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SUMMARY

In budding yeast, over 60 proteins functioning in at
least five modules are recruited to endocytic sites
with predictable order and timing. However, how
sites of clathrin-mediated endocytosis are initiated
and stabilized is not well understood. Here, the
casein kinase 1 (CK1) Hrr25 is shown to be an endo-
cytic protein and to be among the earliest proteins to
appear at endocytic sites. Hrr25 absence or overex-
pression decreases or increases the rate of endo-
cytic site initiation, respectively. Ede1, an early
endocytic Eps15-like protein important for endocytic
initiation, is an Hrr25 target and is required for Hrr25
recruitment to endocytic sites. Hrr25 phosphoryla-
tion of Ede1 is required for Hrr25-Ede1 interaction
and promotes efficient initiation of endocytic sites.
These observations indicate that Hrr25 kinase and
Ede1 cooperate to initiate and stabilize endocytic
sites. Analysis of the mammalian homologs CK1d/ε
suggests a conserved role for these protein kinases
in endocytic site initiation and stabilization.

INTRODUCTION

Clathrin-mediated endocytosis (CME) plays critical roles in a

cell’s response to its environment by controlling plasma mem-

brane protein and lipid composition and by mediating nutrient

uptake. In budding yeast, over 60 proteins have been shown to

appear and disappear at endocytic sites in a highly orchestrated

manner (Kaksonen et al., 2005), suggesting that CME is a highly

regulated process. Similarly, in mammalian cells, over 40 pro-

teins are recruited to sites of CME in a regular sequence (Taylor

et al., 2011).

Although the later stages of CME are well described in

budding yeast and mammalian cells, the processes by which

CME sites are initiated and stabilized are still being worked

out. Recent studies suggested a role for the adaptor protein

AP2 and for FCHo1/2 in initiating and/or stabilizing early endo-

cytic structures (Henne et al., 2010; Umasankar et al., 2012). In

budding yeast, AP2 and the FCHo1/2 homolog Syp1 are among

the first proteins to arrive at endocytic sites (Carroll et al., 2011),

but neither is important for initiation of CME. However, the Syp1-

binding protein Ede1 plays a critical role in early endocytic
Developm
events (Carroll et al., 2011). Ede1 is a yeast homolog of mamma-

lian Eps15, which binds to FCHo1 (Reider et al., 2009) and the

FCHo1/2-like protein SGIP1-a (Uezu et al., 2007). Ede1 is a

highly phosphorylated protein (Sadowski et al., 2013; Stark

et al., 2010). However, the role of Ede1 phosphorylation and

the identity of the biologically relevant kinase(s) remain to be

determined.

Proteomics studies implicated the protein kinase Hrr25, a

member of a highly conserved CK1 subfamily, in physical inter-

actions with several endocytic proteins including Ede1 (Breitk-

reutz et al., 2010; Ho et al., 2002), clathrin light chain (Ptacek

et al., 2005), and Abp1 (Ho et al., 2002). Because many yeast en-

docytic proteins are phosphorylated (PhosphoGRID, www.

phosphogrid.org), finding a CK1 family member at endocytic

sites could potentially provide new insights into endocytic

regulation.

Among the six human CK1 family members, CK1d and CK1ε

are the most similar to Hrr25 based on sequence similarity (Pet-

ronczki et al., 2006), and both isoforms rescue the growth de-

fects of an hrr25 null mutant (Fish et al., 1995). A previous

genome-wide RNA interference screen suggested a role of

CK1d in CME (Collinet et al., 2010). However, how CK1d affects

CME remained unexplored.

RESULTS

Yeast CK1 Hrr25 Is an Early Endocytic Protein
To test whether Hrr25 plays a role in CME, we first determined

whether this protein appears at endocytic sites in living yeast

cells. Hrr25-3GFP expressed from the native HRR25 genomic

locus had no observable growth defects (Figure S1A available

online). This protein was detected at spindle pole bodies (yeast

centrosomes) and the bud neck, consistent with previous re-

ports (Kafadar et al., 2003; Lusk et al., 2007), and at cortical

spots similar to those observed for GFP-tagged endocytic

proteins (Figure 1A). Simultaneous two-color imaging of Hrr25-

3GFP and Sla1-mCherry, an endocytic coat protein, demon-

strated that Hrr25 is present at endocytic sites and arrives early

relative to Sla1 (Figure 1B). Moreover, Hrr25 appears at the

plasmamembrane for variable times, but in contrast to coat pro-

teins, does not move into the cell (Figure 1C). This behavior is a

hallmark of the early endocytic proteins Ede1 and Syp1 (Stim-

pson et al., 2009), which are closely related to mammalian early

endocytic proteins Eps15 (Gagny et al., 2000) and FCHo1/2

(Reider et al., 2009; Stimpson et al., 2009), respectively. We

therefore compared Hrr25-3GFP and Ede1-GFP lifetimes on
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Figure 1. Yeast CK1 Hrr25 Is an Early Arriving Endocytic Protein

(A) Maximum Z projection of Hrr25-3GFP. Red arrows point to spindle pole bodies. Scale bars represent 2 mm.

(B) Simultaneous two-color imaging of the medial focal planes of cells expressing Hrr25-3GFP and Sla1-mCherry. The time series shows an individual patch.

Frame interval is 2 s.

(C) Representative kymographs of Hrr25-3GFP illustrate variable lifetimes of Hrr25 on the plasma membrane. Images were acquired at 2 s intervals.

(D) Average lifetimes of Ede1-GFP and Hrr25-3GFP ± SD. Images were acquired at the medial focal plane of cells for 240 s with 2 s intervals. Ede1-GFP lifetime:

n = 202 from ten cells; Hrr25-3GFP lifetime: n = 248 from ten cells.

(E) Distribution of Ede1-GFP and Hrr25-3GFP lifetimes. The same data used in (C) are presented as percentages.

(F) Simultaneous two-color imaging of medial focal planes of cells expressing Hrr25-3GFP or Syp1-GFP together with Ede1-mCherry at 2 s intervals with 2 s

exposures. Representative kymographs are presented.

(legend continued on next page)
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the plasma membrane. Average lifetimes of Hrr25-3GFP

patches are shorter than those of Ede1-GFP (36.5 versus

52.7 s, Figure 1D). Like Ede1-GFP, lifetimes of Hrr25-3GFP are

highly variable, ranging from less than 30 s to greater than

2 min (Figure 1E). Consistent with arrival at the earliest stages

of CME, Hrr25 showed a high frequency of colocalization with

Ede1 (66%), similar to Ede1’s binding partner Syp1 (74%) (Fig-

ures 1F and 1G). We further compared arrival times of Hrr25 to

those of Ede1. Under our imaging conditions, we observed

that either Hrr25 or Ede1 can appear on the plasma membrane

first, with the two proteins appearing to arrive simultaneously

20% of the time (Figure 1H).

Loss ofHrr25 or Its KinaseActivity Results in Initiation of
Fewer Endocytic Sites
To test whether Hrr25 functions in endocytosis, we first moni-

tored endocytic uptake of the lipophilic dye FM4-64 in various

hrr25 mutant backgrounds. Relative to wild-type cells (73.4%

FM4-64 uptake), sla2D (17.6%) and ede1D (68.6%) mutants

had severe and mild uptake defects, respectively, whereas an

hrr25 null mutant had intermediate defects (31.6%) (Figures 2A

and 2B). The kinase-dead mutant (hrr25(K38A)), despite being

integrated at the native genomic locus, expressed its protein

product at higher levels compared to the isogenic wild-type

HRR25 (Figure 2C), suggesting that Hrr25 phosphorylation pro-

motes its turnover. However, like the hrr25 null mutant,

hrr25(K38A) failed to internalize FM4-64 efficiently (36.3% up-

take compared to 70.3% for the wild-type strain) (Figures 2A

and 2B). Next, we monitored kinetics of the endocytic machin-

ery. Simultaneous imaging of Sla1-GFP, marking the endocytic

coat module, and Abp1-RFP, marking the actin module, re-

vealed that endocytic protein lifetimes in the hrr25 null mutant

were slightly increased (24.6 versus 21.4 s for Sla1-GFP life-

times; 17.3 versus 11.5 s for Abp1-RFP lifetimes), but were not

altered much in the kinase-dead mutant (21.1 versus 20.8 s for

Sla1-GFP lifetimes; 12.0 versus 11.9 s for Abp1-RFP lifetimes).

Additionally, both the Sla1 and Abp1 lifetimes became more

variable in the hrr25 mutants (Figures 2D and 2E). Because the

relatively small changes in endocytic kinetics seemed unlikely

to account for the greatly reduced FM4-64 uptake in hrr25 mu-

tants, we next examined the number of endocytic sites formed.

As shown in Figures 2F and 2G, both hrr25 null and kinase-

dead mutants showed a pronounced reduction in the number

of endocytic sites present on surfaces of yeast cells. Approxi-

mately 4.2 Sla1-GFP patches are found on 10 mm2 of the wild-

type yeast cell surface at a given time. Loss of Hrr25 lowered

the Sla1-GFP density to 57% of the wild-type density. Loss of

Hrr25 kinase activity caused a similar decrease in Sla1-GFP

density.

Hrr25 and Ede1 Act Synergistically in Endocytic Site
Initiation
Hrr25 is composed of a highly conserved kinase domain at its

amino-terminus, a central domain, and a carboxyl-terminal pro-
(G) Percentages of overlapping patches during 4 min interval (n = 373 from 12 cell

Syp1-GFP and Ede1-mCherry).

(H) Arrival times for Hrr25-3GFP relative to Ede1-mCherry are presented in a des

event. Negative or positive values represent Hrr25-3GFP arrival earlier or later th

Developm
line/glutamine (P/Q)-rich domain (Figure S1B). To test for the

functions of the nonkinase regions of Hrr25, the P/Q-rich and

the central domain were deleted and the resulting mutants

tested for phenotypes. Compared to wild-type cells, mutants

lacking the Hrr25 P/Q-rich domain (hrr25DPQ) showed slight de-

fects in FM4-64 internalization, Sla1-GFP lifetime, and endocytic

site initiation, whereas mutants lacking both the central and P/Q-

rich domains (hrr25DCT) showed pronounced defects (Figures

S1C–S1G). These defects may be due to the fact that hrr25DCT

has reduced protein levels (Figure S1B). Interestingly, although

hrr25DPQ exhibits only subtle defects, we observed a synthetic

genetic effect when we combined hrr25DPQ with an ede1 null

allele. Neither of the single mutants exhibits detectable growth

defects at various temperatures. However, the double mutant

(hrr25DPQ ede1D) shows slow or no growth at 37�Cor 39�C (Fig-

ure S1H). This genetic interaction prompted us to examine

further the functional relationship between Hrr25 and Ede1. In

a null mutant of the early endocytic protein Ede1, Sla1 and

Abp1 were reported to have shorter lifetimes and a decrease in

Sla1 patch density on the cell surface (Kaksonen et al., 2005;

Stimpson et al., 2009). Combining various hrr25 mutants with

an ede1 null allele did not greatly exacerbate Sla1 and Abp1 life-

time defects (Figures 2D and 2E). However, the double mutants

showed a dramatic synergy in loss of endocytic sites (Figures 2F

and 2G). The hrr25D and ede1D single mutants have patch den-

sities that are 56% and 76% of the wild-type patch density,

respectively, whereas the hrr25D ede1D double mutant exhibits

a patch density that is 23% of the wild-type density. The above

results are consistent with a role for Hrr25 in promoting endo-

cytic site initiation and/or stabilizing endocytic sites.

Hrr25 Overexpression Increases the Number of
Endocytic Sites
We next set out to test whether overexpression of Hrr25 affects

initiation of endocytic sites. We used a previously developed

system to overexpress Hrr25 without changes in nutrients or

temperature (McIsaac et al., 2011). Transcription of a GAL pro-

moter-driven Hrr25-Myc was activated upon addition of nano-

molar b-estradiol. Hrr25 levels showed an approximately 8-fold

increase 4 hr after b-estradiol addition (Figure 2H). The elevated

Hrr25 levels had little effect on Sla1-GFP or Abp1-RFP lifetimes

(Figure 2I) but increased the number of endocytic sites by

approximately 31% (Figure 2J).

Hrr25 Phosphorylates Multiple Endocytic Proteins
To better understand howHrr25 regulates the endocyticmachin-

ery, we purified wild-type and kinase-dead Hrr25 from yeast and

tested their ability to phosphorylate 16 purified endocytic pro-

teins or protein complexes. Similar to what was previously

described for Hrr25 wild-type and kinase-dead mutant purified

from Escherichia coli (Corbett and Harrison, 2012), we observed

that wild-type kinasemigratedmore slowly than the kinase-dead

mutant on SDS-PAGE, likely due to autophosphorylation (Fig-

ure S2A). Hrr25 purified from yeast readily phosphorylated
s expressing Hrr25-3GFP and Ede1-mCherry; n = 636 from 19 cells expressing

cending order (n = 110 from 23 cells). Each bar represents a single endocytic

an Ede1-mCherry, respectively.
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Figure 2. Loss of Hrr25 or Its Kinase Activity Results in Formation of Fewer Endocytic Sites, whereas Hrr25 Overexpression Increases the
Number of Endocytic Sites Formed

(A) Wild-type and mutant cells were incubated with FM4-64 for 5 min and chased with fresh media for 30 min at room temperature. HRR25 is the isogenic wild-

type strain for hrr25(K38A).

(B) Percentages for internalized FM4-64 fluorescence intensity relative to whole cell FM4-64 fluorescence intensity are presented. Twenty cells were scored for

each strain and mean values are presented as black bars.

(C) Cell extracts prepared from the indicated strains were analyzed by immunoblotting.

(D) Simultaneous two-color imaging of medial focal planes of wild-type and mutant cells expressing Sla1-GFP and Abp1-RFP was performed continuously for

90 s. Representative kymographs are presented.

(E) Lifetimes of Sla1-GFP and Abp1-RFP in wild-type and mutant cells. More than 300 Sla1-GFP or Abp1-RFP patches were tracked. Mean values and SDs

(boxes) are presented. Whiskers indicate the minimum and maximum duration times.

(F) Maximum Z projection of Sla1-GFP patches in wild-type and mutant cells.

(G) Quantification of Sla1-GFP patch numbers in wild-type and mutant cells. Sla1-GFP patches in unbudded or large-budded cells were scored using Icy

software. The area used to calculate the patch density was the area of a sphere of the same radius as the circle on which all of the patches of the 3D cell were

projected for the maximum intensity. Averages (black bars) of more than 50 cells for each strain are presented.

(H) Cells harboring eitherGEV (control) orGEVPGAL-HRR25-MYC (Hrr25 overexpression) were grown to log phase, inducedwith 50 nM b-estradiol, and harvested

at the indicated time points. Whole cell extracts were subjected to immunoblotting.

(legend continued on next page)
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casein, slightly phosphorylated histone H3, but did not phos-

phorylate histone H1 (Figure S2B). We found that Hrr25 phos-

phorylated itself, Ede1, Syp1, Sla2, Las17, Bbc1, and Aim21,

representing three different endocytic modules (Figures S2C

and S2D). Because of Hrr25’s Ede1-dependent early arrival at

endocytic sites and the similar phenotypes of hrr25 and ede1

mutants, we decided to focus our current studies on Ede1

phosphorylation.

Ede1 Recruits Hrr25 to Endocytic Sites
Our previous studies established that Ede1 plays a crucial role in

the recruitment and/or stabilization of several other early endo-

cytic proteins (Carroll et al., 2011). We found that Hrr25 recruit-

ment to endocytic sites completely depends onEde1 (Figure 3A).

Importantly, Ede1 absence did not affect Hrr25 protein levels

(Figure S3A). Ede1 is a modular protein that is composed of,

from the amino- to the carboxyl-terminus, three Eps15 homology

domains, a proline-rich region (PP), a coiled-coil (CC) domain,

and a ubiquitin-associated domain (UBA) (Aguilar et al., 2003).

Using deletion analysis, we identified the Ede1 carboxyl-terminal

region between the CC domain and ubiquitin-associated domain

as being necessary for Hrr25 recruitment (Figures 3B and S3B).

The same regionwas previously shown to be essential for Ede1’s

interaction with Syp1 (Reider et al., 2009). Consistent with the

previously reported physical association between Ede1 and

Hrr25 (Breitkreutz et al., 2010; Ho et al., 2002) and their similar

dynamics at endocytic sites, we found that Hrr25 could pull

down Ede1 from whole cell extracts (Figure 3C).

Hrr25 Phosphorylation of Ede1 Is Required for Efficient
Initiation/Stabilization of Endocytic Sites
To better understand how Hrr25 kinase activity affects Ede1

function, we first determined whether loss of kinase activity

affects Hrr25 localization. We tagged Hrr25 kinase-dead mutant

with three GFPs. Similar to the untagged kinase-dead Hrr25,

Hrr25(K38A)-3GFP was expressed at elevated protein levels

(Figure S3D). Interestingly, the Hrr25 kinase-dead mutant did

not localize at spindle pole bodies or at endocytic sites, and

had a diffuse distribution throughout the cell (Figure S3C).

Furthermore, we directly compared Ede1-GFP by fluorescence

microscopy in wild-type and kinase-deadmutant cells and found

that loss of Hrr25 kinase activity resulted in an �50% reduction

of Ede1 from endocytic sites (Figures S3E and S3F). These re-

sults support a model in which Hrr25 catalytic activity is required

for its own recruitment and for robust Ede1 recruitment to endo-

cytic sites.

Ede1 is a highly phosphorylated protein. A total of 71 in vivo

phosphorylation sites have been identified on Ede1 to date

(PhosphoGRID). Our kinase assays established that Hrr25

phosphorylates Ede1 in vitro (Figure S2C). We asked whether

Hrr25 phosphorylates Ede1 in vivo. Because changes in gel

mobility are hard to detect on large proteins like Ede1

(�151 kDa), we used a truncated mutant Ede1DPPCC, in which

Ede1’s proline-rich region and coiled-coil domain were deleted.
(I) Control cells and Hrr25 overexpression cells were induced with 50 nM of b-es

above in (E), n = 500.

(J) Sla1-GFP patches were scored and calculations performed as described in (G)

as black bars. ***p < 0.0001. Scale bars represent 2 mm.

Developm
Ede1DPPCC migrates as a doublet on SDS-PAGE. Upon treat-

ment of alkaline phosphatase, the slower migrating band of

Ede1DPPCCcollapsed into the fastermigrating band (Figure 3D),

indicating that the slower migrating band is a phosphorylated

form of Ede1DPPCC. We found that loss of Hrr25 kinase activity

results a similar but somewhat less complete migration change

(Figure 3D), providing evidence that Hrr25 phosphorylates

Ede1 in vivo. The lack of a complete collapse of Ede1DPPCC

into the faster migrating band suggests that Ede1 is likely to be

phosphorylated by kinases in addition to Hrr25 in vivo. Indeed,

Ede1 has previously been reported to be phosphorylated by

Ark1 and Prk1 (Mok et al., 2010), two endocytic protein kinases

that regulate organization and function of endocytic actin

patches (Cope et al., 1999; Zeng and Cai, 1999).

Because Hrr25 phosphorylates multiple endocytic proteins, to

understand how Hrr25 specifically affects Ede1 function, we set

out to map Hrr25 phosphorylation sites on Ede1. We expressed

and purified three Ede1 fragments (1–400, 375–918, 900–1381

amino acids) from bacteria and subjected them to Hrr25 phos-

phorylation (Figure 3E). Interestingly, Hrr25 only phosphorylated

the carboxyl-terminal region between residues 900 and 1381,

the same region of Ede1 important for Hrr25 recruitment to endo-

cytic sites. The Ede1 carboxyl-terminus contains 40 phosphory-

lated residues according to PhosphoGRID, among which we

identified 22 with mass spectrometry as being phosphorylated

by Hrr25 in vitro (Figure S3G). Mutation of these 22 overlapping

phosphorylation sites had no obvious effect on Ede1 protein

levels or lifetime on the plasma membrane (Figures 3F and

3G). In contrast, Ede1(22A) and Ede1(22D) failed to recruit

Hrr25 to endocytic sites (Figure 3H), indicating that these phos-

phorylation sites are critical to Ede1-Hrr25 interaction. We

further examined how endocytosis was affected in these

ede1 phospho-mutants. Compared to wild-type EDE1 cells,

ede1(22A) and ede1(22D) cells exhibited similar Sla1 lifetimes

(Figure 3I). However, Sla1 patch density on the cell surface

was reduced by 25% in ede1(22A) cells and by 15% in

ede1(22D) cells. ede1(22D) does not mimic the wild-type,

possibly because aspartate does not always mimic phosphate

groups faithfully (Dephoure et al., 2013), and likely because

dynamic phosphorylation and dephosphorylation may be impor-

tant for normal function. Taken together, the above results pro-

vide evidence that Hrr25 phosphorylation of the Ede1 carboxyl

terminus promotes initiation and/or stabilization of an Hrr25/

Ede1 endocytic initiation complex.

Hrr25Mammalian Homologs, CK1d and 1ε, Are Required
for Efficient Initiation of Clathrin-Mediated Endocytosis
If CK1 family members have a conserved role in endocytosis,

they should also appear and function at sites of CME in human

cells. We looked for colocalization of CK1d with clathrin-coated

structures (CCS) by transiently transfecting GFP-CK1d (Zyss

et al., 2011) and detected its association with 16.0% of the

CCS (>5000 CCS from 13 cells; Figure S4A). Similarly, we de-

tected by immunofluorescence endogenous CK1ε associated
tradiol for 4 hr and imaged for Sla1-GFP and Abp1-RFP lifetimes as described

. More than 80 cells for each strain were scored andmean values are presented
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Figure 3. Ede1 Phosphorylation by Hrr25 Is Required for Hrr25 Recruitment to Endocytic Sites

(A) Maximum intensity projections of Hrr25-3GFP in wild-type, ede1D, and syp1D cells.

(B) Maximum intensity projections of Hrr25-3GFP in the indicated ede1 truncation mutants.

(C) Hrr25-3GFP was immunoprecipitated using an anti-GFP antibody. Ede1-Myc was immunoblotted using an anti-Myc antibody.

(D) Anti-Ede1 immunoblots.Whole cell extract from the truncation mutant ede1DPPCC expressing wild-type Hrr25 (left two lanes) was treated with or without calf

intestinal phosphatase (CIP) for 1 hr at 30�C and then subjected to SDS-PAGE using normal acrylamide (top) or 10 mM Phos-tag acrylamide gels (bottom). Cells

expressing wild-type (WT) or kinase-dead (KD) Hrr25 and Ede1DPPCC were grown to log phase and subjected to SDS-PAGE as above (right two lanes).

(E) Four hundred nanograms of the indicated Ede1 fragments was incubated with 4 ng of Hrr25 or Hrr25(K38A) in the presence of [g32P]-ATP at room temperature

for 30 min. Phosphorylation was analyzed by autoradiography following SDS-PAGE.

(legend continued on next page)
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with 11.9% of AP2 punctae (>3000 CCS from ten cells; Fig-

ure S4B). These incidences of codetection are likely underesti-

mates of colocalization because low signal-to-noise of the

kinase made imaging challenging, and we could not image

both CK1 isoforms simultaneously. As a control, we evaluated

the chance of random colocalization by shifting the position of

the same image and found 4.6% colocalization. Previously, cla-

thrin was shown to appear at CCS in a short-lived (<20 s) and a

long-lived population (>20 s), proposed to represent abortive

and productive events, respectively (Grassart et al., 2014;

Loerke et al., 2009). We therefore monitored GFP-CK1d and cla-

thrin light chain-RFP simultaneously for 4 min and found that

GFP-CK1d was detected at 15.9% of short-lived CCS and at

32.7% of long-lived CCS (Figure 4B). Notably, CK1d arrives dur-

ing the first seconds in the appearance of both short-lived and

long-lived CCS (as well as stable CCS) (Figures 4A, 4C, and

4D). The above results suggest that CK1d functions in the early

stages of the CME pathway.

Consistent with a previous genome-wide RNA interference

screen (Collinet et al., 2010), we found that depletion of CK1d

(Figure S4C) led to an approximate 60% and 20% reduction in

epidermal growth factor (EGF) and transferrin uptake, respec-

tively (Figures 4E and S4E). Loss of CK1ε or concomitant deple-

tion of both kinases resulted in defects in EGF uptake of similar

magnitude. Therefore, these kinases are necessary for and likely

play redundant roles in efficient CME in mammalian cells. In

addition, we observed that depletion of the casein kinases

extended CCS lifetimes (Figures 4F, 4H, and S4F). Finally, we

tested whether CCS initiation is affected when CK1d and/or

CK1ε are depleted. When endocytic initiation was monitored

over a 4 min window in siRNA-treated cells, a significant reduc-

tion in initiation events was observed (Figures 4G and 4I). Deple-

tion of CK1d or CK1ε reduced the CME initiation rate by 18.4%or

27.8%, respectively. Together, the above results provide evi-

dence for functional conservation for CK1 family protein kinases

in stabilizing the CCS during early stages of CME in mammalian

cells and yeast.

DISCUSSION

Earlier studies suggested that CME is regulated at multiple

stages, including during initiation and stabilization of endocytic

sites (Loerke et al., 2009). Recently there has been much debate

about the nature of the earliest events in the CME pathway and

the identity of the key molecules involved (Cocucci et al., 2012;

Henne et al., 2010; Umasankar et al., 2012). The studies pre-

sented here identified a conserved function for protein phos-

phorylation, mediated by CK1 family members, in the regulation

of endocytic site initiation and stabilization. Our studies showed

that Hrr25 is an early component of the endocytic machinery.

Hrr25 recruitment to endocytic sites depends on Ede1 and on

Hrr25’s own kinase activity. Importantly, loss of Hrr25 or its
(F) Whole cell extracts of EDE1 and phospho-mutants were subjected immunob

(G) Cells expressing Ede1-GFP, Ede1(22A)-GFP and Ede1(22D)-GFPwere imaged

(H) Maximum Z projection of Hrr25-3GFP in ede1 phospho-mutant cells.

(I) Representative kymographs of Sla1-GFP of ede1 phospho-mutant cells.

(J) Sla1-GFP patch numbers for ede1 phospho mutants. More than 50 cells for ea

represent 2 mm.

Developm
kinase activity impairs endocytic site initiation, whereas Hrr25

overexpression increases the number of endocytic sites, indi-

cating that Hrr25 activity is limiting for endocytic site initiation

and/or stabilization.

Implication of a protein kinase in endocytic site initiation and

stabilization by a combination of loss- and gain-of-function ma-

nipulations, made identification of the relevant targets an impor-

tant goal. Several endocytic proteins were phosphorylated by

Hrr25 in vitro. An Hrr25 target that plays a key role in endocytic

site initiation should be one that arrives at endocytic sites early

and that is functionally important for early events. Ede1 meets

both of these criteria. Evidence presented here showed that

Ede1 is a cellular Hrr25 target. The combined loss of Ede1 and

Hrr25hadasynergistic effect, suggesting thatHrr25 regulatesen-

docytic site initiation and stabilization partly through Ede1 phos-

phorylationandpartly throughanEde1-independentmechanism.

Because all of the yeast proteins studied here are highly

conserved, it was expected that their functions would be

conserved as well. Indeed, we showed that the human Hrr25 ho-

mologs, CK1d/ε, are present at CME sites and are required for

efficient endocytic site initiation. Interestingly, we observed

that CK1 depletion reduces the rate of transferrin internalization

and the rate of CCS initiation by approximately 20%. Because

multiple factors with apparently redundant functions participate

in the early stages of endocytosis (Brach et al., 2014), it was ex-

pected that CK1 depletion might have only a modest effect on

CME. Because transferrin internalization is constitutive, our re-

sults suggest that the transferrin internalization defect is a direct

consequence of the reducedCME initiation rate. Surprisingly, we

observed that EGF internalization, which is induced, not consti-

tutive, is strikingly more sensitive to CK1 depletion compared to

transferrin (Figure S4D). This observation may reflect an addi-

tional CK1 role in the regulatory mechanism for EGF internaliza-

tion. Despite the higher complexity of CME in human cells

compared to yeast, our data provide evidence that CK1 plays

a universal role in endocytic site initiation and stabilization.

EXPERIMENTAL PROCEDURES

Yeast Strains and Plasmids

The yeast strains and plasmids used in this study are listed in the Supplemental

Experimental Procedures. Cells were grown in YPD plates or selectivemedium

at 25�C unless specified.

Mammalian Cell Culture and Transfection

SK-MEL-2 hCLTAEN-1, hDNM2EN-all (clone Ti13), and SKMEL-2 hCLTAEN-1

(clone Ti96) cell lines were maintained as described in Doyon et al., 2011.

Plasmid and siRNA transfections were performed as described in Grassart

et al., 2014. Lipofectamin2000 and LipofectaminRNAiMAX (Invitrogen) were

used following the manufacturer’s guidelines.

Live-Cell Imaging and Image Analysis

Live-cell imaging was performed as described in the Supplemental Experi-

mental Procedures. Patch lifetimes were analyzed using Imaris (Bitplane)
lot analysis using anti-Ede1 and anti-Pgk1 antibodies.

at medial focal planes at 2 s intervals. Representative kymographs are shown.

ch strain were scored and mean values are presented as black bars. Scale bars
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Figure 4. Hrr25 Mammalian Homologs CK1d/ε Are Required for Efficient De Novo Formation of Clathrin-Coated Structures

(A) GFP-CK1d and CLTA-RFP were observed simultaneously by TIRF microscopy for 240 s. A representative montage is shown.

(B) Percentages of CCS with GFP-CK1d are presented (n = 1028 tracks from 3 cells).

(C) Recruitment profile analysis for GFP-CK1d and CLTA-RFP for clathrin tracks < 20 s (short lived), 20–100 s (long lived), or > 240 s (stable) (n = 7, 32, and 16,

respectively).

(D) Arrival times of GFP-CK1d relative to CCS initiation were analyzed as in Figure 1H. Each bar represents a single endocytic event; purple bars represent short-

lived CCS events (<20 s) and orange bars represent long-lived CCS events (>20 S).

(E) Quantification of Alexa 647 coupled EGF uptake (2 ng/ml for 15 min) in SK-MEL-2 Ti96 cells knocked down for CK1d and/or CK1ε. The averages and SEMs

from 3 independent experiments (n > 50 cells) are presented as percentages of control.

(F) Representative kymographs of the lifetimes of CLTA-RFP and DNM2-GFP in SK-MEL-2 Ti13 cells knocked down for CK1d and/or CK1ε.

(G) De novo CCS formation at the plasma membrane was observed by TIRF microscopy. CLTA-RFP image captured in the first frame (t0) is shown in blue.

Additional CCS formed during the next 240 s (t2 to t240) is shown in yellow.

(H) Measurement of CLTA-RFP lifetimes in CK1d and/or CK1ε depleted cells (n > 2400 from ten cells). Mean values and SEM are presented.

(I) Quantification of CCS initiation rates of individual cells. Mean values and SEM are presented as bars in black (nR 10 cells). *p < 0.05; **p < 0.005. Scale bars

represent 5 mm.
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software. For yeast cell images, individual cells were analyzed using the spot

detector module with an estimated spot size 300 nm. For mammalian cell im-

ages, clathrin or dynamin spots were analyzed using Imaris as described in

Doyon et al., 2011. To analyze Sla1-GFP patch numbers, a maximum intensity

of the Z projection for Sla1-GFP was analyzed using Icy software (de Chau-

mont et al., 2012) and confirmed by a visual inspection.

In Vitro Kinase Assays and Identification of Ede1 Phosphorylation

Sites

Hrr25 and Hrr25(K38A) were purified as described in the Supplemental Exper-

imental Procedures. Both substrates and kinases were subjected to SDS-

PAGE along with BSA standards and stained with GelCode Blue (Thermo

Scientific). The protein concentrations were determined by measuring the

intensities of the protein bands using an Odyssey Imaging System (LI-COR

Biosciences). In vitro phosphorylation was performed as previously described

(Peng and Weisman, 2008).

His-tagged Ede1C (63; 900–1381 amino acids) was overexpressed in E. coli

and purified using Ni-NTA agarose beads (QIAGEN) following the manufac-

turer’s manual, and 400 mg of purified proteins was subjected to phosphoryla-

tion byHrr25. Phosphorylated residues of Ede1C (900–1381 amino acids) were

identified with tandem mass spectrometry analysis as described elsewhere

(Peng et al., 2011).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.devcel.2014.11.014.
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