Maximum nonhamiltonian tough graphs

A. Marczyk and Z. Skupień

Institute of Mathematics AGH, 30–059 Kraków, Poland

Received 15 December 1988
Revised 17 October 1989

Abstract

Tough nonhamiltonian n-vertex graphs with $n \geqslant 3$ are known to exist only for $n \geqslant 7$. The maximum size among them is shown to be $6 + (n - 3)(n - 4)/2$. All corresponding maximum graphs are $K_t \ast (3K_1 \rightarrow K_{n-4})$ for $n \leqslant 7$ (unique if $n \neq 9$) and, additionally, $K_t \ast K_2 \ast (3K_1 \rightarrow K_3)$ if $n = 9$, where \ast stands for the non-associative join and $3K_1 \rightarrow K_t$ with $t \geqslant 3$ denotes the complete graph K_t together with three disjoint hanging edges (and vertices). This settles a conjecture by the second author.

1. Introduction

In general we use standard terminology and notation. Only simple graphs are considered. In what follows, G stands for a graph, $G = (V, E)$. Then $|E|$ is called the size of G; moreover, n, δ, Δ stand for the order, $|V|$, and the minimum and maximum degrees among vertices of G, respectively. If G is noncomplete, $G \neq K_n$, then Δ' stands for the maximum degree among nontotal vertices x of G (i.e., with $\deg x < n - 1$). Let $k(G)$ denote the number of components of G. We call G tough (or 1-tough in Chvátal's terminology) if

$$k(G - S) \leqslant |S|$$

for each $S \subseteq V(G)$ such that $k(G - S) \neq 1$.

Toughness is clearly a necessary condition for a graph G to be hamiltonian. On the other hand, among homogeneously traceable graphs (all of which are tough) there are many nonhamiltonian ones. (Recall that, following the second author, G is called homogeneously traceable if each vertex of G is an end-vertex of a hamiltonian path.) However, maximum nonhamiltonian n-vertex graphs different from both K_n and K_2 (i.e., with $n > 2$ and of maximum size), described without proof by Ore (1963; see [1–2] for a proof), are all nontough. Our aim is to describe all maximum nonhamiltonian tough graphs G.

012-365X/91/$03.50 \odot 1991$ — Elsevier Science Publishers B.V. All rights reserved
To this end, let $*$ denote the non-associative join on disjoint graphs, i.e., $G * F * H = G * F \cup F * H$ provided that G, F, H are mutually disjoint graphs. Moreover, $3K_1 * \rightarrow K_t$ where $t \geq 3$, stands for the connected graph obtained from the disjoint union $3K_1 \cup K_t$ by adding three independent $3K_1 - K_t$ edges (cf. [9] where \leftrightarrow is called the injective join).

Consider the following tough nonhamiltonian graph M_n, denoted $K_1 * K_{n-4}^+ \rightarrow$ in [6], of order $n \geq 7$.

$$M_n = K_1 * (3K_1 * \rightarrow K_{n-4}) \quad n \geq 7.$$ Notice that M_n, found by Chvátal, is the smallest nontrivially nonhamiltonian graph among tough graphs. Let

$$G_0 = K_1 * K_2 * (3K_1 * \rightarrow K_3),$$

which is a maximally nonhamiltonian tough graph of order $n = 9$ exhibited in [4]. We shall prove that M_n and G_0 for $n = 9$ are the only maximum nontrivially nonhamiltonian tough graphs of order n, $n \geq 3$.

Proposition 1.1. Graphs M_n and G_0 for $n = 9$ are nonhamiltonian tough graphs of order n and size

$$f(n) := 6 + \binom{n-3}{2} \quad n \geq 7.$$ Recall that a path-system is a graph whose each component is a path. The size of the path-system is called its length. Recall that, given nonnegative integers n, p and q, an n-vertex graph G is called non-strongly-(p, q)-hamiltonian if there is $V_1 \subset V$ such that $|V_1| \leq p$ and there is a path-system S of length $\leq q$ in the complete graph with the vertex set $V - V_1$ such that the graph $S \cup G - V_1$ has no Hamiltonian cycle containing S. Notice that ‘nonstrongly-(p, q)-hamiltonian’ means ‘nonhamiltonian’ if $p = q = 0$, ‘non-Hamilton-connected’ if $p = 0$ and $q = 1$, and ‘non-p-hamiltonian’ if $q = 0$ and $p > 0$. Hence if $p = q = 0$ then the following result coincides with the above-mentioned result of Ore.

Theorem 1.2 (Corollary 2 in [10]). If n, p and q are integers such that $n \geq 3$, $p \geq 0$, $q \geq 0$ and $s := p + q \leq n - 3$ and G is a non-strongly-(p, q)-hamiltonian graph of order n and the largest possible size then

$$G = K_1 * K_{1+s} * K_{n-s-2}$$

or additionally,

$$G = 3K_1 * K_{2+s} \quad \text{if } n - s = 5.$$

If $s \geq 1$ then graphs exhibited in Theorem 1.2 are tough.
2. Preliminaries

The following result is well known.

Proposition 2.1. If \([v_1, v_2, \ldots, v_n]\) is a hamiltonian path of a nonhamiltonian graph of order \(n \geq 3\) then \(\deg v_1 + \deg v_n \leq n - 1\).

It is easily seen that if \(G\) is a tough (or homogeneously traceable) graph then \(\delta \geq 2\) provided that \(n \geq 3\). We shall use the following results.

Theorem 2.2 (Skupień [7]). For every vertex \(x\) of a homogeneously traceable nonhamiltonian graph of order \(n \geq 3\), there exists a vertex \(y\) connected to \(x\) by a hamiltonian path and such that \(\deg x + \deg y \leq n - 2\).

Corollary 2.3 (Skupień [7]). If \(G\) is a homogeneously traceable nonhamiltonian graph of order \(n \geq 3\) then \(\Delta + \delta \leq n - 2\) (whence \(\Delta \leq n - 4\)).

Notice, however, that a tough nonhamiltonian graph \(G\) can have \(\Delta = n - 1\). Therefore the following result is more general than the theorem above. Its proof, however, follows the lines of Skupień’s proof.

Theorem 2.4. Let \(G\) be a tough nonhamiltonian graph with \(n \geq 3\) vertices such that each vertex of \(G\) has at most one neighbour of degree 2 and let \(x\) be an end-vertex of a hamiltonian path in \(G\). Then there exists a vertex \(y\) and a hamiltonian \(x-y\) path of \(G\) such that \(\deg x + \deg y \leq n - 2\).

Corollary 2.5. If \(n \geq 3\) and \(G\) is a tough maximally nonhamiltonian \(n\)-vertex graph in which each vertex has at most one neighbour of degree 2 then \(\Delta' \leq n - 2 - \delta\) (\(\leq n - 4\)).

Theorem 2.6 (Jung [5]). Let \(G\) be a tough graph on \(n \geq 11\) vertices. If \(G\) satisfies

\[\forall x, y \in V: xy \notin E \Rightarrow \deg x + \deg y \geq n - 4, \]

then \(G\) is hamiltonian.

Corollary 2.7. If \(G\) is a tough graph, \(n \geq 11\) and \(\delta \geq (n - 4)/2\) then \(G\) is hamiltonian.

The next result involves the following notions. Given a graph \(G\), let \(p(G)\) denote the length of the longest simple path in \(G\) and let \(s(G)\) be the scattering number of \(G\), i.e.,

\[s(G) = \max\{k(G - S) - |S|: S \subset V(G), k(G - S) \neq 1\}. \]

Proposition 2.8. Assume that \(G\) is a tough graph and \(G = H \ast K_r \ast K_a\) where \(K_i\) stands for a complete graph of order \(i\) and \(H\) is a graph of order \(r + b\) with \(r \geq 2\).
\[a \geq 1 \text{ and } b \geq 1 \text{ and such that, for each component } F \text{ of } H, \]
\[p(F) = |V(F)| - 1 \text{ or } p(F) + s(F) \geq |V(F)|. \]

Then \(G \) is hamiltonian.

Proof. Since \(G \) is tough, \(k(H) < r - 1 \), whence \(H \) has nontrivial components. Let \(k(H) = r - t \) where \(t \geq 1 \). Assume that \(H \) has \(r - t - c \) isolated vertices and \(c \) nontrivial components, which are denoted \(F_1, \ldots, F_c \). Then
\[
\sum_{i=1}^c |V(F_i)| = (r + b) - (r - t - c) = b + t + c,
\]
\[
\sum_{i=1}^c |E(F_i)| \geq (r + b) - (r - t) = b + t \quad \text{(because the cyclomatic number of } H \text{ is nonnegative). Observe that if } H \text{ has a path-system of length greater than } b \text{ then } G \text{ is hamiltonian. Thus, it suffices to show that the number } w := \sum_{i=1}^c p(F_i) \geq b + 1.
\]

Suppose on the contrary that \(w < b + 1 \). Let \(P_i \) be a longest path in \(F_i \), let \(B_i = V(F_i) - V(P_i) \quad t = 1, \ldots, c \), and let \(B = \bigcup_{i=1}^c B_i \). Then
\[
|B| = (b + t + c) - (w + c) = b + t - w > b + t - (b + 1) = t \geq 0.
\]
Therefore the set \(B \) is non-empty. Let \(I = \{ i : B_i \neq \emptyset \} \) and let \(J = \{ 1, \ldots, c \} - I \). Hence if \(i \in I \) then \(p(F_i) \neq |V(F_i)| - 1 \) and therefore, by the assumption, \(1 + p(F_i) + |B_i| = |V(F_i)| \leq p(F_i) + s(F_i) \), whence \(1 + |B_i| \leq s(F_i) \). Therefore \(|I| + |B| \leq \sum_{i \in I} s(F_i) \). Assume that \(s(F_i) = k(F_i - A_i) - |A_i| \) for some \(A_i \subset V(F_i), \ i \in I \). Let \(A = \bigcup_{i \in I} A_i \cup V(K) \). Hence
\[
k(G - A) - |A| = (r - t - c) + \sum_{i \in I} k(F_i - A_i) + |J| + 1 - \sum_{i \in I} |A_i| - r
= |J| + \sum_{i \in I} s(F_i) + 1 - t - c \geq |J| + |I| + |B| + 1 - t - c
= |B| + 1 - t > 0,
\]
contrary to the toughness of \(G \). \(\square \)

Remark. Under the assumptions of Proposition 2.8, if each component \(F \) of \(H \) is of order at most five then \(G \) is hamiltonian. In fact, then \(p(F) = |V(F)| - 1 \) or \(p(F) + s(F) \geq |V(F)| \) can easily be seen. The smallest connected graph \(F \) which violates the last condition is the 6-vertex graph of the letter \(H \).

3. Main result

Now we are going to prove Conjecture (3.3) of [9].

Theorem 3.1. The maximum size of a tough nontrivially nonhamiltonian \(n \)-vertex graph \(G \) is \(f(n) := 6 + \binom{n}{2} \cdot 3 \), \(n \geq 7 \). The corresponding maximum graphs are \(M_n \) for each \(n \geq 7 \) and, additionally, \(G_9 \) for \(n = 9 \).
Proof. Let $g(n)$ be the maximum size to be determined and let G stand for the corresponding maximum tough nonhamiltonian graph of order n (and size $g(n)$). Assume $n \geq 7$ because there is no tough nonhamiltonian graph of order n for $3 \leq n \leq 6$. Hence, by Proposition 1.1, $g(n) \geq f(n)$. We can see, by inspecting the list [4] of all maximally nonhamiltonian graphs of order $n \leq 10$, that our Theorem is true for $n \leq 10$. Hence, assume $n > 11$.

In what follows we shall use the fact that toughness is an increasing property, i.e., the addition of a new edge to a tough graph does not spoil the toughness. Notice, moreover, that G is maximally nonhamiltonian, whence every two non-adjacent vertices of G are connected by a hamiltonian path.

In what follows d is the number of total (i.e., degree-$(n-1)$) vertices in G.

Case 1: $\Delta < n-1$ (and $d = 0$).

Then G is homogeneously traceable whence, by Corollary 2.3, $\Delta \leq n-4$. Suppose that $\Delta = n-4 - \rho$, where $0 \leq \rho \leq n-6$. However, if $\rho \geq 3$ then the sum of vertex degrees $2g(n) \leq n(n-7) < n^2 - 7n + 24 = 2f(n)$, a contradiction. Hence $\rho \in \{0, 1, 2\}$. Let x be a vertex of G of degree Δ. Then x has $\rho + 3$ nonneighbours, say $y_1, y_2, \ldots, y_{\rho+3}$, where $x \neq y_j$. By Proposition 2.1, $\deg y_j \leq \rho + 3$ for each j and, by Theorem 2.2, $\deg y_j \leq \rho + 2$ for some subscript t. Hence

$$2g(n) \leq (\rho + 2)(\rho + 3) + \rho + 2 + (n-\rho-3)(n-\rho-4) = n^2 - 7n - 2\rho n + 2\rho^2 + 13\rho + 20 < 2f(n),$$

a contradiction.

Case 2: $\Delta = n-1$ and $d \geq 2$.

Let $X = \{x_1, x_2, \ldots, x_d\}$, denote the set of total vertices of G. Hence $\delta = d$, but if $\delta = d = 2$ then G, being tough, has exactly one vertex of degree 2. Owing to Corollary 2.7,

$$d \leq \delta \leq (n-5)/2.$$

Let $z_0, z_0 \in V(G) - X$, be a vertex of degree Δ'. Then, by Corollary 2.5, $\Delta' \leq n-2-s$. Let $\Delta' = n-2-s$. Then $s \geq d$ and there is the set Y of $s+1$ vertices, say y_1, y_2, \ldots, y_s+1, each of which is different from and non-adjacent to z_0. Let $Z = V - (X \cup Y)$. By Proposition 2.1, $\deg y_j \leq s + 1$ for each $y_j \in Y$ and, by Theorem 2.4, $\deg y_j \leq s$ for some t. Hence

$$2g(n) = \sum_{x \in X} \deg x + \sum_{y \in Y} \deg y + \sum_{z \in Z} \deg z = d(n-1) + s + s(s + 1) + (n-d-s-1)(n-2-s) = n^2 - n(2s + 3) + 2s^2 + 3s + d + 2.$$

Suppose that $s \geq d + 2$. Then $2g(n) \leq n^2 - n(2s + 3) + 3s^2 + 4s$. Because $3s^2 + 4s - 24 \leq (2s + 2)(2s - 4)$ for each s, $3s^2 + 4s - 24 < n(2s - 4)$ if $2s + 2 < n$, which implies $g(n) < f(n)$, a contradiction. Hence $2s + 2 \geq n$, i.e., $|Y| \geq n/2$. Therefore $\Delta' \leq n - |Y| - 1 \leq n/2 - 1$, whence (because $d \leq (n-5)/2$)

$$2g(n) \leq d(n-1) + (n-d)(n/2 - 1) = n^2/2 - n + dn/2 \leq 3n^2/4 - 9n/4 < 2f(n),$$

a contradiction.
Thus $s \in \{d, d + 1\}$. Hence the subgraph $\langle Y \rangle$ induced by Y is a union of cycles, paths and isolated vertices.

Suppose that the subgraph $\langle Z \rangle$ induced by Z is complete, $\langle Z \rangle = K_{|Z|}$. Then, for each $z \in Z$, $\deg z = \deg z_0 = \Delta'$, whence there is no $Z - Y$ edge in G. Therefore $G = \langle Y \rangle \ast K_{d} \ast K_{|Z|}$, whence, by Proposition 2.8, G is hamiltonian, a contradiction. Hence $|Z| \geq 3$ and, for some two vertices $u, v \in Z$, $uv \notin E(G)$.

Moreover, $d + s + 4 \leq n$. Consequently,

$$\sum_{z \in Z} \deg z = \deg u + \deg v + \sum_{z \in Z - \{u, v\}} \deg z,$$

whence

$$2g(n) \leq d(n - 1) + s + s(s + 1) + n - 1 + (n - (d + s + 3))(n - 2 - s)$$

$$= n^2 - n(2s + 4) + w(d, s) =: \varphi(n, d)$$

where $i := s - d \in \{0, 1\}$ and

$$w(d, s) := 2s^2 + ds + 7s + d + 5.$$

Suppose that $s = d$, i.e., $i = 0$. Then $w(d, s) = w(d, d) = 3d^2 + 8d + 5$. Furthermore,

$$2f(n) - \varphi_0(n, d) = n(2d - 3) - 3d^2 - 8d + 19$$

$$= n - 9 \text{ if } d = 2, \text{ a contradiction if } d = 2;$$

$$\geq (d - 2)^2 \text{ (because } n \geq 2d + 5),$$

$$\text{ a contradiction for } d > 2.$$

Hence $s = d + 1$, i.e., $i = 1$. Then

$$w(d, s) = w(d, d + 1) = 3d^2 + 13d + 14$$

and

$$2f(n) - \varphi_1(n, d) = n(2d - 1) - 3d^2 - 13d + 10$$

$$= 3n - 18 \text{ if } d = 2, \text{ a contradiction if } d = 2,$$

$$\geq (d - 4)(d - 1) + 1, \text{ a contradiction if } d \geq 4;$$

$$= 5n - 56 \text{ if } d = 3, \text{ a contradiction if } n \geq 12 \text{ and } d = 3.$$

A possible counterexample has $n = 11$, $d = 3 = \delta$, $\Delta' = 5$ and $2g(n) = 2f(n) = 68$, whence it has the degree sequence $(10^3, 5^7, 3)$ and therefore does not exist (cannot be nonhamiltonian).

Case 3: $\Delta = n - 1$ and $d = 1$.

Let n_2 be the number of degree-2 vertices in G. Clearly, no two of them can be adjacent. Suppose $n_2 \leq 1$. Then, by Corollary 2.5, $\Delta' = n - 4 - t$ where $t \geq 0$.

If $t \geq 3$ then $2g(n) \leq n - 1 + (n - 1)(n - 7) < 2f(n)$, a contradiction. Hence $t \in \{0, 1, 2\}$. Let $\deg z_0 = \Delta'$ for some $z_0 \in V(G)$. Then there are $t + 3$ vertices different from and non-adjacent to z_0, of which one is of degree $\leq t + 2$ and the
remaining ones are of degree \(\leq t + 3 \) (by Theorem 2.4 and Proposition 2.1). Hence

\[
2g(n) \leq n - 1 + (t + 3)^2 - 1 + (n - t - 4)^2 < 2f(n),
\]

a contradiction. Hence \(n_2 \geq 2 \). Because \(G \) is tough, no nontotal vertex in \(G \) can be a common neighbour of any two degree-2 vertices of \(G \). Suppose \(u_1 \) and \(u_2 \) are the only two degree-2 vertices of \(G \). Hence there are two nontotal vertices, \(z_1 \) and \(z_2 \), in \(G \) such that \(u_iz_i \in E(G) \) \((i = 1, 2)\) and \(z_1 \neq z_2 \). Assume that notation is chosen so that \(\text{deg} z_1 \geq \text{deg} z_2 \). Suppose \(z_1z_2 \notin E(G) \). Then \(\text{deg} z_1 + \text{deg} z_2 \leq n - 1 \) by Proposition 2.1, whence

\[
g(n) \leq n - 1 + 2 + \binom{n - 4}{2} < f(n),
\]
a contradiction. Therefore \(z_1z_2 \in E(G) \). By Proposition 2.1, \(\text{deg} z_1 \leq n - 4 \). Hence there are two vertices, say \(y_1 \) and \(y_2 \), both different from \(u_2 \) and from each \(z_i \) and both non-adjacent to \(z_1 \). Hence, by Proposition 2.1,

\[
\text{deg} z_1 + \text{deg} y_1 + \text{deg} y_2 + \text{deg} z_2 \leq 2(n - 1),
\]
whence

\[
g(n) \geq 2(n - 1) - 1 + \text{deg} y_1 + \text{deg} u_2 - 2 + \binom{n - 6}{2} \leq f(n),
\]
a contradiction. Thus \(n_2 \geq 3 \). Then \(G = M_n \) is the only possibility.

All cases have been examined. \(\square \)

4. Concluding remarks

Conjecture. For integers \(d \) and \(h \) such that \(0 \leq h < d \), if \(G \) is a maximum nonhamiltonian \(n \)-vertex graph with exactly \(d \) total vertices and the scattering number \(s(G) \leq -h \), then \(n \geq 5 + 2d + 3h \) and

\[
G = (d - h - 1)K_1 \ast K_d \ast ((2h + 3)K_1 \ast K_{n - 2d - h - 2}),
\]
whence

\[
\delta \geq \max\{h + 2, d\} \quad \text{and} \quad |E| = d^2 + (h + 2)d + 2h + 3 + \binom{n - d - h - 2}{2}.
\]

This conjecture presents an analogue of a special case \((s = 0)\) in Theorem 3 of [10].

Our main result presents the complete solution of the case \(i = 1 \) and \(h = 0 \) of the conjecture 1.2 in the recent paper [3] by Hendry. Our method does not work in remaining cases, namely, for \(i = 0 \) (\(G \) is nontraceable) and \(i = 2 \) (\(G \) is non-Hamilton-connected). Our Conjecture is influenced by that of Hendry because originally we considered only \(h = 0 \), that is, a tough graph \(G \) (without involving \(s(G) \)).
It remains an open problem to find maximum homogeneously traceable nonhamiltonian graphs \((d = 0)\) on \(n\) vertices for \(n \geq 11\), see [8] for \(n = 9, 10\) and for related problems.

References