣ � s

}
.

We give new characterizations of Hilbert–Schmidt class membership in the case of the Dirichlet
space. We also establish the sharpness of these results.

2. A general criterion

For α > −1, dAα will denote the finite measure on D given by

dAα(z) := (1 + α)
(
1 − |z|2)α

dA(z).

For p � 1 and α > −1, the weighted Bergman space Ap
α consists of the holomorphic functions

f on D for which

‖f ‖p,α :=
[∫ ∣∣f (z)

∣∣p dAα(z)

]1/p

< ∞.
D
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We denote by Dp
α the space consisting of analytic functions f on D such that

‖f ‖p

Dp
α

:= ∣∣f (0)
∣∣p + ∥∥f ′∥∥p

p,α
< ∞.

Appropriate choices of the parameter α give, with equivalent norm, all the standard holomorphic
function spaces. Indeed, the Hardy space H2 can be identified with D2

1. The classical Besov
space is precisely Dp

p−2, and if p < α + 1, Dp
α = Ap

α−2. Finally, the classical Dirichlet space D
is identical to D2

0.
We recall that, by the reproducing formula [16], for every f ∈ Ap

α ,

f (z) =
∫
D

f (w)

(1 − wz)2+α
dAα(w), z ∈ D. (1)

Lemma 2.1. Let p � 1 and let σ > −1. Then, there exists a constant C depending only on p and
σ such that for every f ∈ Ap

σ ,

∣∣f (z)
∣∣p � C

∫
D

|f (λ)|p
|1 − λz|2+σ

dAσ (λ), z ∈ D.

Proof. By the above reproducing formula,

f (z)

1 − zw
=

∫
D

f (λ)

1 − λw

dAσ (λ)

(1 − λz)2+σ
, z,w ∈ D,

for every f ∈ Ap
σ . By Hölder’s inequality, with q = p/(p − 1),

|f (z)|p
|1 − zw|p �

∫
D

|f (λ)|p dAσ (λ)

|1 − λz|2+σ
×

(∫
D

dAσ (λ)

|1 − λw|q |1 − λz|(2+σ)p

) p
q

.

Taking w = z, and using the standard estimate, [16, Lemma 3.10]

∫
D

dAc(λ)

|1 − zλ|2+c+d
	 1

(1 − |z|2)d , if d > 0, c > −1, (2)

we get the desired conclusion. �
For λ ∈ D, consider the test function

Fλ,β(z) = (1 − λz)−(1+β), z ∈ D.

If β � 0 is chosen such that δ := δ(p,α,β) = 2 + β − (2 + α)/p > 0, by (2), we have

‖Fλ,β‖p
p 	 (

1 − |λ|2)−pδ
.
Dα
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The following theorem unifies and generalizes the previously known results of MacCluer [3,
Theorem 3.12], Tjani [12, Theorem 3.5] and Wirths and Xiao [13, Theorem 3.2] on Hardy, Besov
and weighted Dirichlet spaces, respectively. The techniques required in the proof are known, for
the completeness, we give here the proof.

Theorem 2.2. Let p > 1. Suppose ϕ ∈ Dp
α satisfies ϕ(D) ⊂ D. Fix β � 0 such that δ :=

δ(p,α,β) = 2 + β − (2 + α)/p > 0. Then:

(a) Cϕ is bounded on Dp
α ⇐⇒ supλ∈D(1 − |λ|2)δ‖Fλ,β ◦ ϕ‖Dp

α
< ∞;

(b) Cϕ is compact on Dp
α ⇐⇒ lim|λ|→1(1 − |λ|2)δ‖Fλ,β ◦ ϕ‖Dp

α
= 0.

Proof. Without loss of generality we assume that ϕ(0) = 0. To prove (a), we observe that if Cϕ

is bounded, then

‖Fλ,β ◦ ϕ‖Dp
α

= O
((

1 − |λ|2)−δ)
.

For the converse, it follows from Lemma 2.1 that, for f ∈ Dp
α ,

∫
D

∣∣ϕ′(z)
∣∣p∣∣f ′(ϕ(z)

)∣∣p dAα(z)

� C

∫
D

∣∣ϕ′(z)
∣∣p(∫

D

|f ′(λ)|p
|1 − λϕ(z)|(2+β)p

dA2p+βp−2(λ)

)
dAα(z)

= C

∫
D

∣∣f ′(λ)
∣∣p(

1 − |λ|2)pδ∥∥(Fλ,β ◦ ϕ)′
∥∥p

p,α
dAα(λ).

Therefore part (a) follows.
(b) Assume that lim|λ|→1(1 − |λ|2)δ‖Fλ,β ◦ ϕ‖Dp

α
= 0. Let (fn)n be a bounded sequence of

Dp
α such that fn → 0 uniformly on compact sets. Since f ′

n → 0 uniformly on compact sets,
it follows from the proof of part (a) and the hypothesis that, for r close enough to 1,

∥∥Cϕ(fn)
∥∥p

Dp
α

− ∣∣fn(0)
∣∣p

�
∫
rD

∣∣f ′
n(λ)

∣∣p(
1 − |λ|2)pδ∥∥(Fλ,β ◦ ϕ)

∥∥p

p,α
dAα(λ)

+
∫

D\rD

∣∣f ′
n(λ)

∣∣p(
1 − |λ|2)pδ∥∥(Fλ,β ◦ ϕ)′

∥∥p

p,α
dAα(λ) → 0, n → ∞,

and Cϕ is compact. The converse is obvious. �
The following result is an immediate consequence of Theorem 2.2.
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Corollary 2.3. Let ϕ : D → D such that ϕ ∈ D.

(a) If supn�1 D(ϕn) < ∞, then Cϕ is bounded.
(b) If limn→∞ D(ϕn) = 0, then Cϕ is compact.

Proof. We consider the test function Fλ,0 with β = α = 0 and p = 2. Both (a) and (b) follow
from the following inequality:

D(Fλ,0 ◦ ϕ) � 2
(
1 − |λ|2)2

∫
D

|ϕ′(z)|2
(1 − |λ|2ϕ(z)|2)4

dA(z)

� c
(
1 − |λ|2)2 ∑

n�0

(n + 1)3|λ|2n

∫
D

∣∣ϕ′(z)
∣∣2∣∣ϕn(z)

∣∣2
dA(z)

= c
(
1 − |λ|2)2 ∑

n�0

(1 + n)|λ|2nD
(
ϕn+1)

� c lim sup
n→∞

D
(
ϕn+1). �

Remark 2.4. The compactness criterion for Cϕ in the Bloch space is equivalent to ‖ϕn‖B → 0
as was shown in [15] (see also [10,12]). In the case of the Hardy space H2, however, we know
that if Cϕ is compact on H2 then ‖ϕn‖H2 → 0 but the converse does not hold [3]. Note that as
before in the proof of Corollary 2.3 (β = 0, α = 1 and p = 2) if ‖ϕn‖H2 = o(1/

√
n ), then Cϕ is

compact on H2.

3. Hilbert–Schmidt membership

In the case of the Hardy space H2, one can completely describe the membership of Cϕ in the
Hilbert–Schmidt class in terms of the size of the level sets of the inducing map ϕ. Indeed, Cϕ is
Hilbert–Schmidt in H2 if and only if

∑
n�0

∥∥ϕn
∥∥2

H2 =
∫
T

|dζ |
1 − |ϕ(ζ )|2 < ∞.

Given an arbitrary measurable function f on T, consider the associated distribution function mf

defined by

mf (λ) = ∣∣{ζ ∈ T:
∣∣f (ζ )

∣∣ > λ
}∣∣, λ > 0.

It then follows that Cϕ is in the Hilbert–Schmidt class of H2 if and only if

∫ |dζ |
1 − |ϕ(ζ )|2 =

∞∫
m(1−|ϕ|2)−1(λ) dλ 	

1∫ |Eϕ(s)|
(1 − s)2

ds < ∞.
T 1 0
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It was shown by Gallardo-Gutiérrez and González [8, Main Theorem] that there is a mapping
ϕ taking D to itself such that Cϕ is compact in H2, and that the level set Eϕ(1) has Hausdorff
dimension equal to one. Recall that the Hausdorff dimension of E:

d(E) = inf
{
α: Λα(E) = 0

}
where Λα(E) is the α-Hausdorff measure of E given by

Λα(E) = lim
ε→0

inf

{∑
i

|
i |α: E ⊂
⋃
i


i, |
i | < ε

}
.

Given E ⊂ T and t > 0, let us write

Et = {
ζ ∈ T: d(ζ,E) � t

}
where d denotes the arclength distance and |Et | denotes the Lebesgue measure of E.

Let E be a closed subset of T with |Et | = O((log(e/t))−3) and E has Hausdorff dimension
one (such examples can be given by generalized Cantor sets [2]). Let ω(t) = (log(e/t))−2, and
consider the outer function fω,E such that its radial limit f ∗

ω,E is given by

∣∣f ∗
ω,E(ζ )

∣∣ = e−w(d(ζ,E)), a.e. on T.

Since ω satisfies the Dini condition ∫
0

ω(t)

t
dt < ∞,

it follows that fω,E ∈ A(D) := Hol(D) ∩ C(D), disc algebra (see [9, pp. 105–106]) and so
Efω,E

(1) = E. On the other hand

∫
T

|dζ |
1 − |fω,E(ζ )|2 	

∫
T

|dζ |
ω(d(ζ,E))

	
∫
0

|Et | ω′(t)
ω(t)2

dt

(see [4, Proposition A.1] for the last equality). Since the last integral converges, Cϕ is a Hilbert–
Schmidt operator in H2.

We have the following more precise result.

Theorem 3.1. Let E be a closed subset of T with Lebesgue measure zero. There exists a mapping
ϕ : D → D, ϕ ∈ A(D), such that Cϕ is a Hilbert–Schmidt operator on H2 and that Eϕ(1) = E.

Proof. The proof is based a well-known construction of peak functions in the disc algebras. Let
T \ E = ⋃

n�1(e
ian, eibn). For t ∈ (an, bn), we define

g
(
eit

) = τn

(bn − an)
1/2

[(bn − an)2 − (2t − (bn + an))2]1/4
,

where (τn)n ⊂ (0,∞) will be chosen later, and g(eit ) := +∞ if eit ∈ E.
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Note that

2π∫
0

g
(
eit

)2
dt =

∑
n�1

τ 2
n (bn − an)

bn∫
an

dt

[(bn − an)2 − (2t − (bn + an))2]1/2

= 1

2

∑
n�1

τ 2
n (bn − an)

1∫
−1

du

[1 − u2]1/2

= π

2

∞∑
n=1

τ 2
n (bn − an).

Since
∑∞

n=1(bn − an) = 2π , there exists a sequence (τn)n such that

lim
n→+∞ τn = +∞ and

∞∑
n=1

τ 2
n (bn − an) < ∞.

Let U denote the harmonic extension of g on the unit disc given by

U
(
reiθ

) = 1

2π

2π∫
0

1 − r2

|eit − reiθ |2 g
(
eit

)
dt =

∑
n∈Z

ĝ(n)r |n|einθ .

Since τn → ∞, one can easily verify that limt→θ g(eit ) = +∞, for eiθ ∈ E. Hence,
limr→1− U(reiθ ) = +∞, for eiθ ∈ E.

Let V be the harmonic conjugate of U , with V (0) = 0. It is given by

V
(
reiθ

) =
∑
n�=0

n

|n| ĝ(n)r |n|einθ .

Now, since g is a C1 function on T \ E, we see that the holomorphic function f = U + iV is
continuous on D \ E. Knowing that limr→1− U(reit ) = +∞, for eit ∈ E, we get that ϕ = f

f +1 ∈
A(D), disc algebra, and Eϕ(1) = E. Finally

1

2π

2π∫
0

dt

1 − |ϕ(eit )|2 = 1

2π

2π∫
0

(U(eit ) + 1)2 + V 2(eit )

(U(eit ) + 1)2 − U2(eit )
dt

� 1

2π

2π∫
0

(
U

(
eit

) + 1
)2 + V 2(eit

)
dt

� 1 + 2
∑
n∈Z

∣∣̂g(n)
∣∣2

,

which shows that Cϕ is Hilbert–Schmidt because g ∈ L2(T). �
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Let E be a closed subset of the unit circle T. Fix a non-negative function w ∈ C1(0,π] such
that ∫

T

w
(
d(ζ,E)

)|dζ | < ∞,

where d denotes the arclength distance. Now, let fw,E be the outer function given by

∣∣f ∗
w,E(ζ )

∣∣ = e−w(d(ζ,E)), a.e. on T. (3)

The following lemma gives an estimate for the Dirichlet integral of fw,E in terms of w and
the distance function on E. The proof is based on Carleson’s formula, and can be achieved by
slightly modifying the arguments used in [5, Theorem 4.1].

Lemma 3.2. Assume that the function ω is nondecreasing and ω(tγ ) is concave for all γ > 2.
Then

D(fw,E) 	
∫
T

ω′(d(ζ,E)
)2

e−2w(d(ζ,E)) d(ζ,E) |dζ |.

Since the sequence {zn/
√

n + 1 }∞n=0 is an orthonormal basis of D, the operator Cϕ is Hilbert–
Schmidt on the Dirichlet space if and only if

1

π

∫
D

|ϕ′(z)|2
(1 − |ϕ(z)|2)2

dA(z) =
∑
n�1

D(ϕn)

n
< ∞.

Theorem 3.3. Assume that the function ω is nondecreasing and ω(tγ ) is concave for some γ > 2.
Then Cfw,E

is in the Hilbert–Schmidt class in D if and only if

∫
T

ω′(d(ζ,E))2

w(d(ζ,E))2
d(ζ,E) |dζ | < ∞.

Proof. We first note that f n
w,E = fnw,E . Therefore, by Lemma 3.2, we have

∫
D

|f ′
w,E(z)|2

(1 − |fw,E(z)|2)2
dA(z) =

∞∑
n=1

D(fnw,E)

n

	
∫
T

ω′(d(ζ,E)
)2

d(ζ,E)

∞∑
n=1

ne−2nw(d(ζ,E))|dζ |

	
∫
T

ω′(d(ζ,E))2

[1 − e−2w(d(ζ,E))]2
d(ζ,E) |dζ |.

Since 1 − e−2w(d(ζ,E)) 	 w(d(ζ,E)), the result follows. �
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Given a (Borel) probability measure μ on T, we define its α-energy, 0 � α < 1, by

Iα(μ) =
∞∑

n=1

|μ̂(n)|2
n1−α

.

For a closed set E ⊂ T, its α-capacity capα(E) is defined by

capα(E) := 1/ inf
{
Iα(μ): μ is a probability measure on E

}
.

If α = 0, we simply note cap(E) and this means the logarithmic capacity of E.
The weak-type inequality for capacity [2] states that, for f ∈ D and t � 4‖f ‖2

D ,

cap
({

ζ :
∣∣f (ζ )

∣∣ � t
})

�
16‖f ‖2

D
t2

.

As a result of this inequality, we see that if lim inf‖ϕn‖D = 0, then cap(Eϕ(1)) = 0. Indeed,
since Eϕ(1) = Eϕn(1), the weak capacity inequality implies that

cap
(
Eϕ(1)

) = cap
(
Eϕn(1)

)
� 16

∥∥ϕn
∥∥2

D.

Now let n → ∞. Hence, in particular, if the operator Cϕ is in the Hilbert–Schmidt class in D,
then cap(Eϕ(1)) = 0. This result was first obtained by Gallardo-Gutiérrez and González [6,7]
using a completely different method. Theorems 3.4 and 3.6 give quantitative versions of this
result.

Theorem 3.4. If Cϕ is a Hilbert–Schmidt operator in D, then

1∫
0

cap(Eϕ(s))

1 − s
log

1

1 − s
ds < ∞. (4)

Proof. Fix λ ∈ T and let

ϕλ(ζ ) = log Re
1 + λϕ(ζ )

1 − λϕ(ζ )
, ζ ∈ T.

Since

∫
D

|ϕ′(z)|2
(1 − |ϕ(z)2|)2

dA(z) < ∞,

it follows that ϕλ ∈ D(T), see [6], where

D(T) :=
{
f ∈ L2(T): ‖f ‖2

D(T) =
∑∣∣f̂ (n)

∣∣2(1 + |n|) < ∞
}
.

n∈Z



1730 O. El-Fallah et al. / Journal of Functional Analysis 260 (2011) 1721–1733
Setting 
λ := {ζ ∈ T: |1 − λϕ(ζ )| � 1}, we see that

∣∣ϕλ(ζ )
∣∣ 	 log

1

1 − |ϕ(ζ )|2 , ∀ζ ∈ 
λ.

Applying the strong capacity inequality [14, Theorem 2.2] to ϕλ, we get

∞ > ‖ϕλ‖2
D(T) � c

∞∫
cap

{
ζ ∈ T:

∣∣ϕλ(ζ )
∣∣ > s

}
ds2

= c

∞∫
cap

{
ζ ∈ T:

∣∣∣∣log
1 − |ϕ(ζ )|2
|1 − λϕ(ζ )|2

∣∣∣∣ > s

}
ds2

� c

∞∫
cap

{
ζ ∈ T ∩ 
λ:

∣∣∣∣log
1 − |ϕ(ζ )|2
|1 − λϕ(ζ )|2

∣∣∣∣ > s

}
ds2

� c

∞∫
cap

{
ζ ∈ T ∩ 
λ: log

1

1 − |ϕ(ζ )|2 > 4s

}
ds2

� c1

1∫
cap

{
ζ ∈ T ∩ 
λ:

∣∣ϕ(ζ )
∣∣ > u

}
d

(
log

1

1 − u

)2

.

Since T = 
1 ∪ 
−1, the subadditivity of the capacity implies that

∞ > ‖ϕ1‖2
D(T) + ‖ϕ−1‖2

D(T) � c2

1∫
cap

{
ζ ∈ T:

∣∣ϕ(ζ )
∣∣ > u

}
d

(
log

1

1 − u

)2

,

and hence the theorem follows. �
Remark 3.5. Since {zn/(1+n)

1−α
2 }∞n=0 is an orthonormal basis in Dα , α ∈ (0,1), Cϕ is a Hilbert–

Schmidt operator in Dα if and only if

∞∑
n=1

Dα(ϕn)

n1−α
	

∫
D

|ϕ′(z)|2
(1 − |ϕ(z)|2)2+α

dAα(z) < ∞.

Therefore, for fixed λ ∈ T, the function

ϕλ(ζ ) =
(

Re
1 + λϕ(ζ )

1 − λϕ(ζ )

)−α/2

, ζ ∈ T,

belongs to the weighted harmonic Dirichlet space

Dα(T) :=
{
f ∈ L2(T): ‖f ‖2

Dα(T) =
∑∣∣f̂ (n)

∣∣2(1 + |n|)1−α
< ∞

}

n∈Z
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(see [7]). Applying again the strong capacity inequality [14, Theorem 2.2] for Dα to ϕλ, we get
as before

1∫
0

capα(Eϕ(s))

(1 − s)1+α
ds < ∞.

The following theorem is the analogue of Proposition 3.1 for the Dirichlet space. It shows that
condition (4) is optimal.

Theorem 3.6. Let h : [1,+∞[ → [1,+∞[ be a function such that limx→∞ h(x) = +∞. Let E

be a closed subset of T such that cap(E) = 0. Then there is ϕ ∈ A(D) ∩ D, ϕ(D) ⊂ D such that:

(1) Eϕ(1) = E;
(2) Cϕ is in the Hilbert–Schmidt class in D;

(3)
∫ 1 cap(Eϕ(s))

1−s
log 1

1−s
h( 1

1−s
) ds = +∞.

Proof. Let k(x) = h(ex), there exists a continuous decreasing function ψ such that

+∞∫
ψ(x)dx2 < ∞ and

+∞∫
ψ(x)k(x) dx2 = ∞.

Set η(t) = ψ−1(cap(Et )). We have

∫
0

cap(Et )
∣∣dη2(t)

∣∣ 	
∫
0

ψ
(
η(t)

)∣∣dη2(t)
∣∣ 	

+∞∫
ψ(x)dx2 < ∞

and

∫
0

cap(Et )h
(
eη(t)

)∣∣dη2(t)
∣∣ 	

∫
0

ψ
(
η(t)

)
k
(
η(t)

)∣∣dη2(t)
∣∣ 	

+∞∫
ψ(x)k(x) dx2 = ∞.

Since ∫
0

cap(Et )
∣∣dη2(t)

∣∣ < ∞,

by [4, Theorem 5.1], there exists a function f ∈ D such that

Ref (ζ ) � η
(
d(ζ,E)

)
and

∣∣Imf (ζ )
∣∣ < π/4, q.e. on T.

By harmonicity,

∣∣Imf (z)
∣∣ < π/4, |z| < 1.
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Now take

ϕ = exp
(−e−f

)
.

By a simple modification in the construction of f as in [1], we can suppose that ϕ ∈ A(D). Hence
Eϕ(1) = E and

∫
D

|ϕ′(z)|2
(1 − |ϕ(z)|2)2

	
∫
D

|f ′(z)|2e−2 Ref (z)e−2e−Ref (z) cos(Imf (z))

e−2 Ref (z) cos2(Imf (z))
dA(z)

�
∫
D

∣∣f ′(z)
∣∣2 exp

(−√
2e−Ref (z)

)
dA(z)

� c

∫
D

∣∣f ′(z)
∣∣2

dA(z) < ∞.

Hence Cϕ is in the Hilbert–Schmidt class. Finally, since

Eϕ(s) ⊇ {
ζ ∈ T: η

(
d(ζ,E)

)
� log(1/1 − s)

}
,

we get

∫
0

cap
(
Eϕ(s)

)
h(1/1 − s) d

(
log(1/1 − s)

)2 �
∫
0

cap(Et )h
(
eη(t)

)∣∣dη2(t)
∣∣ = +∞. �
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