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Abstract 

Microorganisms play an important role in the transformation of material within the earth’s crust. The storage of CO2 could affect 

the composition of inorganic and organic components in the reservoir, consequently influencing microbial activities. To study the

microbial induced processes together with geochemical, petrophysical and mineralogical changes, occurring during CO2 storage, 

long-term laboratory experiments under simulated reservoir P-T conditions were carried out. Clean inner core sections, obtained

from the reservoir region at the CO2 storage site in Ketzin (Germany) from a depth of about 650 m, were incubated in high 

pressure vessels together with sterile synthetic formation brine under in situ P-T conditions of 5.5 MPa and 40 °C. A 16S rDNA 

based fingerprinting method was used to identify the dominant species in DNA extracts of pristine sandstone samples. Members 

of the �- and �-subdivisions of Proteobacteria and the Actinobacteria were identified. So far sequences belonging to facultative 

anaerobic, chemoheterotrophic bacteria (Burkholderia fungorum, Agrobacterium tumefaciens) gaining their energy from the 

oxidation of organic molecules and a genus also capable of chemolithoautotrophic growth (Hydrogenophaga) was identified. 

During CO2 incubation minor changes in the microbial community composition were observed. The majority of microbes were 

able to adapt to the changed conditions.  

During CO2 exposure increased concentrations of Ca2+, K+, Mg2+ and SO4
2- were observed. Partially, concentration rises are (i) 

due to equilibration between rock pore water and synthetic brine, and (ii) between rock and brine, and are thus independent on 

CO2 exposure. However, observed concentrations of Ca2+, K+, Mg2+ are even higher than in the original reservoir fluid and 

therefore indicate mineral dissolution due to CO2 exposure. 
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1. Introduction 

Carbon dioxide capture and storage (CCS) is considered as an option for the mitigation of CO2 emissions for 

stabilization of greenhouse gas concentrations [1]. With the CO2SINK project, the first onshore storage site in 

Europe was established as a research facility in Ketzin, Germany, in 2004 to examine the feasibility and effects of 

carbon dioxide storage in a natural saline aquifer at a depth of approximately 650 m [2]. 

Saline aquifers are investigated as possible storage sites for large volumes of anthropogenic CO2 emissions [3]. 

Sub-terrestrial regions such as saline aquifers also represent microbial habitats [4]. Microorganisms play an 

important role in the transformation of materials within the earth’s crust. The dissolution of feldspar [5] and Fe(III) 

minerals [6], and the precipitation of metal sulfides, and silicate and carbonate phases [7] are examples on how 

bacteria can determine mineralogical characteristics. 

During CO2 storage changes in the availability of inorganic and organic components in the reservoir system may 

occur. Thus, the acidification of the brine, caused by CO2 dissolution, leads to alterations of mineral phases and to a 

concentration increase of inorganic fluid components, which may affect microbial activities. Furthermore, mineral 

dissolution produces activated surfaces, which may support microbial attachment and biofilm formation. An 

increased mobilization of organic molecules, caused by the mobilization by supercritical CO2, as observed for the 

Frio storage site [8], may also influence bacterial growth. The complex geochemical changes may affect microbial 

activities, subsequently influencing physical reservoir properties like porosity and permeability. 

Within the frame of the CO2SINK project, effects of CO2 on brine saturated sandstone cores from the test site in 

Ketzin are investigated. To specify and estimate the microbial impact on physical reservoir characteristics, long term 

laboratory CO2 exposure experiments under in situ P-T conditions were performed. Microbial analyses were carried 

out together with geochemical, mineralogical [9, 10] and petrophysical studies [11]. Here the microbial and 

geochemical results from one experiment (B4-2) are reported.  

2. Materials and methods 

2.1 Experimental setup 

Long term laboratory CO2 exposure experiments were set up as described in [12]. Fresh formation water-filled 

reservoir sandstone material from the well Ktzi 202 was used for the experiment. During the coring of sandstone 

samples in Ketzin, the fluorescent dye tracer fluorescein was used to label the drilling mud [13]. Fluorescein 

analysis and carbon concentrations showed that drilling mud filtrate penetrated the outer 15 to 20 mm of sandstone 

cores. Inner regions were not affected by drilling mud. The results of these studies were proved by laboratory 

experiments, using a pressure vessel and a replication of the drilling mud, to simulate different pressures and 

incubation times that could occur during coring operations. In order to avoid contamination with drilling mud, outer 

core sections were removed and inner cores sections were incubated together with sterile synthetic brine (172.8 g/l 

NaCl, 0.62 g/l KCl, 8.0 g/l MgCl2
.6H2O, 4.9 g/l CaCl2

.2H2O) in a high pressure vessel under high CO2 partial 

pressure and simulated reservoir P-T conditions of 5.5 MPa and 40 °C for about 24.5 months. 

Because no pristine formation water was available at the time of the experimental setup, synthetic brine was used 

for the experiment. The chemical composition differed from that of Ketzin formation water. In the formation water 

higher concentrations were found for Na+ (+18%), Cl- (+17%) and Ca2+ (+35%) than in the synthetic brine. Lower 

concentrations were detected for Mg2+ (-31%) and K+ (-33%). The largest difference was found for SO4
2- (+95%). 

Because the rock material used for the long term experiments contained pore water, a chemical equilibrium (brine-

brine equilibrium) between both fluids (synthetic brine and formation water trapped in the rock pores) will be 

formed in the vessel fluid. The brine-brine equilibrium concentrations of elements were calculated based on the 

amount of pore water, deduced from porosity, and the amount of synthetic brine. After 15, 21, and 24.5 months of 

CO2 exposure, vessels were opened (pressure was released) and rock and fluid samples were analyzed for 

geochemistry, microbial community, and mineralogical and petrophysical characteristics. 
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secondary precipitation processes. Secondary mineral precipitation may also be the reason for the decreasing K+

concentration after 24.5 months of exposure.  

The sulfate concentration showed the most drastic change and was increased by 135% (brine-brine equilibrium: 

1440 mg/l, 24.5 months: 3400 mg/l), but did not exceed the Ketzin formation water concentration. Thus, dissolution 

of SO4
2- bearing minerals has occurred, but may be a consequence of the low initial SO4

2- concentration of the 

synthetic brine. 

4. Discussion 

In the sandstone samples, obtained from the Ketzin reservoir horizon, microorganisms belonging to the phylotypes 

�-Proteobacteria, �-Proteobacteria and Actinobacteria were detected. The organisms have a chemoheterotrophic 

energy metabolism and a facultative anaerobic respiration in common [16]. Although some DGGE derived 

sequences were short and of low quality, the sequences could clearly be assigned at the genus level. Identified 

organisms are typical for surface habitats like soil and fresh water, but have been found in subsurface environments 

before [17-19]. The ability to grow anaerobically with nitrate (nitrate respiration) has been shown for species of the 

Rhizobium, Burkholderia and Hydrogenophaga genera.  

The indigenous occurrence of Propionibacterium acnes in environmental samples is still matter of debate. It has 

been isolated from a number of subsurface samples, e.g. hydrothermal vent samples [20], petroleum crude oil [21] 

and deep-granitic-fracture water [22]. However, P. acnes is a commensal bacterium of human skin [23] and its 

finding could also be a product of contamination during sampling or DNA extraction.   

Low molecular weight organic acids like acetate and format are constituents of the organic material in the 

reservoir sandstone. Although the concentrations (total organic carbon concentration < 0.1% [13, 24]) are very low, 

they may be utilized as substrates for microbial growth. Hydrogenophaga, as a facultative lithoautotrophic 

bacterium, has the ability to oxidize hydrogen. Traces of hydrogen were detected in the Ketzin reservoir fluid (0.2%, 

personal communication Martin Zimmer, GFZ, Germany). After CO2 exposure Hydrogenophaga sequences were 

not detected, which may be the consequence of the lack of hydrogen in the high pressure vessel. In general, the 

microbes were able to adapt to the changed conditions. However, microbiological results have to be verified by 

analyzing material from additional vessels [12]. Because little physiological information about the organisms is 

available, more evaluation is needed to estimate to microbial impact on mineral dissolution and precipitation during 

CO2 storage.   

Archaea and sulfate reducing bacteria (SRB) could not be identified in the sandstone samples using specific 

primers, although members of the Archaea and SRB were detected in downhole samples from the Ketzin wells [25]. 

Because, the number of cells in the reservoir sandstone samples is very low and these organisms are often 

underrepresented, they may be therefore not detected. Cells from reservoir sandstone samples need to be 

concentrated via density centrifugation for counting and microscopical studies like fluorescence in situ hybridization 

or electron microscopicy. Also an optimization of the DNA extraction method and cloning may deliver further 

insight into the indigenous microbial community. 

During CO2 exposure the concentrations of Ca2+, Mg2+, K+ and SO4
2- in solution increased, exceeding brine-brine 

equilibrium concentrations. This is in consistence with mineralogical studies, were dissolution of the corresponding 

minerals phases like anorthitic plagioclase, K-feldspar and anhydrite was observed [9, 10]. However, mineral 

dissolution may also be a consequence of rock-brine equilibration. But concentrations, exceeding Ketzin formation 

water level, as in the case for Ca2+, Mg2+ and K+ can be attributed to CO2 exposure. Mineral dissolution was also 

reflected in increased porosities, as observed in [12]. The reverse trend to decreasing porosities after 24 months of 

exposure, decreasing fluid concentrations and the precipitation of albite grains [10], may be caused by secondary 

mineral precipitation.  

With the combined analysis of biological, chemical and physical parameters, the experiments will help to 

estimate long-term effects during geological CO2 storage. However, more evaluation is needed to identify 

significant mineralogical changes related to CO2 exposure, also taking into account fluid dynamics and different 

brine/gas saturations. 
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