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In this work we propose to optimize the microlens-array geometry for a Hartmann–Shack wavefront

sensor. The optimization makes possible that regular microlens arrays with a larger number of

microlenses are replaced by arrays with fewer microlenses located at optimal sampling positions,

with no increase in the reconstruction error. The goal is to propose a straightforward and widely

accessible numerical method to calculate an optimized microlens array for a known aberration

statistics. The optimization comprises the minimization of the wavefront reconstruction error and/or

the number of necessary microlenses in the array. We numerically generate, sample and reconstruct

the wavefront, and use a genetic algorithm to discover the optimal array geometry. Within an

ophthalmological context, as a case study, we demonstrate that an array with only 10 suitably located

microlenses can be used to produce reconstruction errors as small as those of a 36-microlens regular

array. The same optimization procedure can be employed for any application where the wavefront

statistics is known.

& 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

The Hartmann–Shack (H–S) wavefront sensor [1] is now
deployed in many different fields, from astronomy to industrial
inspection [2], where the quality of optical media or components
can be measured by the distortions they impart on a wavefront
transmitted or reflected by them. In ophthalmology, this sensor is
a core component of major aberrometers, used to assess the visual
quality of the eye and applied to academic research, real-time
surgery monitoring and clinical diagnosis [3].

The microlens array is an important element in the H–S sensor,
responsible for sampling the aberrated wavefront into light spots on
the focal plane. The position of each light spot relates to the average
tilt of the wavefront over the respective microlens. These spot-
position coordinates are then used in the modal reconstruction [4]
to approximate the wavefront topology with a combination of
orthogonal basis functions, e.g. Zernike polynomials [5]. In the
modal approach for wavefront reconstruction, the aberration
W(x,y) is approximated as a linear combination of a finite number
of Zernike polynomials, as in Eq. (1)

Wðx,yÞ ¼
XM

i ¼ 0

ciZiðx,yÞ, ð1Þ

where ci are the Zernike coefficients, Zi(x,y) the orthogonal Zernike
functions and M is the number of Zernike terms used in this
lsevier OA license. 
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truncated representation. An arbitrary incoming wavefront sampled
by N microlenses yields N spots on the focal plane displaced from
their respective reference positions. Each spot displacement x and y

are related to the corresponding x and y slopes averaged over each
sampling microlens. These slopes Si can be arranged as a 2N�1
vector that relates to a vector of M Zernike coefficients ci through a
2N�M reconstruction matrix B, as in Eq. (2):

S¼ Bc: ð2Þ

Matrix B contains the averaged values of first derivatives of the
Zernike functions over each sampling region.

The least-squares method can be used to estimate the Zernike
coefficients, through the computation of the Moore–Penrose
pseudoinverse of B (Eq. (3))

A¼ ðBT BÞ�1BT , ð3Þ

where A will be henceforward referred to as the estimation
matrix. Therefore, the estimation of c reduces to solving the set
of equations represented by Eq. (4)

c¼ ðBT BÞ�1BT S ð4Þ

where BT is the transpose of B.
The wavefront sampling is influenced by the microlens dis-

tribution pattern, lens contour and size, number of microlenses
and fill factor. Adopted grids typically consist in either rectangular
or hexagonal configurations. Soloviev and Vdovin [6] have dis-
cussed the influence of the geometry of a microlens array on the
wavefront reconstruction error. They proposed a generic mathe-
matical model to describe the modal wavefront reconstruction,
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Fig. 1. Representation of the microlens array optimization process.

O.G. de Oliveira, D.W. de Lima Monteiro / Optics and Lasers in Engineering 49 (2011) 521–525522
independent of both the basis functions and the wavefront
statistics. Their model indicates the dependency of the reconstruc-
tion error on the array geometry. To validate their assumptions,
they evaluated different array geometries with Zernike coefficients
from the atmospheric-turbulence statistics [7]. Arrays with ran-
domly distributed microlenses generated lower reconstruction
errors than regular grids, especially when the number of Zernike
terms increased beyond 40, for which there was a catastrophic
growth of the sampling error.

Based on these results we further investigate a methodology to
identify an optimized microlens array for a known scenario to
minimize either the reconstruction error or the number of
microlenses, as compared to regular arrays. Here we apply the
methodology to the context of ophthalmology, as a case study.
The importance of specifying an optimal array for this application
is expressed in the words of Llorente et al. [3]: ‘‘The determina-
tion of a sampling pattern with the minimum sampling density
that provides accurate results is of practical importance for
sequential aberrometers, since it would decrease measurement
time, and of general interest to better understand the trade-offs
between aberrometers. It is also useful to determine whether
there are sampling patterns that are better adapted to typical
ocular aberrations, or particular sampling patterns optimized for
measurement under specific conditions.’’ Note that, besides
determining an optimal array for a specified number of micro-
lenses, it is also desirable to determine arrays with a smaller
number of microlenses, preserving the reconstruction error mag-
nitude, which is exploited in this work.
Fig. 2. Geometrical optics model for a microlens.
2. Methodology

The search for the optimal microlens array is carried out
numerically. Given an array, an algorithm generates input wave-
fronts based on statistics for typical ocular aberrations and an H–S
model performs its sampling and modal reconstruction. The
outcome is the root-mean-square (rms) error between the recon-
structed wavefront and the input one. This procedure is coupled
to an optimization method where the H–S model represents the
objective function. Since our emphasis lies on the reconstruction
error due to the optical sampling at the microlens array, errors
related to photodetection, spot-coordinate detection and electro-
nic sampling are not taken into account. In a real situation,
however, these sources of errors cannot be neglected, since their
magnitude can be greater than the sampling error. This empha-
sizes again the convenience of determining arrays with fewer
microlenses. They contribute to a reduction in the overall error
associated with the aforementioned noise sources, while preser-
ving the sampling error as low as possible. Moreover, the array
with fewer elements affords a design with larger microlenses. In
this case, more light impinges on each microlens, therefore
increasing the signal-to-noise ratio. A smaller number of sampled
light spots yields fewer coordinate data which contributes,
particularly, to smaller error propagation, regardless the recon-
structor used. The method searches the microlens array geometry
that minimizes the reconstruction error, as illustrated in Fig. 1.

The H–S model (C++ code), extended a source code initially
developed at the EI Lab/TU-Delft/The Netherlands by G. Vdovin,
D.W. de Lima Monteiro and S. Sakarya [4], in which the recon-
struction is based on the least-square approximation [8]. A model
of the microlenses was included in the code to simulate the
sampling step based on the geometrical description of a micro-
lens, as shown in Fig. 2. In this model the measured slope
corresponds to the average slope calculated in 45 points distrib-
uted over the microlens area and is represented in the figure by
the angle y.
The light-spot deviation Dx is calculated through Eq. (5)

Dx¼mtanðgþoÞþd, ð5Þ

where the variables are identified in Fig. 2.
The wavefront reconstruction error from the H–S model

results from the combination of two non-correlated sources:
sampling and least-square modal reconstruction. It is not possible
to separate the sampling error from numerical round-off errors
introduced at the reconstruction routine. Therefore, henceforth
the combination of these error components will be referred to as
the reconstruction error.

The statistics for ocular aberrations was obtained from the
work in which Porter et al. [9] measured the wavefront aberra-
tions of both eyes of 109 human subjects, describing it in terms of
18 Zernike coefficients, with piston and tilts removed. They listed
the typical mean values and spread of the Zernike coefficients for
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a mean pupil diameter of 5.7 mm. This data was used as a basis
for the wavefront-generator algorithm (WG). Therefore, in this
work, the simulations use the first 20 Zernike modes, once that is
the maximum number of modes with available statistics in the
work of Porter et al. [9]. Moreover, de Lima Monteiro [10] states
that optical aberrations in the human eye are significant only to
the first 14th Zernike modes, including tip and tilt. However, tip,
tilt and defocus were not considered, so that the microlens array
could be optimized to provide a more precise sampling of higher
order Zernike terms. More reconstruction modes could be used, if
they were known by the statistics. It is relevant to comment here
also that a larger number of reconstruction modes can also be
used to eliminate aliasing from the measurement with non-
regular arrays, as described in [10] and referred to as under-
modeling [11]. The idea consists in reconstructing the aberrated
wavefront using more than the M terms of interest and then
discarding the highest-order supposedly unnecessary coefficients,
which are responsible for the main aliasing error included in the
first M modes.

It is important to emphasize that the statistics used in this
work is not complete to generate statistically robust ocular
aberrations, once it was derived directly from the final results
presented by Porter et al. [9] in which the measured Zernike
coefficients for each member of the analyzed population are not
available. Because of this limitation, one cannot generalize the
obtained results. However, as more complete statistical models
are available, the whole procedure can be repeated and a new
optimized array can be specified. Therefore, the used statistics is
to be understood as an example of application and as a first
approximation for ocular aberrations.

The genetic algorithm optimization method (GA) [12] was
chosen because it suits well the non-analytical H–S objective
function, which exhibits a multitude of local minima. GA is a
method to solve both constrained and unconstrained optimiza-
tion problems and is based on natural selection, the process that
drives biological evolution. It was implemented with MatLab&

(R2008a), with the toolbox OPTIMTOOL—Optimization Toolbox
4.0. GA creates an initial set of 700 different arrays with the
coordinates of microlenses randomly distributed, where the
restrictions are that each lens should be within the array
perimeter and that microlenses must not overlap. From this set,
the 250 best arrays, in terms of lowest reconstruction error,
compose the initial generation. Starting from the initial genera-
tion, the GA successively modifies the arrays from the current
generation, referred to as parents, to create a new one, with the
same number of arrays, which are called children, thus evolving
towards an optimal solution. The new generation is always
composed of three classes of children: elite, crossover and muta-
tion. The elite children are passed from the previous generation
without any changes. They correspond to the arrays which
produced the two lowest reconstruction errors in the present
generation. The other arrays are generated either through cross-
over or mutation operations. The crossover children are generated
by a combination of a pair of parents, i.e. a combination of the
microlens-coordinates of two arrays, whereas the mutation chil-
dren are the result of small random changes in the parents. 70% of
the arrays are generated through crossover and the others,
through mutation and elitism. The specific algorithms to operate
crossover and mutation can be selected in the MatLab& tool. In the
present work, the used crossover function was intermediate,
which creates children by a random weighted average of the
parents. The mutation function was the adaptive feasible, which
starts with a large mutation possibility in the beginning of the
optimization, and means larger changes in the microlenses posi-
tions, and then sets it smaller as the process converges to the final
solution.
The steps to find the optimized microlens array are summar-
ized in the following outline:
i.
 Five different aberrated wavefronts were generated based on
the statistics by Porter et al. [9]: four aberrations randomly
produced by WG and one aberration featuring mean-valued
Zernike coefficients. For a given microlens-array geometry, the
H–S model computes the reconstruction error for each of
these five aberrations, from which an average error is
obtained. The average error is the parameter to be minimized
by the GA.
ii.
 The GA creates the first generation of arrays with random
distributions of microlenses. For each array, it computes the
average error over the five aberrations mentioned earlier. The
error values are used by the algorithm to define the expecta-
tion with which each array can be selected as a parent, so that
the array with the smallest error is more likely to be chosen.
Based on these values, the GA selects arrays to be used in the
creation of the next generation, through the operations of
elite, mutation and crossover. This step is done successively,
until the average variation in the error over the 10 last
generations is smaller than 1.58�10�11l. Then, the final
result consists of the array that generated the smallest average
error, which corresponds to a minimum in the objective
function.
iii.
 The previous step was executed 10 times. Each of them
generated a microlens array associated with a local minimum
of the objective function. Therefore, the final result consists of
10 different microlens arrays.
iv.
 Each of these arrays was subjected to a comparison test with
an orthogonal 6�6 array. Both the orthogonal and the
optimized arrays have a square perimeter with 6 mm side
and share the same microlens characteristics. The test con-
sisted in estimating and comparing the reconstruction error
for an arbitrarily fixed set of 2000 different aberrated wave-
fronts within the chosen ocular statistics. Among the previous
set of 10 optimized arrays, the one that generated the best
result was selected.

Although it cannot be concluded that this is the best array that
can ever be found for this statistics, it is better than the regular
one and, as a matter of fact, it is also better than at least other
nine non-regular arrays. In practice, however, the obtained array
is of great importance, once it can be readily fabricated and used
in the optical setup to reduce the total reconstruction error
introduced by the system. Whenever a new scenario has to be
studied, the optimized array can be specified for the new statistics
that describe the typical optical aberrations of interest.

Diaz-Santana et al. [13] present analytical expressions to
calculate the reconstruction error for a known statistics. This
model cannot be used in the current paper because it requires the
measured Zernike coefficients for each member of the statistics
population in order also to evaluate the correlation between
Zernike terms. This is not available in the statistical data by
Porter et al. [9] used here. If the statistics for description of the
aberrations is known in detail, the performance of the arrays can
be assessed through the model proposed by Diaz-Santana et al.
[13], rather than testing the performance using a fixed and finite
set of individual wavefront aberrations.

Before running the optimization process, some parameters
used to describe the whole system had to be set, such as number
of Zernike terms, wavelength (l), lateral size of the microlens
array, number of microlenses, microlens diameter and contour,
refraction index and radius of curvature.

The microlens array was chosen to feature a square perimeter
with a lateral dimension of 6 mm to exactly circumscribe the



Fig. 3. Comparison between 10-, 16- and 36-microlens optimized (opt) arrays and

16-, 25- and 36-microlens orthogonal (ort) arrays. The used wavelength was

l¼633 nm.
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typical open-pupil diameter in the human eye. The tested arrays
consisted of 10, 16 and 36 circular, plano-convex microlenses. It is
important to emphasize that, when 20 Zernike terms are used, the
minimum possible number of microlenses in the array is 10. This
limitation is imposed by the implementation of the least-squares
method in the modal reconstructor, which requires the computa-
tion of the Moore–Penrose pseudoinverse of the 2N�M recon-
struction matrix B (Eq. (3)). The condition to calculate the
pseudoinverse is that the number of Zernike modes (M) and the
number of microlenses (N) are related as 2NZM [11]. To
guarantee some degree of freedom for the lens-position rando-
mization, the microlens diameter was set to 750 mm. The aber-
rated wavefronts are sampled over the whole microlens surface
and therefore the calculated local tilts correspond to the spatial
average of the aberration over each microlens area, according to
the lens model previously presented.

The used wavelength was 633 nm. The microlens refraction
index at this wavelength was set to 1.4, to approximate that
of commercially available materials for microlens fabrication
(e.g., PMMA). The focal length of 4 cm corresponds to a radius
of curvature of 16,000 mm, which, with a lens diameter of 750 mm,
is close to the minimum achievable with the microlens-array
fabrication capabilities of our photolithographic equipment and
etching process [14,15]. These values have been set so to later
guarantee the possibility of fabrication of the optimized
microlens array.
3. Results and discussion

The optimization methodology described was applied to three
cases: arrays with 10, 16 and 36 microlenses. The best arrays
found in all cases were compared to the 16, 25 and 36-microlenses
orthogonal arrays. The average values and the standard deviations
for each case, calculated over 2000 aberrated wavefronts, are
shown in Table 1. Fig. 3 illustrates the performance of the
optimized 10-, 16- and 36-microlens arrays and the orthogonal
16-, 25- and 36-microlens arrays over 2000 aberrated wavefronts.

The results show that an optimized array can afford fewer
microlenses, maintaining a low reconstruction error. As observed
before, the reconstruction error comprises both sampling and
numerical errors. Strikingly, through this optimization procedure
both the reconstruction error and the number of lenses can be
concomitantly reduced. The reduction in the reconstruction error
though optimization can be clearly noted in the 16-microlens
array. The same order of reduction could not be observed in the
optimization of the 36-microlens array, once the orthogonal array
is already capable of reconstructing the aberrated wavefront with
a very low sampling error. Yoon [16] presents a graph that
indicates that the maximum number of Zernike terms, which
can be reliably reconstructed, is approximately the same as the
number of microlenses in an orthogonal array. That means that if
20 Zernike terms need to be calculated, as it is the case in the
Table 1
Reconstruction errors generated by optimized and orthogonal arrays over 2000

wavefront aberrations.

#Lenslets

(array geometry)

Average RMS

reconstruction error

Standard deviation

10 (optimized) 1.32�10�8l 2.84�10�8l
16 (optimized) 1.33�10�8l 2.85�10�8l
36 (optimized) 1.36�10�8l 2.90�10�8l
16 (orthogonal) 7.37�10�2l 3.80�10�2l
25 (orthogonal) 1.36�10�8l 2.91�10�8l
36 (orthogonal) 1.37�10�8l 2.93�10�8l
present work, at least 20 microlenses are required for a reliable
reconstruction. Using more than 20 microlenses may decrease the
sampling error and, therefore, the reconstruction error, at least
until the numerical errors become of the same order as the
sampling error. In this sense, an orthogonal 16-microlens array
cannot reliably reconstruct a wavefront aberration described by 20
Zernike coefficients. The optimization results demonstrate that it
is possible to specify the distribution pattern of the 16 microlenses
in the array so that it can generate reconstruction errors as low as
the ones generated by the 25- and 36-microlens orthogonal arrays
and moreover that arrays with even fewer microlenses, such as 10,
can also be used to generate small reconstruction errors as the
25- and 36-microlens orthogonal arrays.

An array with fewer microlenses yields less data from the
wavefront sensor, reducing processing time and round-off errors.
Also, for a fixed array area, the microlens diameter can be
maximized, improving the signal-to-noise ratio in the photode-
tection step and reducing the sizes of the resulting spots at the
lenses foci. Using the fabrication process proposed by D.W. de Lima
Monteiro et al. [14], even for non-regular lens centers, a 100% array
fill factor can be maintained. Nevertheless, any modification of lens
diameter and perimeter can alter the array performance and needs
to be carefully assessed. The size of the microlens does not affect
the sampled spatial-frequency spectrum, but influences the mod-
ulation transfer function (MTF) of the array, i.e. how accurately the
amplitude of each frequency component is reproduced.

It is also important to compare the arrays considering their
impact on the numerical calculation of the pseudoinverse of the
reconstruction matrix B (Eq. (3)). This matrix is directly affected
by the microlens positions in the array, since it contains the first
derivatives of the Zernike functions evaluated at the respective
sampling regions. The pseudoinverse calculation requires the
inversion of the square matrix BTB, which should be well condi-
tioned. As pointed out by Navarro et al. [17], the 2-norm
condition number can be computed to check the numeri-
cal stability of the inversion of a matrix. If the inverse of
the condition number is used, it is always between 0 and 1.
A condition number close to 1 means the matrix is well-condi-
tioned. Moreover, Navarro et al. [17] states that the rank of the
matrix to be inverted must equal the number of Zernike terms M

to guarantee the matrix is not singular, i.e. Rank(BTB)¼20. In this
work, the condition number and the rank of the matrix BTB were
calculated for the 10-, 16- and 36-microlens optimized arrays and



Table 2
Condition number and rank of the matrix BTB.

#Lenslets (array geometry) Condition number Rank

10 (optimized) 8�10�4 20

16 (optimized) 2�10�3 20

36 (optimized) 7�10�3 20

16 (orthogonal) 2�10�17 18

36 (orthogonal) 1�10�2 20
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for the 16- and 36-microlens orthogonal arrays. The results are
shown in Table 2.

The rank of the 16-microlens orthogonal array was 18, mean-
ing that matrix BTB is singular, or close to singular, for this case
and indicates this array is not appropriate to sample Zernike
polynomials. On the other hand, the rank of the other arrays,
including the 16-microlens optimized array, was 20, which equals
the total number of used Zernike terms. This guarantees that the
matrix is not singular when these arrays are used and therefore
the matrix BTB can be inverted. The values of condition numbers
of all the arrays, except for the 16-microlens orthogonal one,
indicate the respective matrices are well-conditioned. That guar-
antees the optimized array preserves accuracy and numerical
stability in the wavefront reconstruction [17].
4. Conclusions

This work proposed a methodology to numerically optimize
the microlens-array geometry for a Hartmann–Shack (H–S) wave-
front sensor, aiming at specifying arrays with minimum number
of microlenses whilst maintaining reconsctruction errors as low
as the ones generated by arrays with more sampling microlenses.
The method consists in using the genetic algorithm optimization
approach to minimize the reconstruction error of the H–S wave-
front sensor by changing the coordinates of microlenses in the
array. The wavefronts used to calculate the reconstruction error
need to be obtained from a statistical description of the distor-
tions in a particular application. In particular, the method was
applied to the ophthalmological context, as an example of
application, it was shown that an optimized 10-microlens array
generated smaller reconstruction errors than an orthogonal
36-microlens array.

With slight modifications to the H–S model this method can
also be used to optimize a Hartmann-mask pattern or the probe-
laser coordinates in laser ray tracing [4].
This methodology is generic and can be applied to other
wavefront statistics as well. An optimized microlens array can
be found to either comply with the maximum tolerated error in
that particular context with a reduced number of microlenses, or
to yield a lower error altogether.
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