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a b s t r a c t

Labbé and Sendova (2009) [9] consider a compound Poisson risk model with stochastic
premiums income. In this paper, we extend their model by assuming that there exists a
specific dependence structure among the claim sizes, interclaim times and premium sizes.
Assume that the distributions of the premium sizes and interclaim times are controlled
by the claim sizes. When the individual premium sizes are exponentially distributed,
the Laplace transforms and defective renewal equations for the (Gerber–Shiu) discounted
penalty functions are obtained. When the individual premium sizes have rational Laplace
transforms, we show that the Laplace transforms for the discounted penalty functions can
also be obtained.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The classical compound Poisson risk model, also known as the Cramér–Lundberg model, is one of the most popular risk
models in ruin theory. Many of its nice properties, especially the stationary and independent increments property, make the
study of ruin problemsmathematically treatable. The study of ruinmeasures, including the Gerber–Shiu discounted penalty
function, has been made by many actuarial researchers, see e.g. [7,8,11,12]. Note that two of the common assumptions in
the classical compound Poisson riskmodel are, respectively, the deterministic premium rate and the independence between
claim sizes and interclaim times. Although such assumptions indeed simplify the study, they have been proved to be very
restrictive in some applications.
Sometimes, the insurance companymay have lump sums of income. In order to describe the stochastic income, Boucherie

et al. [5] add a compound Poisson processwith positive jumps to the Cramér–Lundbergmodel. The (non-)ruin probability for
the riskmodelwith stochastic premiums are studied in [4] and [13]. Assuming that the premiumprocess is a Poisson process,
Bao [2] and Bao and Ye [3] study the Gerber–Shiu function in the compound Poisson riskmodel and the delayed renewal risk
model, respectively. Yang and Zhang [14] extend the compound Poisson risk model in [2] to a Sparre Andersen risk model
with generalized Erlang(n) interclaim time distribution. Note that in themodels studied in [2,3,14], the premium rate is unit
and the claim sizes have lattice distribution. Thus, although the operational time is continuous, the aforementioned models
can be treated as discrete time risk models. Labbe and Sendova [9] consider a risk model with stochastic premiums income,
where both the premium size distribution and the claim size distribution are non-lattice. In their paper, both a defective
renewal equation and an integral equation satisfied by the Gerber–Shiu function are derived and, in particular, the case
when the premiums have Erlang(n) distribution is investigated in more depth.
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For the study of risk models with stochastic premiums income, the independence assumption is very common in the
aforementioned papers. The drawback of the independence assumption is obvious since the claim sizes usually have an
effect on the premium sizes and interclaim times (see e.g. [1,15]). In this paper, we will extend the risk model studied in [9]
by adding a specific dependence structure among the claim sizes, interclaim times and premium sizes. The rest of this paper
is organized as follows. In Section 2, the risk model with stochastic premiums income is introduced and the dependence
structure is specified. In Section 3, we focus on the case when the premiums are exponentially distributed and, in this case,
we show that the Laplace transforms and the defective renewal equations for the Gerber–Shiu functions can be obtained.
In Section 4, we consider the case when the premium sizes have rational Laplace transforms, and we show that the Laplace
transforms for the discounted penalty functions can also be obtained. Finally, we conclude this paper in Section 5 bymaking
a summary of the main results and discussing possible extensions in the future work.

2. Model description and notation

We describe the surplus process of an insurance company by the following process

U(t) = u+
M(t)∑
i=1

Xi −
N(t)∑
i=1

Yi, (2.1)

where u ≥ 0 is the initial surplus,M(t) counting the number of individual premium income up to time t is a Poisson process
with intensity λ > 0, and {Xi} is a sequence of strictly positive random variables (r.v.’s) representing the individual premium
amounts.

∑N(t)
i=1 Yi is an aggregate claims process, whereN(t) is a counting process denoting the number of claims up to time

t with interclaim times {Vi}, and the claim amounts r.v.’s {Yi} are independent and identically distributed (i.i.d.) like a generic
variable Y with distribution function F(y) = Pr(Y ≤ y), density f , mean µ and Laplace transform f̂ (s) =

∫
∞

0 e
−syf (y)dy.

In this paper, we assume that {Xi} and N(t) are both dependent on the individual claim size as follows: If the claim size
Yi is larger than or equal to a threshold Bi, then the time until the next claim, Vi+1, is exponentially distributed with mean
1/λ1, and the individual premium sizes have distribution function F1(·), meanµ1 and Laplace transform f̂1(·), otherwise Vi+1
is exponentially distributed with mean 1/λ2 and the premium sizes have distribution function F2(·), mean µ2 and Laplace
transform f̂2(·). Assume that {Bi} independent of {Yi} is an i.i.d. sequence of r.v.’s distributed like a generic variable B with
distribution function B(·). Finally, assume that the time until the first claim occurs, V1, is exponentially distributed with
mean either 1/λ1 or 1/λ2, and assume that the premium size distribution function is Fi(·) during the first interclaim time if
V1 is exponentially distributed with mean 1/λi.
For n ∈ N+, let Tn =

∑n
i=1 Vi be the time when the nth claim occurs. The surplus immediately after the nth claim epoch

can be expressed as

Un := u+
M(Tn)∑
i=1

Xi −
n∑
i=1

Yi

= u+

(
M(T1)∑
i=1

Xi

)
+

(
M(T2)∑

i=M(T1)+1

Xi

)
+ · · · +

(
M(Tn)∑

i=M(Tn−1)+1

Xi

)
−

n∑
i=1

Yi

= u+
M(T1)∑
i=1

Xi −
n−1∑
k=1

(
Yk −

M(Tk+1)∑
i=M(Tk)+1

Xi

)
− Yn.

Since the k + 1th interclaim time Vk+1 and the premium sizes in between the kth and k + 1th claim epochs are only
controlled by the claim size Yk and the threshold Bk, then

Yk −
M(Tk+1)∑
i=M(Tk)+1

Xi, k = 1, 2, . . . ,

are i.i.d. and equal in distribution to
{
Y1 −

∑M(V2)
i=1 Xi

}
. Let Yk −

∑M(Vk+1)
i=1 Xi, k = 1, 2, . . ., be the i.i.d. copies of

{
Y1 −∑M(V2)

i=1 Xi
}
. Then we have

Un
D
= u+

M(V1)∑
i=1

Xi −
n−1∑
k=1

(
Yk −

M(Vk+1)∑
i=1

Xi

)
− Yn, (2.2)
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where D=means equality in distribution. By the law of large numbers, we have

lim
n→∞

Un
n
= lim
n→∞

u+
M(V1)∑
i=1
Xi − Yn

n
− lim
n→∞

n−1∑
k=1

(
Yk −

M(Vk+1)∑
i=1

Xi

)
n

= − lim
n→∞

n−1∑
k=1

(
Yk −

M(Vk+1)∑
i=1

Xi

)
n

= −E

[
Y1 −

M(V2)∑
i=1

Xi

]

= Pr(Y ≥ B)
λµ1

λ1
+ Pr(Y < B)

λµ2

λ2
− µ.

Thus, to guarantee thatUn has a positive drift, we assume throughout this paper that the following net profit condition holds

Pr(Y ≥ B)
λµ1

λ1
+ Pr(Y < B)

λµ2

λ2
− µ > 0. (2.3)

Define the ruin time by τ = inf{t,U(t) < 0} and∞ if U(t) ≥ 0 for all t ≥ 0. Letw(x1, x2) be a nonnegative measurable
function defined on [0,∞)× (0,∞). For δ ≥ 0, define

φ(u) = E[e−δτw(U(τ−), |U(τ )|)I(τ <∞)|U(0) = u] (2.4)

to be the Gerber–Shiu discounted penalty function, where I(A) is the indicator function of event A, U(τ−) and |U(τ )|
are, respectively, the surplus immediately before ruin and the deficit at ruin. Given that the first interclaim time is
exponentially distributed with mean 1/λi, the Gerber–Shiu function is denoted by φi(u). Assume that the regularity
condition limu→∞ φi(u) = 0 holds, which is not very restrictive since many ruin measures of interest such as the ruin
probability, the distributions of the surplus immediately before ruin and the deficit at ruin satisfy this condition. Throughout
this paper, we will use a hat ˆ to designate the Laplace transform of a function.

3. Gerber–Shiu analysis for exponential premium size distributions

In this section, we pay attention to the situation in which the premium sizes are exponentially distributed. Firstly, we
start from a system of integral equations which holds for general premium size distributions.
LetW1 be the time when the first premium income arrives. We have by the lack of memory of exponential distribution

φ1(u) =
∫
∞

0
Pr(W1 < V1,W1 ∈ dt)e−δt

∫
∞

0
φ1(u+ x)dF1(x)

+

∫
∞

0
Pr(V1 < W1, V1 ∈ dt)e−δt

[∫ u

0
φ1(u− y)Pr(y ≥ B)dF(y)

+

∫ u

0
φ2(u− y)Pr(y < B)dF(y)+

∫
∞

u
w(u, y− u)dF(y)

]
=

∫
∞

0
λe−(λ+λ1+δ)tdt

∫
∞

0
φ1(u+ x)dF1(x)

+

∫
∞

0
λ1e−(λ+λ1+δ)tdt

[∫ u

0
φ1(u− y)B(y)dF(y)+

∫ u

0
φ2(u− y)B(y)dF(y)+ ω(u)

]
=

λ

λ+ λ1 + δ

∫
∞

0
φ1(u+ x)dF1(x)+

λ1

λ+ λ1 + δ

[∫ u

0
φ1(u− y)B(y)dF(y)

+

∫ u

0
φ2(u− y)B(y)dF(y)+ ω(u)

]
, (3.1)

where ω(u) =
∫
∞

u w(u, y− u)dF(y). Similarly, we have

φ2(u) =
λ

λ+ λ2 + δ

∫
∞

0
φ2(u+ x)dF2(x)+

λ2

λ+ λ2 + δ

[∫ u

0
φ1(u− y)B(y)dF(y)

+

∫ u

0
φ2(u− y)B(y)dF(y)+ ω(u)

]
. (3.2)
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Let ξ1(y) = B(y)f (y), ξ2(y) = B(y)f (y), and for i = 1, 2, let Ai(u) =
∫
∞

0 φi(u+ x)dFi(x). Taking Laplace transforms in (3.1)
and (3.2) gives

φ̂1(s) =
λ

λ+ λ1 + δ
Â1(s)+

λ1

λ+ λ1 + δ

[
φ̂1(s)ξ̂1(s)+ φ̂2(s)ξ̂2(s)+ ω̂(s)

]
, (3.3)

φ̂2(s) =
λ

λ+ λ2 + δ
Â2(s)+

λ2

λ+ λ2 + δ

[
φ̂1(s)ξ̂1(s)+ φ̂2(s)ξ̂2(s)+ ω̂(s)

]
. (3.4)

In the rest of this section, we assume that the individual premium sizes are exponentially distributed with distribution
functions

F1(x) = 1− e
−
x
µ1 , F2(x) = 1− e

−
x
µ2 , (3.5)

for µ1, µ2 > 0.
For notational convenience of later use, we introduce the Dickson–Hipp operator Ts defined on a real-valued function as

follows

Tsh(x) =
∫
∞

x
e−s(y−x)h(y)dy, x ≥ 0,

where s is a nonnegative real number (or a complex number with nonnegative real part) such that above integral is
convergent. It is easy to see that the Laplace transform of h can be expressed as Tsh(0). The operator Ts is commutative,
i.e. TsTr = TrTs, and furthermore

TsTrh(x) =
Tsh(x)− Trh(x)

r − s
, r 6= s.

For more properties of the Dickson-Hipp operator, we refer the readers to [6,10].

3.1. Laplace transforms

For Re(s) > 1
µi
, we have by changing the order of integration

Âi(s) =
∫
∞

0
e−su

∫
∞

0
φi(u+ x)

1
µi
e−

x
µi dxdu

=

∫
∞

0

∫
∞

0
e−suφi(u+ x)

1
µi
e−

x
µi dudx

=
1
µi

∫
∞

0

∫
∞

x
e−s(u−x)φi(u)due

−
x
µi dx

=
1
µi
TsT 1

µi
φi(0)

=
1
µi

Tsφi(0)− T 1
µi
φi(0)

1
µi
− s

=

φ̂i(s)− φ̂i
(
1
µi

)
1− µis

.

Combining above result with (3.3) and (3.4), we obtain[
1−

λ

(λ+ λ1 + δ)(1− µ1s)
−

λ1ξ̂1(s)
λ+ λ1 + δ

]
φ̂1(s)−

λ1ξ̂2(s)
λ+ λ1 + δ

φ̂2(s)

=
λ1ω̂(s)

λ+ λ1 + δ
−

λφ̂1

(
1
µ1

)
(λ+ λ1 + δ)(1− µ1s)

, (3.6)[
1−

λ

(λ+ λ2 + δ)(1− µ2s)
−

λ2ξ̂2(s)
λ+ λ2 + δ

]
φ̂2(s)−

λ2ξ̂1(s)
λ+ λ2 + δ

φ̂1(s)

=
λ2ω̂(s)

λ+ λ2 + δ
−

λφ̂2

(
1
µ2

)
(λ+ λ2 + δ)(1− µ2s)

. (3.7)
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Obviously, by analytic extension, (3.6) and (3.7) still hold for all s in the right half complex plane except the points 1/µ1
and 1/µ2.
Let

χi(s) = 1−
λ

(λ+ λi + δ)(1− µis)
−

λiξ̂i(s)
λ+ λi + δ

, i = 1, 2,

h1(s) =
λ1

λ+ λ1 + δ
−

λλ1

(λ+ λ1 + δ)(λ+ λ2 + δ)(1− µ2s)
,

h2(s) =
λ2

λ+ λ2 + δ
−

λλ2

(λ+ λ1 + δ)(λ+ λ2 + δ)(1− µ1s)
.

Solving (3.6) and (3.7) gives

φ̂1(s) =
h1(s)ω̂(s)−

λχ2(s)φ̂1
(
1
µ1

)
(λ+λ1+δ)(1−µ1s)

−
λλ1 ξ̂2(s)φ̂2

(
1
µ2

)
(λ+λ1+δ)(λ+λ2+δ)(1−µ2s)

χ1(s)χ2(s)−
λ1λ2 ξ̂1(s)ξ̂2(s)

(λ+λ1+δ)(λ+λ2+δ)

, (3.8)

φ̂2(s) =
h2(s)ω̂(s)−

λχ1(s)φ̂2
(
1
µ2

)
(λ+λ2+δ)(1−µ2s)

−
λλ2 ξ̂1(s)φ̂1

(
1
µ1

)
(λ+λ1+δ)(λ+λ2+δ)(1−µ1s)

χ1(s)χ2(s)−
λ1λ2 ξ̂1(s)ξ̂2(s)

(λ+λ1+δ)(λ+λ2+δ)

. (3.9)

To get φ̂1(s) and φ̂2(s), we still have to determine the unknown quantities φ̂1
(
1
µ1

)
and φ̂2

(
1
µ2

)
. For this purpose, we

consider the zeros of the common denominator of (3.8) and (3.9), i.e., the roots of the following equation

χ1(s)χ2(s)−
λ1λ2ξ̂1(s)ξ̂2(s)

(λ+ λ1 + δ)(λ+ λ2 + δ)
= 0. (3.10)

Lemma 1. For δ > 0, Eq. (3.10) has exactly two roots, say ρ1(δ), ρ2(δ), in the right half complex plane, i.e. Re(ρi(δ)) > 0 for
i = 1, 2.
Proof. It suffices to consider the following equation

2∏
i=1

[χi(s)(1− µis)] =
2∏
i=1

[
λi(1− µis)ξ̂i(s)
λ+ λi + δ

]
,

which is equivalent to
2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]
=

[
1− µ1s−

λ

λ+ λ1 + δ

]
λ2(1− µ2s)ξ̂2(s)
λ+ λ2 + δ

+

[
1− µ2s−

λ

λ+ λ2 + δ

]
λ1(1− µ1s)ξ̂1(s)
λ+ λ1 + δ

. (3.11)

Now we apply Rouché’s theorem to prove this Lemma.
Let r > 0 be a sufficiently large number, and denote by Cr the contour containing the imaginary axis running from−ir

to ir and a semicircle with radius r running clockwise from ir to−ir . We show that for s ∈ Cr , the module of the left hand
side of (3.11) is strictly larger than that of the right hand side of (3.11).
Firstly, for s on the imaginary axis, we have

|λi − λiµis|
|λi + δ − (λ+ λi + δ)µis|

< 1, i = 1, 2.

Secondly, for s on the semicircle, we have for ∀ε > 0∣∣∣ 1µi − s∣∣∣∣∣∣ λi+δ
(λ+λi+δ)µi

− s
∣∣∣ < 1+ ε

when r is sufficiently large. In particular, for ε = min{ λ+δ
λ1
, λ+δ
λ2
}, there exists r0 > 0 such that when r > r0, we have for

i = 1, 2,

|λi − λiµis|
|λi + δ − (λ+ λi + δ)µis|

=
λi

λ+ λi + δ

∣∣∣ 1µi − s∣∣∣∣∣∣ λi+δ
(λ+λi+δ)µi

− s
∣∣∣ < λi

λ+ λi + δ
(1+ ε) ≤ 1.
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Thus, when r is sufficiently large, we have∣∣∣∣∣
[
1− µ1s−

λ

λ+ λ1 + δ

]
λ2(1− µ2s)ξ̂2(s)
λ+ λ2 + δ

+

[
1− µ2s−

λ

λ+ λ2 + δ

]
λ1(1− µ1s)ξ̂1(s)
λ+ λ1 + δ

∣∣∣∣∣
=

∣∣∣∣∣ 2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]∣∣∣∣∣ ·
∣∣∣∣∣ λ2(1− µ2s)ξ̂2(s)
λ2 + δ − (λ+ λ2 + δ)µ2s

+
λ1(1− µ1s)ξ̂1(s)

λ1 + δ − (λ+ λ1 + δ)µ1s

∣∣∣∣∣
≤

∣∣∣∣∣ 2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]∣∣∣∣∣
(
|ξ̂2(s)| · |λ2 − λ2µ2s|

|λ2 + δ − (λ+ λ2 + δ)µ2s|
+

|ξ̂1(s)| · |λ1 − λ1µ1s|
|λ1 + δ − (λ+ λ1 + δ)µ1s|

)

<

∣∣∣∣∣ 2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]∣∣∣∣∣ (|ξ̂2(s)| + |ξ̂1(s)|)
≤

∣∣∣∣∣ 2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]∣∣∣∣∣ (ξ̂2(0)+ ξ̂1(0))
=

∣∣∣∣∣ 2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]∣∣∣∣∣ .
Note that both sides of (3.11) are analytic for s inside Cr . Then by Rouché’s theorem, we know that Eq. (3.11) has the

same number of roots as the following equation inside Cr

2∏
i=1

[
1− µis−

λ

λ+ λi + δ

]
= 0.

Obviously, the above equation has two roots, say si :=
λi+δ

(λ+λi+δ)µi
, i = 1, 2, insideCr . Then Eq. (3.11) has also two roots inside

Cr . Finally, letting r →∞ completes the proof. �

Remark 1. Denote the root with the smaller module by ρ1(δ). Then it is readily seen that limδ→0+ ρ1(δ) = 0. In the sequel,
we assume that these two roots are distinct and denote them by ρ1 and ρ2 for simplicity.
Since φ̂i(s), i = 1, 2, are analytic for Re(s) ≥ 0, ρ1 and ρ2 must also be zeros of the numerators of (3.8) and (3.9). Both

cases give the following equations for φ̂1
(
1
µ1

)
and φ̂2

(
1
µ2

)
,

λχ2(ρi)φ̂1

(
1
µ1

)
(λ+ λ1 + δ)(1− µ1ρi)

+

λλ1ξ̂2(ρi)φ̂2

(
1
µ2

)
(λ+ λ1 + δ)(λ+ λ2 + δ)(1− µ2ρi)

= h1(ρi)ω̂(ρi), i = 1, 2. (3.12)

After solving (3.12), we can obtain φ̂1
(
1
µ1

)
and φ̂2

(
1
µ2

)
, and accordingly, φ̂1(s) and φ̂2(s) can be determined.

Example 1. We give a numerical example to show how to find the ruin probabilities when the thresholds and the claim
sizes are exponentially distributed with

B(x) = 1− e−0.5x, F(y) = 1− e−y.

Set λ = 1, λ1 = 0.4, λ2 = 0.5,µ1 = 0.5,µ2 = 1. It is easy to check that the net profit condition (2.3) holds under the above
settings. Let δ = 0,w ≡ 1. Then the Gerber–Shiu function φi(u) (i = 1, 2) reduces to the ruin probability ψi(u).
Eq. (3.10) becomes[

1−
1

1.4(1− 0.5s)
−
0.4
1.4

(
1
s+ 1

−
1

s+ 1.5

)][
1−

1
1.5(1− s)

−
0.5

1.5(s+ 1.5)

]
=

0.2
1.4× 1.5

(
1
s+ 1

−
1

s+ 1.5

)
1

s+ 1.5
.

Solving above equation gives four roots, 0, 0.523009204,−0.270554613,−1.514359353. Then solving (3.12) gives
φ̂1

(
1
µ1

)
= 0.333621, φ̂2

(
1
µ2

)
= 0.541487. Finally, the inversion of the Laplace transforms (3.8) and (3.9) yields

ψ1(u) = 0.7487227223e−0.270554613u + 0.01359317324e−1.514359353u,
ψ2(u) = 0.6815162964e−0.270554613u + 0.01280823418e−1.514359353u.

Fig. 1 shows the behaviors of ψ1(u) and ψ2(u).
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Fig. 1. Ruin probabilities ψ1(u) (the blue curve) and ψ2(u) (the red curve). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

3.2. Defective renewal equations

The main goal of this subsection is to derive defective renewal equations for φ1(u) and φ2(u).
Let

H(s) = (1− µ1s)
(

λ2 + δ

λ+ λ2 + δ
− µ2s

)
λ1ξ̂1(s)

λ+ λ1 + δ
+ (1− µ2s)

(
λ1 + δ

λ+ λ1 + δ
− µ1s

)
λ2ξ̂2(s)

λ+ λ2 + δ

= h11ξ̂1(s)+ h12sξ̂1(s)+ h13s2ξ̂1(s)+ h21ξ̂2(s)+ h22sξ̂2(s)+ h23s2ξ̂2(s),

where

h11 =
λ1(λ2 + δ)

(λ+ λ1 + δ)(λ+ λ2 + δ)
, h21 =

λ2(λ1 + δ)

(λ+ λ1 + δ)(λ+ λ2 + δ)
,

h12 = −
[
(λ2 + δ)µ1

λ+ λ2 + δ
+ µ2

]
λ1

λ+ λ1 + δ
, h22 = −

[
(λ1 + δ)µ2

λ+ λ1 + δ
+ µ1

]
λ2

λ+ λ2 + δ
,

h13 =
λ1µ1µ2

λ+ λ1 + δ
, h23 =

λ2µ1µ2

λ+ λ2 + δ
.

Then multiplying the common denominator of (3.8) and (3.9) by (1− µ1s)(1− µ2s) gives

(1− µ1s)(1− µ2s)

(
χ1(s)χ2(s)−

λ1λ2ξ̂1(s)ξ̂2(s)
(λ+ λ1 + δ)(λ+ λ2 + δ)

)

=

(
λ1 + δ

λ+ λ1 + δ
− µ1s

)(
λ2 + δ

λ+ λ2 + δ
− µ2s

)
− H(s).

Obviously,

l(s) :=
(

λ1 + δ

λ+ λ1 + δ
− µ1s

)(
λ2 + δ

λ+ λ2 + δ
− µ2s

)
− µ1µ2(s− ρ1)(s− ρ2)

is a polynomial of degree 1, and it satisfies

l(ρi) = H(ρi), i = 1, 2,

due to Lemma 1. By Lagrange interpolation formula, we have

l(s) =
s− ρ2
ρ1 − ρ2

H(ρ1)+
s− ρ1
ρ2 − ρ1

H(ρ2).
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Using the above results, we obtain

(1− µ1s)(1− µ2s)

(
χ1(s)χ2(s)−

λ1λ2ξ̂1(s)ξ̂2(s)
(λ+ λ1 + δ)(λ+ λ2 + δ)

)

= µ1µ2(s− ρ1)(s− ρ2)+
s− ρ2
ρ1 − ρ2

H(ρ1)+
s− ρ1
ρ2 − ρ1

H(ρ2)− H(s)

= (s− ρ1)(s− ρ2)

(
µ1µ2 −

H(s)−H(ρ2)
s−ρ2

−
H(s)−H(ρ1)
s−ρ1

ρ2 − ρ1

)
. (3.13)

Recalling the properties of the Dickson–Hipp operator, we have for k, i = 1, 2,

ξ̂k(s)− ξ̂k(ρi)
s− ρi

= −TsTρiξk(0),

sξ̂k(s)− ρiξ̂k(ρi)
s− ρi

=
sξ̂k(s)− ρiξ̂k(s)+ ρiξ̂k(s)− ρiξ̂k(ρi)

s− ρi
= ξ̂k(s)− ρiTsTρiξk(0),

s2ξ̂k(s)− ρ2i ξ̂k(ρi)
s− ρi

=
s2ξ̂k(s)− ρ2i ξ̂k(s)+ ρ

2
i ξ̂k(s)− ρ

2
i ξ̂k(ρi)

s− ρi
= (s+ ρi)ξ̂k(s)− ρ2i TsTρiξk(0).

And accordingly, for k = 1, 2

ξ̂k(s)−ξ̂k(ρ2)
s−ρ2

−
ξ̂k(s)−ξ̂k(ρ1)
s−ρ1

ρ2 − ρ1
=
TsTρ1ξk(0)− TsTρ2ξk(0)

ρ2 − ρ1
= TsTρ1Tρ2ξk(0),

sξ̂k(s)−ρ2 ξ̂k(ρ2)
s−ρ2

−
sξ̂k(s)−ρ1 ξ̂k(ρ1)

s−ρ1

ρ2 − ρ1
=

ρ1TsTρ1ξk(0)− ρ2TsTρ2ξk(0)
ρ2 − ρ1

=
ρ1TsTρ1ξk(0)− ρ1TsTρ2ξk(0)+ ρ1TsTρ2ξk(0)− ρ2Tρ2ξk(0)

ρ2 − ρ1
= ρ1TsTρ1Tρ2ξk(0)− TsTρ2ξk(0),

s2 ξ̂k(s)−ρ22 ξ̂k(ρ2)
s−ρ2

−
s2 ξ̂k(s)−ρ21 ξ̂k(ρ1)

s−ρ1

ρ2 − ρ1
=

ρ2ξ̂k(s)− ρ1ξ̂k(s)
ρ2 − ρ1

−
ρ22TsTρ2ξk(0)− ρ

2
1TsTρ1ξk(0)

ρ2 − ρ1

= ξ̂k(s)−
ρ22TsTρ2ξk(0)− ρ

2
1TsTρ2ξk(0)+ ρ

2
1TsTρ2ξk(0)− ρ

2
1TsTρ1ξk(0)

ρ2 − ρ1
= ξ̂k(s)− (ρ1 + ρ2)TsTρ2ξk(0)+ ρ

2
1TsTρ1Tρ2ξk(0).

Then

Ĝ(s) :=
H(s)−H(ρ2)
s−ρ2

−
H(s)−H(ρ1)
s−ρ1

ρ2 − ρ1

=

2∑
k=1

hk1 ξ̂k(s)−ξ̂k(ρ2)s−ρ2
−

ξ̂k(s)−ξ̂k(ρ1)
s−ρ1

ρ2 − ρ1
+ hk2

sξ̂k(s)−ρ2 ξ̂k(ρ2)
s−ρ2

−
sξ̂k(s)−ρ1 ξ̂k(ρ1)

s−ρ1

ρ2 − ρ1

+ hk3

s2 ξ̂k(s)−ρ22 ξ̂k(ρ2)
s−ρ2

−
s2 ξ̂k(s)−ρ21 ξ̂k(ρ1)

s−ρ1

ρ2 − ρ1


=

2∑
k=1

[
hk1TsTρ1Tρ2ξk(0)+ hk2

(
ρ1TsTρ1Tρ2ξk(0)− TsTρ2ξk(0)

)
+ hk3

(
ξ̂k(s)− (ρ1 + ρ2)TsTρ2ξk(0)+ ρ

2
1TsTρ1Tρ2ξk(0)

)]
. (3.14)
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As for the numerator of (3.8), we multiply it by (1− µ1s)(1− µ2s) to obtain

M1(s) := (1− µ1s)(1− µ2s)

h1(s)ω̂(s)− λχ2(s)φ̂1
(
1
µ1

)
(λ+ λ1 + δ)(1− µ1s)

−

λλ1ξ̂2(s)φ̂2
(
1
µ2

)
(λ+ λ1 + δ)(λ+ λ2 + δ)(1− µ2s)



= τ11(s)ω̂(s)+ τ12(s)ξ̂2(s)−
λφ̂1

(
1
µ1

)
λ+ λ1 + δ

(
λ2 + δ

λ+ λ2 + δ
− µ2s

)
, (3.15)

where

τ11(s) =
λ1(1− µ1s)(1− µ2s)

λ+ λ1 + δ
−

λλ1(1− µ1s)
(λ+ λ1 + δ)(λ+ λ2 + δ)

,

τ12(s) =
λλ2φ̂1

(
1
µ1

)
(1− µ2s)− λλ1φ̂2

(
1
µ2

)
(1− µ1s)

(λ+ λ1 + δ)(λ+ λ2 + δ)
.

Note that
λφ̂1

(
1
µ1

)
λ+λ1+δ

(
λ2+δ
λ+λ2+δ

− µ2s
)
is a polynomial of degree 1 satisfying

λφ̂1

(
1
µ1

)
λ+ λ1 + δ

(
λ2 + δ

λ+ λ2 + δ
− µ2ρi

)
= τ11(ρi)ω̂(ρi)+ τ12(ρi)ξ̂2(ρi), i = 1, 2,

due to the fact that ρ1, ρ2 are also zeros of the numerator of (3.8). By employing Lagrange interpolation, we find

λφ̂1

(
1
µ1

)
λ+ λ1 + δ

(
λ2 + δ

λ+ λ2 + δ
− µ2s

)
=
s− ρ2
ρ1 − ρ2

[
τ11(ρ1)ω̂(ρ1)+ τ12(ρ1)ξ̂2(ρ1)

]
+
s− ρ1
ρ2 − ρ1

[
τ11(ρ2)ω̂(ρ2)+ τ12(ρ2)ξ̂2(ρ2)

]
,

which together with (3.15) gives

M1(s) =
s− ρ2
ρ1 − ρ2

(
τ11(s)ω̂(s)− τ11(ρ1)ω̂(ρ1)

)
+
s− ρ1
ρ2 − ρ1

(
τ11(s)ω̂(s)− τ11(ρ2)ω̂(ρ2)

)
+
s− ρ2
ρ1 − ρ2

(
τ12(s)ξ̂2(s)− τ12(ρ1)ξ̂2(ρ1)

)
+
s− ρ1
ρ2 − ρ1

(
τ12(s)ξ̂2(s)− τ12(ρ2)ξ̂2(ρ2)

)
=
(s− ρ1)(s− ρ2)

ρ1 − ρ2

[
τ11(s)− τ11(ρ1)

s− ρ1
ω̂(s)− τ11(ρ1)TsTρ1ω(0)

]
+
(s− ρ1)(s− ρ2)

ρ2 − ρ1

[
τ11(s)− τ11(ρ2)

s− ρ2
ω̂(s)− τ11(ρ2)TsTρ2ω(0)

]
×
(s− ρ1)(s− ρ2)

ρ1 − ρ2

[
τ12(s)− τ12(ρ1)

s− ρ1
ξ̂2(s)− τ12(ρ1)TsTρ1ξ2(0)

]
+
(s− ρ1)(s− ρ2)

ρ2 − ρ1

[
τ12(s)− τ12(ρ2)

s− ρ2
ξ̂2(s)− τ12(ρ2)TsTρ2ξ2(0)

]

= (s− ρ1)(s− ρ2)

[
τ11(s)−τ11(ρ1)

s−ρ1
−

τ11(s)−τ11(ρ2)
s−ρ2

ρ1 − ρ2
ω̂(s)−

τ11(ρ1)

ρ1 − ρ2
TsTρ1ω(0) −

τ11(ρ2)

ρ2 − ρ1
TsTρ2ω(0)

+

τ12(s)−τ12(ρ1)
s−ρ1

−
τ12(s)−τ12(ρ2)

s−ρ2

ρ1 − ρ2
ξ̂2(s) −

τ12(ρ1)

ρ1 − ρ2
TsTρ1ξ2(0)−

τ12(ρ2)

ρ2 − ρ1
TsTρ2ξ2(0)

]
= (s− ρ1)(s− ρ2)

[
λ1µ1µ2

λ+ λ1 + δ
ω̂(s)−

τ11(ρ1)

ρ1 − ρ2
TsTρ1ω(0)−

τ11(ρ2)

ρ2 − ρ1
TsTρ2ω(0)

−
τ12(ρ1)

ρ1 − ρ2
TsTρ1ξ2(0)−

τ12(ρ2)

ρ2 − ρ1
TsTρ2ξ2(0)

]
. (3.16)
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Similarly, after multiplying the numerator of (3.9) by (1−µ1s)(1−µ2s) and applying some careful calculations, we can
make the numerator of (3.9) into the following form

M2(s) := (s− ρ1)(s− ρ2)
[
λ2µ1µ2

λ+ λ2 + δ
ω̂(s)−

τ21(ρ1)

ρ1 − ρ2
TsTρ1ω(0)−

τ21(ρ2)

ρ2 − ρ1
TsTρ2ω(0)

−
τ22(ρ1)

ρ1 − ρ2
TsTρ1ξ1(0)−

τ22(ρ2)

ρ2 − ρ1
TsTρ2ξ1(0)

]
, (3.17)

where

τ21(s) =
λ2(1− µ1s)(1− µ2s)

λ+ λ2 + δ
−

λλ2(1− µ2s)
(λ+ λ1 + δ)(λ+ λ2 + δ)

,

τ22(s) =
λλ1φ̂2

(
1
µ2

)
(1− µ1s)− λλ2φ̂1

(
1
µ1

)
(1− µ2s)

(λ+ λ1 + δ)(λ+ λ2 + δ)
.

Theorem 1. Assume that the premium sizes are exponentially distributed with distribution functions given by (3.5). Then the
Gerber–Shiu functions φ1(u) and φ2(u) satisfy the following defective renewal equations

φ1(u) =
1

µ1µ2

∫ u

0
φ1(u− x)G(x)dx+ B1(u), (3.18)

φ2(u) =
1

µ1µ2

∫ u

0
φ2(u− x)G(x)dx+ B2(u), (3.19)

where

G(x) =
2∑
k=1

[
hk1Tρ1Tρ2ξk(x)+ hk2

(
ρ1Tρ1Tρ2ξk(x)− Tρ2ξk(x)

)
+ hk3

(
ξk(x)− (ρ1 + ρ2)Tρ2ξk(x)+ ρ

2
1Tρ1Tρ2ξk(x)

)]
,

B1(u) =
λ1ω(u)

λ+ λ1 + δ
−

1
µ1µ2

[
τ11(ρ1)

ρ1 − ρ2
Tρ1ω(u)+

τ11(ρ2)

ρ2 − ρ1
Tρ2ω(u)+

τ12(ρ1)

ρ1 − ρ2
Tρ1ξ2(u)+

τ12(ρ2)

ρ2 − ρ1
Tρ2ξ2(u)

]
,

B2(u) =
λ2ω(u)

λ+ λ2 + δ
−

1
µ1µ2

[
τ21(ρ1)

ρ1 − ρ2
Tρ1ω(u)+

τ21(ρ2)

ρ2 − ρ1
Tρ2ω(u)+

τ22(ρ1)

ρ1 − ρ2
Tρ1ξ1(u)+

τ22(ρ2)

ρ2 − ρ1
Tρ2ξ1(u)

]
.

Proof. By (3.13)–(3.17), we find that for i = 1, 2,

φ̂i(s) =
Mi(s)

(s− ρ1)(s− ρ2)[µ1µ2 − Ĝ(s)]
=

Mi(s)
µ1µ2(s−ρ1)(s−ρ2)

1− Ĝ(s)
µ1µ2

.

An arrangement of the above equation leads to

φ̂i(s) =
1

µ1µ2
φ̂i(s)Ĝ(s)+

Mi(s)
µ1µ2(s− ρ1)(s− ρ2)

.

Inverting the Laplace transforms in the above equation gives (3.18) and (3.19).
To show that (3.18) and (3.19) are defective renewal equations, we need to show that 1

µ1µ2

∫
∞

0 G(x)dx < 1, or

equivalently, 1
µ1µ2

Ĝ(0) < 1. We have by (3.13)

Ĝ(s)
µ1µ2

= 1−
(1− µ1s)(1− µ2s)

[
χ1(s)χ2(s)−

λ1λ2 ξ̂1(s)ξ̂2(s)
(λ+λ1+δ)(λ+λ2+δ)

]
(s− ρ1)(s− ρ2)µ1µ2

.

Then for s = 0

Ĝ(0)
µ1µ2

= 1−
1

ρ1ρ2µ1µ2

[
χ1(0)χ2(0)−

λ1λ2ξ̂1(0)ξ̂2(0)
(λ+ λ1 + δ)(λ+ λ2 + δ)

]

= 1−
(λ1 + δ)(λ2 + δ)− (λ1 + δ)λ2ξ̂2(0)− (λ2 + δ)λ1ξ̂1(0)

ρ1ρ2µ1µ2(λ+ λ1 + δ)(λ+ λ2 + δ)

< 1−
(λ1 + δ)(λ2 + δ)− (λ1 + δ)(λ2 + δ)(ξ̂1(0)+ ξ̂2(0))

ρ1ρ2µ1µ2(λ+ λ1 + δ)(λ+ λ2 + δ)
= 1. (3.20)
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Now we consider the case δ = 0. Firstly, setting s = ρ1(δ) in (3.10) gives

2∏
i=1

[
(λ+ λi + δ)−

λ

1− µiρ1(δ)
− λiξ̂i(ρ1(δ))

]
= λ1λ2ξ̂1(ρ1(δ))ξ̂2(ρ1(δ)).

Next, differentiating the above equation w.r.t. δ and then setting δ = 0, we can obtain

ρ ′1(0) =
λ2(1− ξ̂2(0))+ λ1(1− ξ1(0))

λ1λ2(ξ̂
′

1(0)+ ξ̂
′

2(0))+ λλ2µ1(1− ξ2(0))+ λλ1µ2(1− ξ̂1(0))

=

1
λ1
Pr(B ≤ Y )+ 1

λ2
Pr(B > Y )

λµ1
λ1
Pr(B ≤ Y )+ λµ2

λ2
Pr(B > Y )− µ

> 0,

where the last step follows from the net profit condition (2.3). Then taking the limit δ → 0+ in (3.20) and applying
L’Hôspital’s rule, one obtains

Ĝ(0)
µ1µ2

= 1−
1

ρ2(0)µ1µ2(λ+ λ1)(λ+ λ2)
× lim

δ→0+

δ2 + (λ1(1− ξ̂1(0))+ λ2(1− ξ̂2(0)))δ
ρ1(δ)

= 1−
λ1Pr(B > Y )+ λ2Pr(B ≤ Y )

ρ ′1(0)ρ2(0)µ1µ2(λ+ λ1)(λ+ λ2)
< 1.

Thus, Eqs. (3.18) and (3.19) are defective renewal equations, and the proof is complete. �

We remark that the explicit analytic solutions to the defective renewal equations (3.18) and (3.19) can be obtained by
compound geometric distributions — see e.g. [11] for reference.

4. Premium sizes with rational Laplace transforms

In this section, we consider the case when the premium sizes have rational Laplace transforms — i.e.

f̂i(s) =
qi(s)

mi∏
j=1
(s+ λij)nij

, i = 1, 2, (4.1)

wheremi, nij ∈ N+ with ni1 + ni2 + · · · + nimi = ki, λi1, . . . , λij with λij1 6= λij2 for j1 6= j2 are (possibly complex) numbers
with positive real parts, qi(s) satisfying qi(0) =

∏mi
j=1 λ

nij
ij is a polynomial function of degree ki−1 or less. By partial fraction,

we can rewrite (4.1) as

f̂i(s) =
mi∑
j1=1

nij1∑
j2=1

qij1j2

(
λij1

s+ λij1

)j2
, (4.2)

where

qij1j2 =
1

λ
j2
ij1
(nij1 − j2)!

dnij1−j2

dsnij1−j2

{
mi∏

k=1,k6=j1

qi(s)
(s+ λik)nik

}∣∣∣∣∣
s=−λij1

.

Without loss of generality,we assume thatλij’s in (4.1) are positive real numbers. By analytic extension, (4.2) can be extended
to the whole complex plane except the points −λij’s. In the rest of the paper, we will still use the notation f̂i(s) after such
analytic extension.
(4.2) implies that F1 and F2 are mixtures of Erlangs — i.e. for i = 1, 2

Fi(x) =
mi∑
j1=1

nij1∑
j2=1

qij1j2Fij1j2(x),

where Fij1j2(x) = 1−
∑j2−1
k=0

(λij1 x)
k

k! e
−λij1 x is an Eralng(j2) distribution with parameter λij1 . Let X

(1)
ij1j2
, . . . , X (j2)ij1j2 be j2 i.i.d. r.v.’s

exponentially distributed with mean 1/λij1 . Then X
(1)
ij1j2
+ · · · + X (j2)ij1j2 has distribution function Fij1j2 . For Re(s) > maxj λij,
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we have

Âi(s) =
∫
∞

0
e−su

∫
∞

0
φi(u+ x)dFi(x)du

=

∫
∞

0

∫
∞

0
e−suφi(u+ x)dudFi(x)

=

mi∑
j1=1

nij1∑
j2=1

qij1j2

∫
∞

0
Tsφi(x)dFij1j2(x)

=

mi∑
j1=1

nij1∑
j2=1

qij1j2E[Tsφi(X
(1)
ij1j2
+ · · · + X (j2)ij1j2)]

=

mi∑
j1=1

nij1∑
j2=1

qij1j2λij1E
∫
∞

0
Tsφi(x+ X

(2)
j1j2
+ · · · + X (j2)ij1j2)e

−λij1 xdx

=

mi∑
j1=1

nij1∑
j2=1

qij1j2λij1ETsTλij1φi(X
(2)
j1j2
+ · · · + X (j2)ij1j2)

...

=

mi∑
j1=1

nij1∑
j2=1

qij1j2λ
j2
ij1
TsT

j2
λij1
φi(0),

where T j2λij1
= Tλij1 · · · Tλij1︸ ︷︷ ︸

j2

. Furthermore, by property 5 of the Dickson–Hipp operator in [10], we have

Âi(s) =
mi∑
j1=1

nij1∑
j2=1

qij1j2λ
j2
ij1

 φ̂i(s)
(λij1 − s)j2

−

j2∑
j=1

T jλij1
φi(0)

(λij1 − s)j2+1−j


= f̂i(−s)φ̂i(s)− Li(s), (4.3)

where Li(s) =
∑mi
j1=1

∑nij1
j2=1

∑j2
j=1

T jλij1
φi(0)

(λij1−s)
j2+1−j

. By analytic extension, (4.3) holds for all s in the right half complex plane

except the points λij’s. In the rest of the paper, we will still use the notation Âi(s) after such analytic extension.
Plugging (4.3) into (3.3) and (3.4) gives[

1−
λf̂1(−s)
λ+ λ1 + δ

−
λ1ξ̂1(s)

λ+ λ1 + δ

]
φ̂1(s)−

λ1ξ̂2(s)
λ+ λ1 + δ

φ̂2(s) =
λ1ω̂(s)− λL1(s)
λ+ λ1 + δ

, (4.4)

[
1−

λf̂2(−s)
λ+ λ2 + δ

−
λ2ξ̂2(s)

λ+ λ2 + δ

]
φ̂2(s)−

λ2ξ̂1(s)
λ+ λ2 + δ

φ̂1(s) =
λ2ω̂(s)− λL2(s)
λ+ λ2 + δ

. (4.5)

Solving (4.4) and (4.5) gives

φ̂1(s) =

[
λ1(λ+ λ2 + δ)− λλ1 f̂2(−s)

]
ω̂(s)− λν2(s)L1(s)− λλ1ξ̂2(s)L2(s)

ν1(s)ν2(s)− λ1λ2ξ̂1(s)ξ̂2(s)
, (4.6)

φ̂2(s) =

[
λ2(λ+ λ1 + δ)− λλ2 f̂1(−s)

]
ω̂(s)− λν1(s)L2(s)− λλ2ξ̂1(s)L1(s)

ν1(s)ν2(s)− λ1λ2ξ̂1(s)ξ̂2(s)
, (4.7)

where

νi(s) = λ+ λi + δ − λf̂i(−s)− λiξ̂i(s), i = 1, 2.
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The common denominator of (4.6) and (4.7) is analytic for s in the right half complex plane except the poles λij’s. Tomake
it analytic for all Re(s) ≥ 0, let Λi(s) =

∏mi
j=1(s − λij)

nij and multiply both the numerators and denominators of (4.6) and
(4.7) byΛ1(s)Λ2(s). Then we obtain

φ̂1(s) =
Q1(s)ω̂(s)− λν2(s)Λ2(s)Λ1(s)L1(s)− λλ1ξ̂2(s)Λ1(s)Λ2(s)L2(s)

ν1(s)ν2(s)Λ1(s)Λ2(s)− λ1λ2ξ̂1(s)ξ̂2(s)Λ1(s)Λ2(s)
, (4.8)

φ̂2(s) =
Q2(s)ω̂(s)− λν1(s)Λ1(s)Λ2(s)L2(s)− λλ2ξ̂1(s)Λ2(s)Λ1(s)L1(s)

ν1(s)ν2(s)Λ1(s)Λ2(s)− λ1λ2ξ̂1(s)ξ̂2(s)Λ1(s)Λ2(s)
, (4.9)

where

Q1(s) = Λ1(s)Λ2(s)
[
λ1(λ+ λ2 + δ)− λλ1 f̂2(−s)

]
,

Q2(s) = Λ1(s)Λ2(s)
[
λ2(λ+ λ1 + δ)− λλ2 f̂1(−s)

]
.

From (4.8) and (4.9), we know that φ̂1(s) and φ̂2(s) can be obtained if we can determineΛ1(s)L1(s) andΛ2(s)L2(s). It is easily
seen thatΛi(s)Li(s) is a polynomial of degree ki − 1, and then it can be expressed as

Λi(s)Li(s) =
ki∑
n=1

Linsn−1.

Consequently, we have to determine k1+k2 unknown coefficients Lin’s. For this purpose, we givewithout proof the following
Lemma which can be proved by exactly the same technique used in Lemma 1.

Lemma 2. The common denominator of (4.8) and (4.9) has exactly k1 + k2 zeros, say ρ1, . . . , ρk1+k2 , in the right half complex
plane.

Assume that ρ1, . . . , ρk1+k2 are distinct. Sine φ̂1(s) and φ̂2(s) are analytic for Re(s) ≥ 0, then ρ1, . . . , ρk1+k2 are also zeros
of the numerators of (4.8) and (4.9). And both cases give the following k1 + k2 linear equations satisfied by Lin’s

λν2(ρi)Λ2(ρi)

k1∑
n=1

L1nρn−1i + λλ1ξ̂2(ρi)Λ1(ρi)

k2∑
n=1

L2nρn−1i = Q1(ρi)ω̂(ρi), i = 1, 2, . . . , k1 + k2. (4.10)

After solving (4.10), we can obtain Lin’s. Then the Laplace transforms (4.8) and (4.9) are fully determined.

5. Conclusion

In this paper, we analyze the ruin problems in a riskmodelwith stochastic premiums income and a dependence structure
among the claim sizes, interclaim times and premium sizes. Some analytic techniques are applied to study the Gerber–Shiu
functions. For exponential premium sizes, we show that the Laplace transforms and defective renewal equations for the
Gerber–Shiu functions can be obtained. While for premiums with rational Laplace transforms, the Laplace transforms for
the Gerber–Shiu functions are also obtained.
The model considered in this paper can be extended in the more general framework. For example, we can introduce an

underlying Markov process to modulate the claim sizes, interclaim times and premiums. We can also add some diffusion
processes to describe the stochastic volatility of the premiums income and claims loss. In particular, a mathematically
treatable candidate for the diffusion volatility is the standard Brownian motion, and such extension will only lead to a little
computation involvement.
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