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1. INTRODUCTION 

Let (X, /I. 11) be a real or complex Banach space. Our objective is to study 
the linear integrodifferential equation 

f x(t) = Ax(t) + jt B(t - s) x(s) ds +f(t), t > 0, 
0 

(1) 
x(0) = x0. 

The basic approach used here is to treat (1) as a perturbation of another 
integrodifferential equation or of the equation 

f x(t) = Ax(t), t> 0, 

x(0) = x0. 
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We obtain a number of fundamental connections between the solutions of the 
corresponding Cauchy problems. In fact, our existence theorem is perhaps 
best viewed as a perturbation theorem, obtaining solutions of an integrodif- 
ferential equation if the kernel is an appropriate perturbation of a kernel of 
an integrodifferential equation for which the existence problem has been 
previously settled. This result is quite flexible and should allow wide 
application in conjunction with other existence theorems. We also obtain 
some representation formulas which will yield the semigroup generated by A 
as the limit of products involving the resolvent operator associated with (1). 
These results can then be used to obtain results concerning invariant sets. 
This is motivated by the study of positivity by Clement and Nohel [2] but 
should have a number of additional applications. 

Throughout this paper we assume that A and B(.) satisfy the following 
conditions: 

(Hl) A is a densely defined, closed linear operator in X. Hence D(A) 
endowed with the graph norm Ix] = ]]x]] + ]]Ax]l is a Banach space which 
will be denoted by (Y, I. I). 

W2) W); t > 0) is a family of linear operators on X so that B(t) is 
continuous when regarded as a linear map from (Y, I. ]) into (X, ]I. I]) for 
almost all t > 0. Moreover, there is a locally integrable function b: IR + + iR + 
so that B(t)y is measurable and IIB(t)yll < b(t) ]y] for all y E Y and t > 0. 

(H3) For any y E Y, the map t + B(t)y belongs to W~$(lR+,X) and 

II (I -&Y <W) 1.4. 

DEFINITION. Let x0 E Y. A solution x(.) of (1) is a function that belongs 
to C( [0, co), Y) n C’( [0, co), X) so that x(0) = x,, and (1) is satisfied for all 
t > 0. 

The definition above leads naturally to our definition of a resolvent 
operator: 

DEFINITION. A family {R(t); t > 0) of continuous linear operators on X 
is called a resolvent (to Eq. (l)), iff 

(R 1) R(0) = 1, the identity map on X, 
(R2) for all x E X, the map t + R(t)x is a continuous function 

[O, m)-Z 
(R3) for all t 2 0, R(t) is a continuous linear operator on Y, and for 

all y E Y, the map t + R(t)y belongs to C([O, co), Y) n C’([O, co),X) and 
satisfies 
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(R3,i) ~R(r)y=AR(l)y+jlB(f--s)R(s)yds 
0 

and 

(R3,ii) ~R(f)y=R(f)Ay+~~R(f--s)B(s)yds. 
0 

For a general discussion of resolvent operators and their most important 
properties we refer to [5-81. We note, however, that the resolvent is unique if 
it exists [5, 71. 

The basic result for the considerations to follow is 

PROPOSITION 1 (Integration by Parts Formula). Let T(.) be a family of 
linear operators so that (Rl)-(R3) hold. Let y E FV’*‘([u, b], Y) with 
O<u<b<oo. 

T(t) y’(t) dt and T’O)y(t) dt 

exist and 

j” T(t) y’(t) dt + jb T’(t) y(t) dt = T(b) y(b) - T(u)Y@). 
a LI 

ProoJ If y is piecewise linear, this formula follows by an easy 
computation. For general y E IV’([u, b], Y) we consider a sequence of 
piecewise linear functions y, that converge to y. Making use of Lebesgue’s 
dominated convergence theorem the result follows (cf. also [4]). 

Remark. We shall frequently use Proposition 1 with T(.) = R( .). 
We next present some basic properties of R(.): 

PROPOSITION 2. Assume that (Hl) and (H2) hold. Let R(.) be a family 
of continuous linear operators on X satisfying (Rl), (R2), (R3) and (R3,i). 
Then we have: 

(a) For any f E W:;J([O, 00),x) the function 

x(t)=IfR(t-s)f(s)ds 
0 

is a solution of (1) with x0 = 0. 

(b) If x = 0 is the unique solution of (1) with x0 = 0 and f = 0, then 
R(.) also satisfies (R3,ii), i.e., R(.) is a resolvent. 
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(c) Let R(.) be a resolvent of (1). If there is a function 
x E C([O, oo), Y) n C’([O, a),X), so that 

x’(t) = Ax(t) + j’B(t - s) x(s) ds +f(t), x(O) = x0 9 
0 

for some f E C( [0, co), X), then 

x(t) = R(t) x0 + jf R(t - s)f(s) ds. 
0 

Proof. First, let f E Wl;i([O, co), Y). It is easily seen that x(t) = 
liR(t-s)f(s)ds belongs to C([O, co), Y)nC’([O, co),X). Moreover, 

$x(t)=;j;R(t-s)f(s)ds 

=R(t)f(O)+ j’R(t-s)f’(s)ds. 
0 

By Proposition 1 the right-hand side equals 

R(t)f(O)+ j’R’(t-s)f(s)ds-R(t)f(O)+R(O)f(t) 
0 

=f(t)+j’aR(t-s)f(s)ds+j;j;-$t-s-u)R(u)f(s)duds 
0 

=f(t)+Ax(t)+j~B(u)j~-“R(t-u-s)f(s)dsdu 

= f (t) + Ax(t) + jf B(u) x(t - u) du. 
0 

This calculation also shows that 

Ax(t)=R(t)f(O)+ j;R(s)f’(t-s)ds-f(t) 

- ‘B(s)x(t-s)ds. I 0 

Consequently, there is a constant A4 independent off, so that 

IxWl GM If IlwLq,o,tl,x) + j; b(s) Ix(t - s)l ds. 



LINEAR INTEGRODIFFERENTIAL EQUATIONS 223 

By Gronwall’s inequality we infer that 

for rc(t) = A4 exp(lb b(s) ds). This in turn implies that for fixed T > 0 there is 
a constant N so that 

Taking now an arbitrary fE Wi3’([0, T], X), we approximate f by a 
sequence {f,) c W13’([0, T], Y). Using standard techniques, we obtain (a). 
In order to verify (b), we put for any x E Y 

y(t) =x + jlR(s)Axds +ffR(s - u)B(u)xdu ds. 
0 0 0 

Obviously, 

$ y(r) = R(t)Ax + if R(t - s) B(s) x ds. 
0 

Rewriting y as 

y(t)=x+(IR(I-s)~xds+I’R(r-s)jSB(u)xduds 
0 0 0 

and making use of part (a) we obtain 

f (v(t) - x) = A (v(t) - xl + I,; W - s)(Y@> - xl ds 

+Ax+j’B(r-s)xds 
0 

= Ay(t) + j; B(t - s) y(s) ds. 

Thus z(t) = y(t) - R(t) x satisfies 

$ z(t) = AZ(~) + j; B(t - s) z(s) ds, z(0) = 0. 
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Hence z(t) = 0, v(t) = R(t) x, and 

$R(r)x=R(t)Ax+jlR(ls)B(s)xds 
0 

as claimed. 
Regarding (c), cf. [7, Theorem 2.31. 
As a consequence we obtain 

COROLLARY. Let A be a closed, densely defined linear operator in X, 
B(t) = 0 for all t > 0, and R(t) be a resolvent for (1). Then R(t) is a 
Co-semigroup with infinitesimal generator A. 

Proof: By Proposition 2 the solutions of (1) are unique and hence the 
semigroup property holds. Applying the result of Phillips [lo, p. 1081 we 
obtain that R(.) is a Co-semigroup. 

Obviously, Y is invariant under R(.). Therefore the core theorem (see, for 
instance, [3, p. 81 or [9]) implies that the closure of A is the infinitesimal 
generator of R(.). As A is closed itself, it is the generator. 

Remark. We note that the function J”; R(t - s)f(s) ds has been 
previously shown to be a solution of (1) with x0 = 0 whenfE C([O, ao), Y) 
(cf. [5] or [7]). Obtaining Proposition 2(a) without any smoothness 
conditions on B(t) yields the desired parallel with results obtained for 
differential equations in a Banach space. 

2. AN EXISTENCE RESULT 

As already pointed out, we want to treat (1) as a perturbation problem. To 
do so, we consider a problem of the kind 

&x(t) = Ax(t) + i,’ B(t - s) x(s) ds + I,; C(t - s) x(s) ds 

for t~O;x(O)=x,. (2) 

To begin with, we integrate the variation of constants formula 
(Proposition 2) by parts. 

LEMMA 1. Suppose A satisfies (Hl), B(.) satisfies (H2) and C(.) 
satisfies (H2) and (H3). Let R(.) be a resolvent operator for (1) and S(.) be 
a resolvent operator for (2). Then 

S(t)x-R(t)x=j’R(r-s)Q(s)xds 
0 
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where the operators Q are defined by 

Q(s) x = j; C’(s - u) j; S(v) x dv du + C(0) j; S(u) x du. 

The operators Q(.) are uniformly bounded on bounded intervals, and for 
each x E X, Q(.) x belongs to C( [0, oo), X). 

ProoJ By Proposition 2(a) we conclude that the operators 

I(t) x = j’s(s) x ds 
0 

map X into Y, and for all x E X, I( .) x is a continuous function from [0, co) 
into (Y, ]. 1). Consequently, {I(t)} is a family of continuous linear operators 
from (X, (I. 11) into (Y, ] . ]) that are uniformly bounded for t in a bounded set. 
Hence 

Q(t) x = jr C’(t - s) I(s) x ds + C(0) I(t) x 
0 

is uniformly bounded for t in bounded intervals and continuous in t for fixed 
xEX.ForxEY,S(.)xEC([O,ao),Y)nC’([O,cr,),X)andS(.)xsatisfies 
(2) for t > 0. Applying Proposition 2(c) and Proposition 1, we obtain 

S(t)x-l?(t)x 

= j’R(t-s)jk(s-u)S(u)xduds 
0 0 

= j*R(t-s) [C(O)j’S(u)xdu+j’C’(s-u)j’S(v)xdvdu] ds. 
0 0 0 0 

By continuous extension, the claim holds for all x E X. 
We now state our main theorem which concerns the existence of resolvent 

operators. This result can be used in conjunction with the results of [6], [7] 
or [8] to obtain the existence of a resolvent operator when the kernel is not 
continuous in t. In particular, this theorem is a perturbation theorem to be 
used with other results. 

THEOREM 1. Let A be a closed, densely defined operator in X, and B(.) 
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and C(.) be families of linear operators satisfying (H2) and (H2), (H3), 
respectively. Then (1) admits a (unique) resolve& lfl(2) does. 

Proof. By symmetry it is sufficient to assume that (1) admits a resolvent 
R(.) and to show that (2) does too. We shall construct the resolvent for (2) 
by the variation of constants formula given in Lemma 1, using a contraction 
argument. We fix T > 0 and consider the function space SF= 
{x E C( [0, T], X): J”; x(s) ds E C( [0, T], Y)}. It is clear from Lemma 1 and 
Proposition 2(a) that for a resolvent S(.) of (2) the function x(t) = S(t) x, is 
a fixed point of the map E?: 

P-x)(t) = R(f) x0 

+ jt R(t - s) [C(O) j’x(u) du + i” C’(s - u) 1’ x(v) dv du] ds. 
0 0 0 0 

By hypothesis, there is a constant M > 0, so that 

for all x E X, y E Y, 0 < t < T. We norm X by 

lllxlll = sup max e-4M’ IIx(t)ll, e-4Mf 
‘-‘Gt<F 

1 j;x(s)dsI). 

Then we obtain for x, z E Z, 0 < t < T, putting g = x - z, 

e-4Mt 11 Bx(t) - Ez(t)ll 

=e-4Mt 111: [ I, R(t-s) C(0) ‘g(u)du+j;C’(s-u)/;g(v)dvdu] dsil 

< ev4‘+jt Ill glll + 1: Ns - u> e4Mu III glll du) ds 

b(s) ds du Ill gltl 

< 2M 
I 

’ e4M(s-t) ds 111 gIlI Q +lI(x - ~(11. 
0 
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Similarly, we show 

) (’ (dx(s) - dz(s)) ds / epMf 
0 

ru 
=e-4Mf /jo(/nlR(s-u) [C(0)Jo g(v)dv 

+ j; C’(u - u) j” g(w) dw du] du ds 1 
0 
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=e-4Mr lji (j~‘R(s)ds)[C(O)IYp(ti)dU 
0 

+j;C’(u-u)j;g(w)dwdu]dul 

by the same estimate. Consequently, ]]I gx - dz ]I] < f ]]]x - z I]], which 
implies that 6‘- admits a unique fixed point x in X. 

Defining S(t) x0 = x(t), it is obvious that S(t) x0 is a continuous function 
of t and S(0) x0 = x0, i.e., S(.) satisfies (Rl) and (R2). Given x0, x1 E X, we 
construct go, g, as above and obtain 

III~P) - 8,(0Ill = IIIR(.)(xo - XJII < z@‘* 11x0 - Xl II. 

Therefore, by standard contraction arguments, the fixed points S(.) x0, 
S( .) x, satisfy 

Consequently the operators S(.) are bounded. 
Now let x0 belong to Y. We consider the subspace XI = C([O, T], Y) of 

X, normed by 

lllxllll = sup e-4Mf IxWl, OGI<T 

with the same constant A4 as above. For x E Sr, Proposition 1 yields 

x(t) = R(t) x0 + jf R(t - s) j” C(s - u) x(u) du ds. 
0 0 
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Applying Proposition 1 once more, we have 

x(t) = R(t) x0 + j; (j;-‘R(u) du) [j; C’(s - u) x(u) du + C(0) x(s)] ds. 

The same arguments as above show that d is a contraction on Xi with 
respect to ]]I. ]]ll. Therefore the fixed point x = S(.) x0 lies in X1. 

Since J”; C(t - s)x(s) ds belongs to lV9’([0, T],X), we may apply 
Proposition 2(a) to the fixed point equation 

x(t) = R(t) x0 t j’R(t - s) j’ C(s - u) x(u) du ds 
0 0 

and obtain that x E C’([O, T],X) and 

x’(t) = Ax(t) + j’ B(t - s) x(s) ds + I,’ C(t - s) x(s) ds. 
0 

Consequently S(.) satisfies (R3,i). By Proposition 2(b) and the uniqueness of 
the fixed point of d (with x0 = 0) we also obtain (R3,ii). 

COROLLARY. Let A and B(.) satisfy (Hl), (H2) and (H3). Then (1) 
admits a resolvent operator iff A generates a Co-semigroup. 

ProoJ This is obtained from Theorem 1 by replacing C by B and B by 0. 

EXAMPLE. Consider the equation 

x’(t) = Ax(t) t jf (t - s)-I” Ax(s) ds, 
0 

x(0) = x0 
(3) 

where A generates an analytic semigroup and satisfies ](@I -A)-’ 1) < M/(,l /, 
I = re”, r > 0, ]B] < B,, where 8, is a constant greater than 3n/4. One can 
then show, using [7, Theorem 3.11, that (3) has an analytic resolvent 
operator. It follows now from Theorem 1 that 

x’(t) = Ax(t) t i’ [(t - s) - “’ t C(t)] Ax(s) ds, 
0 

x(0) = x0 

has a resolvent operator if C(t) E W~,$(lR+, IR). 

As an application we can clarify the connection between compactness 
properties of YZ( .) and R(.). 
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DEFINITION. A resolvent R(.) is called compact iff R(t) is a compact 
operator for all t > 0. 

THEOREM 2. Let A be the infinitesimal generator of a C,-semigroup and 
T(.) and B(.) satisfy (H2) and (H3). Then the resolvent R(.) for (1) is 
compact lfl T(.) is. 

Proof. Assume that R(.) is compact. By Lemma 1 we have 

T(t) x = R(t) x + I’R(t - s) Q(s) x ds 
0 

with 

Q(s)x=-/;B’(s-u)j;T(v,xdudu-B(O)j;T(u)xdu 

and 11 Q(s)11 <M for 0 < s < t. We choose K so that 11 R(s)11 < K for 0 < s < t. 

Then 

T(t)x =R(h) [R(t - h)x +jt-n R(t - h -s) Q(s)x ds] 
0 

- [R(h)R(t-h)x-R(t)x] 

t-h 
- 

I [R(h)R(t-h-s)-R(t-s)] Q(s)xds 
0 

+fhR(t-s)Q(s)xds. (4) 

In order to estimate these terms, we first show that the family 
{h - ‘(R(h) R(s) - R(s + h)): 0 < s < t, 0 ( h < t} is uniformly bounded. In 
fact, we have for all x E Y, 

h-‘IIR(t+h)x-R(h)R(t)xll 

=h-’ jhR(h-s$B(s+h-u)R(u)xduds 
II 0 0 II 

jhR(h-s) W,(s)xds/i 
0 

with 

w,(s)x=B(h)j;R(u)xds+/;B’(s+h-u)j;R(v)xdudu. 
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Therefore, h-i ))R(h)R(t) - R(t + h)]] <L with 

L = sup{ljR(s)ll II W,(s)(l: 0 <s < 6 0 < h < t). 

Now we see from (3) that 

Hence the compact operators R(h) r(t - h) converge to T(t) in the operator 
norm as h + 0, which implies that T(t) is compact. The converse is proved 
by the same technique. 

3. REPRESENTATION FORMULAS 

If T(r) is a C,-semigroup with infinitesimal generator A, then it is well 
known [lo] that we have the representation formula 

T(t) x = lim I - +A 
i ) 

-n 
x. n-cc 

The Generalized Lax Equivalence Theorem [ 1 ] provides a complete 
description of all such representations. We are going to show that the 
analogous result does not hold for resolvents. In fact we have: 

THEOREM 3. Suppose A generates a C,-semigroup T(t) and A and B(.) 
satisfy (Hl)--(H3). If R(t) is the resoluent for (l), then for all x E X and 
t>O 

the convergence being uniform on bounded intervals for fixed x. 

Proof. In order to apply the Generalized Lax Equivalence Theorem [I] 
we show that R(t/n)” is stable, i.e., the operators R(f/n)” are uniformly 
bounded for n E N and t in a bounded interval, and that for x E Y 

,“rn+ h-‘(R(h)x-x)=Ax. 
--t 

The latter is true by (R3). To obtain stability, we assume without loss of 
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generality that I] T(t)]] < eof for some w > 0 and all t > 0, by renorming if 
necessary [lo]. Let 

Q@)x=B(O) (IR(s)xds+ jiB’(f-S) j;R(u)xduds. 
0 

By Lemma 1 (applied to problem (1) instead of (2)) we have that the 
operators Q(t) are uniformly bounded for t in a bounded interval and that 

R(t) x = T(t) x + j’ T(t - s) Q(s) x ds. 
0 

Let a = supoGl~r IIQ(t)ll. Then for t E [0, T] we have 

IIR(t)xll= ))T(f)x+I]:~(t-s)e(~)xdsll 

llxll< (1 +at)Pll~ll 

Consequently, for t E [0, T] we have 

lJR (+)nxii < e(w+n)t IIxjl. 

An obvious consequence of this Theorem is a result which has bearing on 
a number of problems including positivity (cf. [2]). 

THEOREM 4. Suppose A generates a C,-semigroup T(t) and A and B(.) 
satisfy (HI)-(H3) and R(t) is the resolvent for (1). Let K be a closed subset 
of X such that R(t) K c K for all t > 0. Then we have also T(t) K c K for all 
t > 0. 

In passing we note that the converse is not true as is seen by the following 
simple example. 

Let X= R, A = 2, B(t) = -2 and K = I? +. Then R(t) = e’(cos t + sin t) 
which is clearly not positive for all t > 0. Nevertheless, T(t) = ezr is positive 
and T(t) K c K. However, it is clear that R(.) is positive if both T( .) and 
B(.) are positive. 

We note that the approximation formula for a semigroup T(t) is given in 
terms of 

(A -A)-’ = @) 
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where f denotes the Laplace transform of T: 

f(A) x = 6 e-“T(t) x dt. 

We are going to investigate a similar formula for 

p(l)= (AI-A -8(A))-’ 

which is formally R(A). 
We give next a condition which implies existence of p(A) on a half plane 

and the expected representation formula. 

LEMMA 2. Let A be the infinitesimal generator of a C,-semigroup T(.) 
satisfying ]] T(t)]] < eWt with some w > 1. For all t > 0 let B(t) be a bounded 
linear operator Y-+X so that for all x E Y, B(.) x is measurable and 
emyt IlBWxll <P 1x1 (Y > 0, P > 0). 

Then we have: 

(a) For each J > y and all x E Y, &I) x exists and satisfies 

ll&4xII GLval(n. - VI Ix/. 
(b) For each A > 2 max(y, LL), 8/Q, 

p(l)= (/II-A -L?(A))-’ 

exists and is a continuous linear operator on X with ]]&I)]] < l/(k - K), 
where K = w + S/3. 

Proof. Part (a) is an easy exercise in analysis. To prove (b), we first note 
that 

]]@I-A)-‘]I<@-w)-’ 

and for all x E X, 

[(AI-A)-‘xl< [A/@-w)+21 IIxII. 

Hence we obtain for A > 2 max(y, w, 8/3) 

Consequently, (I - &A)@1 -A)- ‘) is invertible, and putting 

p(A)= (&A)-‘[I-L@)(ill-A)-‘]-’ 
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we obtain 

233 

So it remains to show that p(A) is the inverse of (AI --A -B(A)). By 
definition of p, we see that p(A) x E Y for all x E X and 

(AZ--A -B(~))p(A)x 

= (AZ-A -B(A))(AZ-A)-‘[I-zl(;l)(lZZ--A)-y x 

= [I-B(l)(AZ-A)-‘][I-Ij(l)(AZ-A)-‘I-’x=x. 

Similarly for any x E Y, 

p(ll)@Z -A - B(1)) x 

= ()LI-A)-~[z-B(~)(~z-A)-‘]-‘[z-B(~)(~z-A)-’](~z-A)x 

= (AZ-A)-‘(AZ-A)x=x. 

THEOREM 5. With the above notation 

!~+II (+p (+))‘x=T(t)x firallt>O,xEK 

the convergence being uniform on bounded intervals. 

ProoJ We use the Generalized Lax Equivalence Theorem. Stability is 
obtained from the fact that 

i Kt be , 

whereas consistency follows from 

n211p(~)x-(~z--A)-‘xl(=A21Jp(fl)B(~)(~z-A)-1XII 

A2P 
G (A - lc)(d - y)(A - 0) lx” Oy 
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