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Given two free submonoids of a free monoid, one wishes to find a specification for the base 

of the intersection. An algorithm to construct a graph-theoretic specification of the base is 

presented. From this specification it can easily be determined whether the base is finite. In addi- 

tion, a polynomial-time algorithm to determine if a regular set is a circular code is presented. 

1. Introduction 

It is known [6] that the intersection of two finitely generated subgroups of a free 
group is again finitely generated. Recently, Avenhaus and Madlener [1] have given 
a polynomial time algorithm for computing a set of  generators for such an intersec- 
tion. In the case of  monoids,  the situation is different. First, a submonoid of a free 
monoid is not necessarily free. Second, while the intersection of two finitely 
generated free submonoids is again free, this intersection is not necessarily finitely 
generated. 

It is well known that it is decidable whether the submonoid of a free monoid 
which is generated by a finite set (or even a regular set) is free. The purpose of this 
paper is to present a polynomial time algorithm to generate a graph-theoretic 
specification of  the base of  the intersection of two free submonoids that are regular 
sets. Each submonoid is specified by a deterministic finite-state acceptor for its base. 
The running time of the algorithm is linear in the product of  the sizes of  the transi- 
tion tables for the two finite-state acceptors. From this specification of  the base of  
the intersection, it is easy to determine whether the base is finite. 

This algorithm is a minor modification of an algorithm due to Even [4,5] that is 
useful in the study of  variable-length codes. Comments  on Even's  original work are 
given in Section 3 and circular codes are considered. A polynomial-t ime algorithm 
to determine whether a regular set is a circular code is presented. 
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1. Submonoids of  a free monoid 

For  a finite set Z of  symbols, let Z*  denote the free monoid generated by Z. I f  
A t_Z* ,  then let A* denote the submonoid of  Z* generated by A, that is, 

A * =  {Yi,...Yu, In>- 1, each y i j eA}  U {e} where e is the empty string, the string of 
length 0. For every A c_ Z*, there is a unique minimal generating set B A c_ Z* such 
that  B ~ = A * ;  the set BA is A ÷ - A + A  +, where A ÷ = A * - { e } ,  and is called the 
base of  A *. Recall that the submonoid A * is free if and only if every string in A * 
has a unique factorization as a concatenation of  strings in BA. 

We assume that the reader is familiar with the fundamentals of  the theory of  
regular sets, for example, that a subset of  2"* is regular if and only if it is recognized 
by a deterministic or nondeterministic finite-state acceptor if and only if it is 
denoted by a regular expression. Recall that the class of  regular subsets of  Z* is the 
smallest class containing the finite subsets and closed under union, concatenation, 
and *. 

It is easy to see that there is a nondeterministic procedure that on input a regular 
set A c_ Z* (say A is specified by a finite-state acceptor) will determine whether A 
is not a base, and that operates within logn work space. Hence, there is a deter- 
ministic polynomial time algorithm to determine whether a regular set is a base. Fur- 
ther, the algorithm of Even [4,5,3] that determines whether A* is free when A is a 
finite base can be extended to regular sets, and this extension again operates deter- 
ministically in polynomial time. 

Now it is clear that if A * and B* are free submonoids of  Z*, then so is A * (q B*, 
and it is well known that if A * and B* are regular sets, then so are A * f3 B* and the 
base of  A*MB*.  On the other hand, i f A  and B are finite, then the base of  A * A B *  
is not necessarily finite. For example, let Z =  {a, b}, A = {a, ab}, and B = {a, ba}. It 
is clear that A * and B* are free. Let C = {(ab)ia] i>- 0}. Clearly, C is a base and C* 
is free. We claim that C* = A  * f3 B* so that A * f3 B* is not finitely generated. For 
any i, (ab)ia is in A* and a(ba) i is in B* so that (ab ) iaeA*NB*;  hence, 
C* c_ A * N B*. To show that A * f3 B* _c C*, consider the base o f A  * ('1B*, say D, and 
argue by induction on the length of strings in D that D c_ C, concluding D = C; the 
details are left to the reader. 

2. Computing a specification of  the basis 

Theorem 1. Consider the following problem: 
INSTANCE:  Two deterministic finite-state acceptors M A and M B specifying the 
regular sets A and B respectively, where A is a base, A * is free, B is a base, and 
B* is free. 
QUESTION:  Is the base o f  A * ('1 B* finite? 

There is an algorithm to construct a labeled directed graph to specify the base o f  
A * N B*. This algorithm runs in time O(I'~A I" I'~BI) where [~A[ (I'~BI) is the size o f  the 
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table specifying the transition function o f  M A (resp., MB). From the graph con- 
structed by this algorithm, one can determine whether the base o f  A * n B* is finite 
in time O([SAI 2" ]5B]2). 

The remainder of  this section is devoted to the proof  of  Theorem 1. It will be 
assumed throughout that A and B are regular sets. The other portions of  the 
hypothesis will be explicitly stated whenever they are used. 

Let A be a regular set and let MA = (KA, Z, dA, qA, FA) be a deterministic finite- 
state acceptor that recognizes A. (That is, K A is a finite set of  states, 
fiA :KA × Z ~ K A is the transition function, qA 6 KA is the initial state, and F A c_K A 
is the set of  accepting states; 5A is extended to 5]  : K A × Z* ~ KA by 5](q, e) = q and 
5](q, wa)=~A(5](q,w),a) for all q ~ K  A, a e Z ,  and w ~ Z * ;  the set of  strings 
recognized by M A is { w 6 Z* I O~(qA, W) E F A }.) Construct the following labelled 

directed graph G A = (K A U {SA,fA}, Z, O(A), J-A,fA) as follows: 

(a) The set of  vertices is KA U {SA,fA}, where SA --/:fA and {SA,fA} NKA =0. 
(b) The set of  directed edges is 5 ( A ) = { ( p , q ) I p ,  q ~ K  A and for some a¢-~,  

OA(P, 
~A(P, 

(c) 
every p, q e K A ,  a6z~, 

(i) aE)tA(p,q)  if and only if 5A(P,a)=q,  
(ii) a~AA(P, fA ) if and only if fiA(P, a)6FA, 

(iii) a ~ )t A (SA, q) if and only if 5A (qo, a) = q, 
(iv) a~2A(SA,fA ) if and only if 5A(qo, a ) ~ F  A. 

a) =q}  U {(s A, q)] for some a ~ Z ,  OA(qO, a)=q} U {(P, fA)I for some a 6 Z ,  
a) ~ FA } U { (SA, fA) ] for some a ~ Z, fiA (qo, a) c FA }. 
The labelling function is )-A: (KA U {s, f})  × (K A U {s , f})  ~ 2 z where for 

The labelled directed graph G A is a modification of  the state graph of M A. The 
vertex s A has in-degree zero and is a 'copy '  of  qA. The vertex fA has out-degree 
zero and 'copies'  all of  the states in F A simultaneously. Since M A is deterministic, 
for each w ~ Z*, there is a unique computat ion of M A on W that begins at qA. It is 
easy to see f rom the construction of  G A that for every w ~ A ,  there is a unique se- 

quence Po, Pl . . . . .  Plwl of vertices in G A such that Po=SA, Plwl =fA, and for each 
i=  1 . . . . .  ]w[, ai¢AA(Pi l,Pi) where w=al. . .alw I. Since A is a base, e t A .  

The coding graph C(A) = (KA U {SA }, zY, 5 A, ) ,4 ,  SA ' SA ) is obtained f rom the 
graph G A as follows: 

(a) The set of  vertices is KA O {SA}. 
(b) The set of  directed edges is (~A= (O(A)- {(P, fA ) IP  ~KA U {SA}})O {(p, SA)] 

p ~ K A  U {SA} and (p, fA )~d (A) } .  
(c) The labelling function is )~A : ( K A U { S A } ) X ( K A U { S A } ) _ _ + 2 Z  where for 

P~KAU{SA}  and q ~ K  A, )~A(p,q)=)~A(p,q) , and for p ~ K A U { S A } ,  
)A(p,  SA ) = J-A(P, fA). 
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The coding graph C(A) is obtained from GA by identifying SA and fA. Clearly, 
for n _ l  and aj . . . . .  a , ~ £ ,  a l . . .a ,  e A *  if and only if there is a sequence P0, 
Pl . . . . .  p , ~ K  AU{sA} such that pO=p,=sA and for each i = l  . . . . .  n, 
aiEJ.A(pi_l,Pi); the sequence Po,Pt . . . . .  p ,  is a path-sequence that witnesses 

a I . . .  a n ~A*.  

Claim 1. Suppose that A is a base and A* is free. Then, for  n>.l and 
a t . . . . .  a n cX,  al ... a, ~A  * i f  and only i f  in C(A) there is a unique path-sequence 
that witnesses al ... an ~ A *. 

This fact follows immediately from the definitions and the construction of GA 
and of C(A). 

Now we construct a 'testing graph' that provides the basis for our result. 

For regular sets A and B, let GA=(KAU{SA,fA},~,J.A,O(A),SA,fA) and 
Gs = (Ks U {so, f s  } ;X, 2B, d(B), sB, fB) be the corresponding labelled directed graphs 
as described in the last paragraph. Define the testing graph T(GA, Gs)= (V, E, )0, 
where V is the set of vertices, E is the set of edges, and ). : E ~  2 2 is the labelling 
function, as follows: 

(a) V=((K A U {SA})×(KsU {SB})) U {(fA,fB)}. 
(b) E is defined as follows: let Pl ~KA U {SA} and p 2 6 K s U  {ss}, 

(i) for each ql eKA and q : ~ K  B, there is an edge from (PbP2) to (ql, q2) if 
and only if 2A(Pl, ql) (32B(P2, q2) ¢9 ;  

(ii) for each q26K s, there is an edge from (Pl,P2) to (s A, q2) if and only if 

2A (Pl,fA) 0 2B(P2  , q2) ¢ O; 
(iii) for each ql eKA, there is an edge from (Pl,P2) to (ql,SB) if and only if 

)-A (P l, ql) O )-B(P2, f s )  --/: O; 
(iv) there is an edge from (Pl,P2) to ( fn , f s )  if and only if 2A(pt , fA)N 

)~ B( P2,fs) ¢ O; 
(c) The definition of 2 parallels (b): 

(i) 2((Pl,P2), (ql, qz)) = 2A(Pl, ql) N 2B(P2, q2), 
(ii))-((Pl,P2), (SA, q2)) = ) ~ A ( P l , f A )  A ).B(P2, q2), 

(iii) 2 ((Pl, Pz), (ql, SB)) = ~A (Pt, ql) f3 ).B(P2, fB), 
(iv) J-((Pl, P2), ( f A , f B ) )  = ~-A ( P l , f A )  f"l )~B(P2, fB) .  

It is clear from the definition of  T(GA:GB) that the in-degree of (s A, SB) and the 
out-degree of ( fa , fs)  are both zero. 

The set W(A, B) of word paths of T(GA, Gs) is the set of strings al. . .  a,, n_> 1, 
such that there is a sequence ro, rl . . . . .  G, ro=(SA, Ss), r ,=( fA, fS) ,  where 
riE(KAU{SA})×(KBO{SB}) for 0 < i < n ,  and for each i=1  . . . . .  n, aieZ, and 
ai~J.(ri_l, ri); the sequence ro, r~ . . . . .  r, is a path-sequence that witnesses 
al... a, ~ W(A, B). 

Let r 0, rl . . . . .  r n witness al... a, e W(A, B), For each i=  1 . . . . .  n -  1, let ri= (Pi,  q i )  
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where  P i E K A U { S A }  and  qi~KBU{SB} .  It is clear  tha t  the sequence 

SA,Pl . . . .  ,Pn-I,SA in C(A) witnesses al . . .a  n ~ A *  and the sequence 

ss,  ql . . . . .  qn-  1, sB in C(B) witnesses al.. .  an ~ B*. Thus,  W(A, B) c_ A * G B*. 

Claim 2. W ( A ,  B)*  = A * n B*.  

Proof .  Since W(A, B) c_ A*  O B* and  A *  n B* = (A* N B*)*, it is suff icient  to show 

tha t  if  D is the base  o f  A * A B * ,  then  D E  W(A,B)* .  In fact ,  we show tha t  

D c_ W(A,  B). 

Let a l . . . a n e D  where n_> 1 and each a i is in Z .  Since D is the base  o f  A * O B * ,  
al.. .  an is in A * A B *  and a~ ... an has no fac to r i za t ion  as the conca t ena t i on  o f  two 

or  more  n o n e m p t y  strings in A * A  B*. Hence ,  there  is a pa th-sequence  Po, Pl . . . . .  Pn 
in C(A) witnessing al.. .  an c A *  and a pa th-sequence  q0, ql . . . . .  qn in C(B) witness-  

ing a I . . . . .  aneB*,  so tha t  pO=Pn=SA and  qo=qn=ss ,  and for  each i =  1 , . . . , n - 1 ,  

e i ther  Pi¢SA or qi-TeSB ( for  otherwise,  al . . .a  n would  have a f ac to r i za t ion  as the 

conca t ena t i on  o f  two or  more  n o n e m p t y  str ings in A * O B * ) .  Let  ro=(po, qo) 
(= (s A, sn)), r n = (fA,fB),  and for  each i =  1 . . . . .  n -  1, r i = (Pi, qi); then it is clear  that  

ro, q . . . . .  rn witnesses al.. .  an ~ W(A,  B). [] 

In  general ,  W ( A , B )  is not  a base:  let A = {ababab, aba, bab, aaa} and  B =  

{ababab, aba, bah, bbb}, so tha t  {ababab, aba, bah} c_ W(A,  B). 

Cla im 3. Suppose that A is a base, A*  is free, B is a base, and B* is free. Then 
W ( A , B )  is the base o f  A * O B * .  

Proof .  F r o m  the p r o o f  o f  C la im 2, we have D c_ W(A,  B) where D is the base  o f  

A * A B * .  Since W ( A , B ) c _ A * N B * ,  D * =  W ( A , B ) * = A * O B *  so tha t  it is suff icient  

to  show tha t  W(A,  B) is a base.  

A s s u m e  tha t  W(A,  B) is not  a base.  Let  a l . . .  an, n_> 1, each a i E Z, be a str ing in 

W ( A , B )  with a f ac to r i za t ion  as the conca t ena t i on  o f  two or  more  str ings in 

W(A,  B), say a l . . .  an = Wl... Wk with k >  1 and  w i ~ W(A,  B) for  each i - -  1 . . . . .  k. F o r  

each i =  0, 1 . . . .  , n, let r i= (Pi, qi) where r 0 . . . . .  r n is a pa th-sequence  in T(G A, GB) 
witnessing al... an ~ W(A,  B). By cons t ruc t ion  o f  T(G A, GB), ri~(SA, SB) if  i4 :0 .  

Since A is a base and  A *  is free, there  is a unique  pa th-sequence  in C(A) witnessing 

• s a. Also ,  since B al.. a n c A *  and  by cons t ruc t ion  this sequence is SA,Pl . . . . .  Pn- 1, 
is a base  and B* is free, there  is a unique pa th-sequence  in C(B) witnessing 

a l . . .  an c B* and by cons t ruc t ion  this sequence is sB, ql . . . . .  qn 1, sB. N o w  each w i is 
in A * A B *  and  so for  each Wg there  is a pa th-sequence  in C(A) witnessing wiEA* 
and  a pa th - sequence  in C(B) witnessing wiEB*. F r o m  this col lec t ion o f  pa th -  

sequences,  we can cons t ruc t  a pa th-sequence  P0 . . . . .  Pn in C(A) witnessing 
w l . . . w k ~ A *  and a pa th-sequence  q0 . . . . .  qn in C(B) witnessing w l . . . w k ~ B * ,  

where  po=Pn =s  A and  qo=qn =s  B. Since Wl ... wk is the conca tena t ion  o f  k str ings 
in A * A B * ,  there are  k -  1 integers j in {1 . . . . .  n -  1} such that  (p j ,  qj)=(SA, SB). 
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Thus, the sequence (P0, qo) . . . . .  (Pn-1, qn-1),  (SA, SB) is not equal to the sequence 
(P0, qo) . . . . .  (Pn, qn). Since al. . .an= wl...  w k, this means that there are two or 
more path-sequences in C(A) witnessing a l . . . a n e A *  or there are two or more 
path-sequences in C(B) witnessing al . . .  a n e B*, a contradiction. [] 

We are concerned with the cardinality of  W(A, B). 

Claim 4. W(A, B) & infinite i f  and only i f  there are infinitely many paths f rom 
(SA, SB) to (fA, fB) in T(GA, GB) i f  and only i f  there is a path f rom  (SA, S.) to (fA, fB) 
in T(GA, GB) that contains a circuit i f  and only i f  there is a path f rom (SA, SB) to 
(fA,fB) in T(GA, GB) o f  length greater than m - 1 and less than 2m - 1 where m is 
the number o f  vertices in T(G A, GB). 

It is clear that the graph T(GA, GB) can be constructed from M A and MB in time 
O(10A l" [0BI), where [0AI (10B]) is the size of  the table specifying the transition func- 
tion of M A (resp., MB). Breadth-first search can be used to determine whether 
W ( A , B )  is infinite and this can be done in time O(10AI 2" [6B[z). Hence, there is a 
polynomial time algorithm that on input M A and M e will determine whether 
W(A, B) is infinite. 

Notice that i f A  is a base, A* is free, B is a base, and B* is free, then a specifica- 
tion by means of a finite labelled directed graph is provided for the base of  A * C/B* 
by pruning f rom T(GA, GB) those vertices which do not lie on a path from (s A, s B) 

to (fA,fB). 

3. Even's algorithm and circular codes 

Even's  original work [4,5] was to describe a graph-theoretic algorithm to deter- 
mine whether a finite set A CX* is such that A* is free on A, that is, A is a base 
and A* is free. This was presented in the context of  A being a variable length code 
so that A is a base and A* is free if and only if that A is a uniquely decipherable 
code. In the original work A was taken as a finite set; here we describe the construc- 
tion for the extension to the case of  A being a regular set such that e ~ A .  

Let M A be a deterministic finite-state acceptor recognizing regular set A, and let 
GA and C(A) ( = (K A U {SA}, Z, O A, h A, S A, S A) be the graphs described in Section 2. 
Construct the testing graph T(A) of A as follows: 

(i) The set of  vertices is ( K A U { S A } ) X ( K A U { S A } ) U { I  }, where I is not in 

( K  A ~.J {s A }) )'( ( K  A U {s A }). 
(ii) The set of  edges is defined inductively as follows: 

if p, q e K  A U {SA} and for some a e N ,  a~XA(sA,P) A2A(sA, q), then there is 
an edge f rom I to (p, q); 

if  p, q, r, s e K  A U {SA}, there is a path f rom I to (p, q), and for some a ~Z', 
a ~ AA(p, r)CI )~A(q, S), then there is an edge from (p, q) to (r, s). 
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Then A is a base and A* is free if and only if there is no p ~ KA such that there 

exist a path in T(A)  f rom I to (p, SA) and a path in T(A)  f rom (p, SA) tO (SA, SA). 
By generating the pairs (p, SA), P ~SA, that are accessible f rom I and then deter- 

mining whether (SA, SA) is accessible f rom such a pair, one can determine whether 
A* is free. We summarize in the following way. 

Theorem 2. Consider the following problem: 
INSTANCE:  A deterministic finite-state acceptor with n states recognizing a 

regular set A such that A is a base. 
QUESTION:  Is A* free? 

There is an algorithm that will solve this problem in time at most O(n4). 

Now we consider an application of these techniques to the question of  whether 
a uniquely decipherable code is circular. 

A set A C2"* is a circular code if A is uniquely decipherable and for all choices 

of  x 1 . . . . .  xn, Yl . . . . .  Ym~A and u, ueZ'* ,  o:ge, if ox2.. .XnU=Yl.. .y m and Xl=UD , 
then u = e. 

We will describe a polynomial-time algorithm that on input a deterministic finite- 
state acceptor M A recognizing regular set A will determine whether A is a circular 
code. From the last result we can assume that it is already known that A is uniquely 

decipherable. 
Let C(A) = (KA tO {S n }, Z, fiA, )t A, SA ' SA) be the graph described in Section 2. For 

p ~ K  n, let Cp(A) be the graph (KAtO{SA},Z,~A,)~A,p,p).  Let Tp be the graph 
T(C(A),  Cp(A)) as described in Section 2. 

Now A is a circular code if and only if for every p ~ KA, there is no nonempty 

path f rom (Sn, P) to (s A, p& in Tp. 
This yields the following result. 

Theorem 3. Consider the following problem: 
INSTANCE:  A deterministic finite-state acceptor with n states recognizing a 

regular set A such that A is a base and A* is free. 
QUESTION:  Is A a circular code? 

There is an algorithm that will solve this problem in time at most O(nS). 

The bound of O(n 5) results f rom the fact that Tp has n 2 states so determining 
whether Tp has no path f rom (SA,p) to (SA, P) requires time at most O(n4). There 
are n states and Tp must be checked for each choice of  p.  
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