TREATMENT SATISFACTION INSTRUMENTS FOR DIFFERENT PURPOSES DURING A PRODUCT’S LIFECYCLE—KEEPING THE END IN MIND

Robi J1, Rogażewska A2, Taylor P3, Plonienko A1
1Mapit Values Ltd, Bollington, Cheshire, UK; 2Mapit Values, Lyon, France; 3 Bayer Schering Pharma AG, Berlin, Germany

OBJECTIVES: There are three main parts during a product’s lifecycle when satisfac-

tion instruments are particularly useful. These are to aid: 1) getting the product to the market; 2) getting the market to the product; and 3) demonstrating value for health care practitioners during daily clinical practice. This study investigates whether the development and implementation of treatment satisfaction instruments during a prod-

cut’s lifecycle are informed by their purpose. METHODS: A literature review was perfor-

med between 2000 and 2010 using electronic databases (PUBMED, PsyCINFO, and EMBASE) and keywords such as “satisfaction” and “medication” or “drug” and “questionnaire.” Relevant articles were reviewed in detail to extract information regarding the satisfaction instrument used, its development and validation, and when the instrument was used during a product’s lifecycle. Additional information was collated including the type of studies the instruments were used in, clinical condition/indication, type of data generated (e.g. descriptive), and whether satisfaction was associated with other endpoints. RESULTS: Of 875 abstracts, 105 articles were further considered. The review indicated similarities regarding the development and validation of satisfaction instruments, such as using patient input to derive the items and exploring classical measurement properties specific to the target population. However, the specificities of the implementation of treatment satisfaction devices during the three main stages of a product’s lifecycle were rarely considered. CONCLUSIONS: The development and implementation of treatment satisfaction instruments during a product’s lifecycle rarely consider the purpose. By “keeping the end in mind,” data from treatment satisfaction instruments can help three key parts: 1) getting the product to the market; 2) getting evidence as part of an overall value proposition; 2) getting the market to the product; and 3) demonstrating the value to clinical prac-

tice. Furthermore, the development, validation and interpretation of scores from treatment satisfaction instruments should be sensitive to the intended purpose.

CONCEPTUAL PAPERS & RESEARCH ON METHODS – Statistical Methods

SYSTEMATIC REVIEW OF METHODS FOR META-ANALYSIS AND INDIRECT COMPARISON USED IN EXISTING SYSTEMATIC REVIEWS AND HTA REPORTS—RESULTS FROM THE FIRST PART OF EBAYESMET PROJECT

Walczak J1, Borowicki E2, Kowalski M1, Niedom M2, Zapalska A1
1Arcana Institute, Cracow, Poland; 2 CASPolska, Myslenice, Poland

OBJECTIVES: To collect information serve as a background for further activities of the eBayesMet project. To perform assessment of the frequency of use the particular statistical methods for meta-analyses and indirect comparisons in existing systematic reviews and HTA reports. METHODS: Database of Reviews of Effectiveness (DARE) was searched for relevant reviews published between January 2009 and March 2010. RESULTS: The majority of meta-analyses were prepared by using direct statistical methods (97%). The most popular explanation about fixed model was that fixed effect model used. There were 20 different methods used for performing estimation. We found that Bayesian methods was generally very rare. For indirect comparisons six methods were recognized and the most common type was MTC Bayesian Model (53%). Observational studies were not included in any identified analysis. In 40% of the review information indicating the need for additional studies was contained. CONCLUSIONS: Our systematic reviews demonstrates a wide range of approaches and methods for conducting meta-analyses and indirect comparison used in current prac-

tice. The most popular approach for indirect comparison is Bayesian included network and MTC (over 65%). However performed analysis indicated that Bayesian approach is still marginal methods for performing direct comparison based on head-to-head studies. Bayesian models have essential advantage: some additional data can be compared including the type of studies the instruments were used in, clinical condition/indication, type of data generated (e.g. descriptive), and whether satisfaction was associated with other endpoints. RESULTS: Of 875 abstracts, 105 articles were further considered. The review indicated similarities regarding the development and validation of satisfaction instruments, such as using patient input to derive the items and exploring classical measurement properties specific to the target population. However, the specificities of the implementation of treatment satisfaction devices during the three main stages of a product’s lifecycle were rarely considered. CONCLUSIONS: The development and implementation of treatment satisfaction instruments during a product’s lifecycle rarely consider the purpose. By “keeping the end in mind,” data from treatment satisfaction instruments can help three key parts: 1) getting the product to the market; 2) getting evidence as part of an overall value proposition; 2) getting the market to the product; and 3) demonstrating the value to clinical prac-

tice. Furthermore, the development, validation and interpretation of scores from treatment satisfaction instruments should be sensitive to the intended purpose.

IMPROVED SURVIVAL CURVE FITS TO SUMMARY DATA FOR ECONOMIC EVALUATIONS

Hoyle MV
University of Exeter, Exeter, UK

OBJECTIVES: Estimates of mean cost and quality-adjusted-life-years are central to the cost-effectiveness analysis of health technologies. They are often calculated from survival curve fits to overall survival and time on treatment, ideally by the method of maximum likelihood applied to individual patient data. However, such data is often not avail-

able. Instead, curves are commonly fit to summary Kaplan-Meier estimators, either by regression of the transformed estimator or by minimizing the sums of squares of