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Given two free submonoids of a free monoid, one wishes to find a specification for the base
of the intersection. An algorithm to construct a graph-theoretic specification of the base is
presented. From this specification it can easily be determined whether the base is finite. In addi-
tion, a polynomial-time algorithm to determine if a regular set is a circular code is presented.

1. Introduction

It is known [6] that the intersection of two finitely generated subgroups of a free
group is again finitely generated. Recently, Avenhaus and Madlener [1] have given
a polynomial time algorithm for computing a set of generators for such an intersec-
tion. In the case of monoids, the situation is different. First, a submonoid of a free
monoid is not necessarily free. Second, while the intersection of two finitely
generated free submonoids is again free, this intersection is not necessarily finitely
generated.

It is well known that it is decidable whether the submonoid of a free monoid
which is generated by a finite set (or even a regular set) is free. The purpose of this
paper is to present a polynomial time algorithm to generate a graph-theoretic
specification of the base of the intersection of two free submonoids that are regular
sets. Each submonoid is specified by a deterministic finite-state acceptor for its base.
The running time of the algorithm is linear in the product of the sizes of the transi-
tion tables for the two finite-state acceptors. From this specification of the base of
the intersection, it is easy to determine whether the base is finite.

This algorithm is a minor modification of an algorithm due to Even [4,5] that is
useful in the study of variable-length codes. Comments on Even’s original work are
given in Section 3 and circular codes are considered. A polynomial-time algorithm
to determine whether a regular set is a circular code is presented.
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1. Submonoids of a free monoid

For a finite set X' of symbols, let 2* denote the free monoid generated by 2. If
AcCX* then let A* denote the submonoid of X* generated by A, that is,
A¥*= {y,-l...yu”|n2 1, each y; € A}U {e} where e is the empty string, the string of
length 0. For every A C 2'*, there is a unique minimal generating set B, € Z* such
that Bf=A*; the set B, is At —~A*A*, where A* =A*—{e}, and is called the
base of A*. Recall that the submonoid A4 * is free if and only if every string in 4 *
has a unique factorization as a concatenation of strings in B,4.

We assume that the reader is familiar with the fundamentals of the theory of
regular sets, for example, that a subset of 2*is regular if and only if it is recognized
by a deterministic or nondeterministic finite-state acceptor if and only if it is
denoted by a regular expression. Recall that the class of regular subsets of 2* is the
smallest class containing the finite subsets and closed under union, concatenation,
and *

It is easy to see that there is a nondeterministic procedure that on input a regular
set A C2* (say A is specified by a finite-state acceptor) will determine whether A4
is not a base, and that operates within log#» work space. Hence, there is a deter-
ministic polynomial time algorithm to determine whether a regular set is a base. Fur-
ther, the algorithm of Even [4,5,3] that determines whether A* is free when A4 is a
finite base can be extended to regular sets, and this extension again operates deter-
ministically in polynomial time.

Now it is clear that if A* and B* are free submonoids of 2*, then so is A*N B*,
and it is well known that if A* and B* are regular sets, then so are A*MN B* and the
base of A*MN B*. On the other hand, if A and B are finite, then the base of A*N B*
is not necessarily finite. For example, let 2= {a, b}, A ={a, ab}, and B= {a, ba}. It
is clear that A* and B* are free. Let C = {(ab)a|i=0}. Clearly, C is a base and C*
is free. We claim that C*=A*N B* so that A*N B* is not finitely generated. For
any i, (abya is in A* and a(ba) is in B* so that (eb)YacA*NB* hence,
C*C A*N B*. To show that A*N B*C C*, consider the base of 4 *N B*, say D, and
argue by induction on the length of strings in D that D C C, concluding D = C; the
details are left to the reader.

2. Computing a specification of the basis

Theorem 1. Consider the following problem:
INSTANCE: Two deterministic finite-state acceptors M, and My specifying the
regular sets A and B respectively, where A is a base, A* is free, B is a base, and
B* is free.
QUESTION: Is the base of A*N B* finite?
There is an algorithm to construct a labeled directed graph to specify the base of
A*N B*, This algorithm runs in time O(|d 4| - |0g|) where |0 4| (|0g]) is the size of the
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table specifying the transition function of M, (resp., Mg). From the graph con-
structed by this algorithm, one can determine whether the base of A*N B* s finite
in time O(|6,4)*-1g/%).

The remainder of this section is devoted to the proof of Theorem 1. It will be
assumed throughout that A and B are regular sets. The other portions of the
hypothesis will be explicitly stated whenever they are used.

Let A be a regular set and let M, =(K4, 2, 04, G4, F4) be a deterministic finite-
state acceptor that recognizes A. (That is, K, is a finite set of states,
04:K4x X — K, is the transition function, g, € K, is the initial state, and F,C K,
is the set of accepting states; J 4 is extended to 0} : K4, X 2*— K, by d3(q, e)=q and
0i(g, wa) =0 ,4(5%(q, w),a) for all geK,, aeX, and weZXZ* the set of strings
recognized by M, is {weZ*|5%(q, w)€F,}.) Construct the following labelled
directed graph G,=(K,4U {s4,f4}, Z,6(A), A4, f4) as follows:

(a) The set of vertices is K, U {s4,f4}, where s,#f, and {s,4,/4} NK,=0.

(b) The set of directed edges is d(A)={(p, q)\p,quA and for some ae’X,
S4(p,@)=q}U{(54,q)| for some a€X, d,4(qp,a)=q}U{(p,f4)| for some aeX,
S4(p,@)eFyy U{(s4,f4)| for some aeX, 5,4(qy a)eF,}.

(c) The labelling function is A4: (K4U {s,fHX(K4U{s,f})—2% where for
every p, qge K, ae 2,

(i) aeiys(p,q) if and only if J4(p,a)=gq,

(ii) ac A (p,fy) if and only if J4(p,a)eF,,

(iii) ae A 4(54,q) if and only if J4(g @)=gq,

(iv) ae A 4(54,f4) if and only if d,(gg, a)eF,.

The labelled directed graph G, is a modification of the state graph of M. The
vertex s, has in-degree zero and is a ‘copy’ of g,. The vertex f4 has out-degree
zero and ‘copies’ all of the states in F4 simultaneously. Since M, is deterministic,
for each we 2'*, there is a unique computation of M, on w that begins at g4. It is
easy to see from the construction of G4 that for every we A4, there is a unique se-
quence po, Py, ---,P|w Of vertices in G4 such that py=s,4, p|,=f4, and for each
i=1,..,|w, a;e Ay(p;_, p;) where w=aj...d, . Since A is a base, e¢ A.

The coding graph C(A)=(K,U {s4},%,0", 1", 54,54) is obtained from the
graph G, as follows:

(a) The set of vertices is K, U {s4}.

(b) The set of directed edges is 6 =(6(A4) — {(p, f1) | PEKLU {54} DU {(D,54)]
peK, U{s,} and (p,f4)€d(A)}.

(c) The labelling function is A4:(K,U{s4}) X (K4U {s,})—2% where for
pekK,U{s,} and qeK,, AY(p,@)=A.(p.q), and for peK,U{s,},
M (p, Sa)=44(D,f4).
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The coding graph C(A) is obtained from G, by identifying s, and f,. Clearly,
for n=1 and qy,...,a,€2, a,...a,e A* if and only if there is a sequence py,
Piy--sDn€K U {sq} such that p,=p,=s, and for each i=1,...,n,
a;e A (p;,_1,p;); the sequence DosP1s--->Pn 18 @ path-sequence that witnesses
a...a,eA*

Claim 1. Suppose that A is a base and A* is free. Then, for n=1 and
a,...,q,€2,4a,...a,€ A* if and only if in C(A) there is a unique path-sequence
that witnesses a,...a,€ A*.

This fact follows immediately from the definitions and the construction of G4
and of C(A).

Now we construct a ‘testing graph’ that provides the basis for our result.

For regular sets A and B, let Gy=(K U {54, 4}, 2 Ay, 6(A),54,f4) and
Gg=(KgVU {s5, f5}:;2, Ag, 5(B), sz, f) be the corresponding labelled directed graphs
as described in the last paragraph. Define the testing graph T(G4, Gg)=(V, E, A),
where V is the set of vertices, E is the set of edges, and A: E— 2% is the labelling
function, as follows:

@) V=(K, U {s4}) x (KU {sg}) U {(fa,Sp)}.
(b) E is defined as follows: let p; e K4 U {s,} and p,e KzU {sz},
(i) for each g, € K, and g, € K, there is an edge from (p;, p,) to (g, q5) if
and only if A,4(p1, q1) N Ap(p2, q2) #0;
(ii) for each g, € K, there is an edge from (p;, p,) to (s4, q,) if and only if
Aa(p1s F2) N Ag( D2 q2) # 9,
(iii) for each g, € K4, there is an edge from (p;, p») to (g;,sp) if and only if
Aa(p1, @) N Ag( D2, f) £ 0;
(iv) there is an edge from (p,,p,) to (f,,fg) if and only if A,4(p., )N
Ag( P2 fp) #9;
(¢) The definition of A1 parallels (b):
() A(p1; D25 (G15 @2)) = A a( Py 1) N Ap( D2, G2),s
(1) APy, D2), (545 G2)) = A4 (P15 f4) N AR(D2 G2)s
(lll) /‘l((pl’ p2)! (qla SB)) = AA(pli ql) N AB(pZ’fB)a
(V) A(p1, D2), (fas SB)) = A a(D1: f4) N Ap( D2, [B)-

It is clear from the definition of T(G4.Gp) that the in-degree of (s, sg) and the
out-degree of (fy4, fz) are both zero.

The set W(A, B) of word paths of T(G 4, Gg) is the set of strings a,...a,, n=1,
such that there is a sequence ry, 7y, ...sFy ro=(54,5g), 1,=(f4,Sfp), Where
re(K U {s,}) X (KgU {sg}) for 0<i<n, and for each i=1,...,n, q;eZ and
a,e A(r;_y, r;); the sequence ry7r|,...,7, 18 a path-sequence that witnesses
a...a,e W(A, B).

Let ro, ryy..., 7, Witness ay...a,€ W(A, B). For each i=1,...,n—-1, let r,=(p;, g;)
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where p;eK,U{s,} and ¢;eKzU{sg}. It is clear that the sequence
SasDise-sPn-1-84 In  C(A) witnesses a,...a,€A* and the sequence
SBy Qs -+-»Gn_1, Sg in C(B) witnesses a,...da, € B*. Thus, W(4, B)C A*N B*,

Claim 2. W(A, B)*=A*N B*.

Proof. Since W(A,B)C A*NB* and A*NB*=(A*N B**, it is sufficient to show
that if D is the base of A*NB* then DC W(A, B)*. In fact, we show that
Dc W(A, B).

Let a,...a,€ D where n=1 and each g; is in 2. Since D is the base of A*N B*,
aj...a, is in A*N B* and q,...a, has no factorization as the concatenation of two
or more nonempty strings in 4A*MN B*. Hence, there is a path-sequence py, oy, ..., Py
in C(A) witnessing a,...a,€ A* and a path-sequence gy, 4,5 ---, g, in C(B) witness-
ing ay,...,a,€ B*, so that py=p,=s4 and qy=q, =sg, and for each i=1,...,n—1,
either p;#s, or g;#sp (for otherwise, a,...a, would have a factorization as the
concatenation of two or more nonempty strings in A*NB*). Let ry=(pg, qp)
(=(s4, sp)), rn=(f4,f5), and for each i=1,...,n—1, r;=(p; g,); then it is clear that
o I'is ---s Iy Witnesses a;...a,€ W(A4,B). U

In general, W(A, B) is not a base: let A= {ababab,aba,bab,aaa} and B=
{ababab, aba, bab, bbb}, so that {ababab, aba, bab} C W(A, B).

Claim 3. Suppose that A is a base, A* is free, B is a base, and B* is free. Then
W(A, B) is the base of A*N B*.

Proof. From the proof of Claim 2, we have DC W(A, B) where D is the base of
A*N B*. Since W(A, ByCA*N B* D*=W(A, B)*=A*N B*so that it is sufficient
to show that W(A4, B) is a base.

Assume that W(A, B) is not a base. Let a,...a,, n=1, each g¢;e X, be a string in
W(A, B) with a factorization as the concatenation of two or more strings in
W(A, B), say a,...a,=w,... w, with k> 1 and w; € W(A, B) for eachi=1,..., k. For
each i=0,1,...,n, let r,.=(p,, q;) where ry,...,r, is a path-sequence in T(G,4, Gp)
witnessing a,...a,€ W(A, B). By construction of T(Gy4, Gg), ri#(S4, Sg) if i#0.
Since A is a base and A* is free, there is a unique path-sequence in C(A) witnessing
a,...a,€ A* and by construction this sequence is Su, Py, -.-»Pn—1,5°. Also, since B
is a base and B* is free, there is a unique path-sequence in C(B) witnessing
a,...a, € B* and by construction this sequence is Sg, g1, ---, G, _ 1, Sg- NOW each w; is
in A*N B* and so for each w; there is a path-sequence in C(A) witnessing w,;€ 4*
and a path-sequence in C(B) witnessing w;€ B*., From this collection of path-
sequences, we can construct a path-sequence pq,...,p, in C(A) witnessing
w,...w,€A* and a path-sequence ¢,...,q, in C(B) witnessing w,... w,€ B*,
where py=p,=s, and gy =g, =Sg. Since w,... w; is the concatenation of k strings
in A*N B*, there are k—1 integers j in {1,...,n—1} such that (p;, ;)= (s4, Sp)-
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Thus, the sequence (pg, Qo) -+-» (Pn—1:Gn_1), (54, Sg) is not equal to the sequence
(Pos Go)s -++» (Pn» ). Since a;...a,=w,...w,, this means that there are two or
more path-sequences in C(A) witnessing a,...a,€ A* or there are two or more
path-sequences in C(B) witnessing a;...a, € B*, a contradiction. [

We are concerned with the cardinality of W(A, B).

Claim 4. W(A, B) is infinite if and only if there are infinitely many paths from
(54, 8p) to (f4, f) in T(G 4, Gp) if and only if there is a path from (s, sg) to (f4, /)
in T(G,4, Gg) that contains a circuit if and only if there is a path from (54, Sg) to
(f4,/B) in T(G4, Gg) of length greater than m — 1 and less than 2m —1 where m is
the number of vertices in T(G4, Gp).

It is clear that the graph T(G4, Gg) can be constructed from M, and Mp in time
O(|4|"|68]), where |d4| (|dp]) is the size of the table specifying the transition func-
tion of M, (resp., My). Breadth-first search can be used to determine whether
W(A, B) is infinite and this can be done in time O(|d4|*:|d5|*). Hence, there is a
polynomial time algorithm that on input M, and My will determine whether
W(A, B) is infinite.

Notice that if A is a base, A*is free, B is a base, and B* is free, then a specifica-
tion by means of a finite labelled directed graph is provided for the base of A*MN B*
by pruning from T(G,, Gp) those vertices which do not lie on a path from (s4, sz)

to (f4,./5)-

3. Even’s algorithm and circular codes

Even’s original work [4,5] was to describe a graph-theoretic algorithm to deter-
mine whether a finite set A C2* is such that 4* is free on A, that is, A is a base
and A*is free. This was presented in the context of A being a variable length code
so that A is a base and A* is free if and only if that 4 is a uniquely decipherable
code. In the original work A was taken as a finite set; here we describe the construc-
tion for the extension to the case of A being a regular set such that eg¢ A.

Let M, be a deterministic finite-state acceptor recognizing regular set A, and let
G, and C(A) (=(K4U {s4}, Z, 04, 24,54, 5,4) be the graphs described in Section 2.
Construct the testing graph 7(A4) of A as follows:

(i) The set of vertices is (KU {s4} )X (K,U{s4HDU{I}, where I is not in
(KaU{s4 DX (K4U {54})-
(ii) The set of edges is defined inductively as follows:
if p,geK,U {s,} and for some aeZ, ae A (s4, p) N A" (s4, q), then there is
an edge from I to (p, q);
if p,gq,r,seK,U{s,}, there is a path from 7 to (p, q), and for some ae2,
ael?(p,r)NA1(q, s), then there is an edge from (p, q) to (1, s).
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Then A is a base and A* is free if and only if there is no pe K, such that there
exist a path in T(A) from I to (p,s,) and a path in T(A) from (p, s4) to (4, 54).

By generating the pairs (p, s4), p #54, that are accessible from 7 and then deter-
mining whether (s4, s4) is accessible from such a pair, one can determine whether
A* is free. We summarize in the following way.

Theorem 2. Consider the following problem:

INSTANCE: A deterministic finite-state acceptor with n states recognizing a
regular set A such that A is a base.

QUESTION: Is A* free?
There is an algorithm that will solve this problem in time at most o(nh.

Now we consider an application of these techniques to the question of whether
a uniquely decipherable code is circular.

A set ACX*is a circular code if A is uniquely decipherable and for all choices
of X153 Xpy Vis--rry Ym€A and u, veZ* v#e, if UX...xu=Y,... Y, and x|, =uv,
then u=e.

We will describe a polynomial-time algorithm that on input a deterministic finite-
state acceptor M, recognizing regular set A will determine whether A is a circular
code. From the last result we can assume that it is already known that A is uniquely
decipherable.

Let C(A)=(K,4U {54}, 2, 0%, 4", 5,4,5,) be the graph described in Section 2. For
pekK,, let C,(A) be the graph (K, U {s,}, 2, 64,24, p, p). Let T, be the graph
T(C(A), C,(A)) as described in Section 2.

Now A is a circular code if and only if for every pe K, there is no nonempty
path from (s4, p) to (s4, p& in T,

This yields the following result.

Theorem 3. Consider the following problem:

INSTANCE: A deterministic finite-state acceptor with n states recognizing a
regular set A such that A is a base and A* is free.

QUESTION: Is A a circular code?
There is an algorithm that will solve this problem in time at most O(n°).

The bound of O(n*) results from the fact that T, has n? states so determining
whether 7, has no path from (s, p) to (s4, p) requires time at most O(n*). There
are n states and 7, must be checked for each choice of p.
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