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1. INTRODUCTION

The first explicit statement of the Askey—Wilson integral,

j‘” (eZie’ €_2i9)wd0
0 ()\]ei()’ /\1671.9, /\zeie’ )\267"9, )\33“’, )\3€7i0, A4ei9, )\4€7i0)30

(1)

2 (MAA5A),
(@) (MAy, A A, A Ay, A ds, A Ay, Ashy)., ’

is in Askey and Wilson [5]. However, in [8] the author showed that Rogers
[14] gave a formula equivalent to (1) modulo the orthogonality of the
continuous g-Hermite polynomials in 1893. [8] also contains extensions of
Rogers’ ideas and gives several new generalizations and variants of (1).
Equation (1) uses the standard notation

k
(a,ay,...,a,). = ljl(”i)w
where
()= = 1_10(1 —xq""1).
(x), is called an infinite g-factorial.
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Throughout this paper g is taken to be a fixed complex number
satisfying |g| < 1. We will also find occasion to use finite g-factorials:

!
(4= T1(1 =",

In this paper we simplify the ideas of [8] and in so doing give an easy
proof of (1). Our method has wide applicability and gives new results as
well as all of our previous Askey—Wilson type integrals.

2. ORTHOGONAL POLYNOMIALS

Let a function W(x) be given which is non-negative and integrable on an
interval (a, b) and satisfies

[ W(x) dx > o.

If there exists a sequence of polynomials {P,},.,, P, of degree n, such
that

fame(x)Pn(x)W(x) dv = 8, ,  mon=0, (2)

then the polynomials {P,}, . ,, are called an orthogonal system with respect
to the weight function W(x) on (a, b).

One of the principle uses of an orthogonal system {P,},., is that it
enables one to compute expansions of suitable functions in series of these
polynomials. Let f(x) and g(x) be such functions with the following
expansions.

f(x) = X a,P,(x),

m=0
(3)
g(x) = X b,P(x).
n=0
Of course to find these expansions, the sequences of constants {a,,}, . ,

and {b,}, . , need to be determined. To this end, note that (3) implies that

f(x)P(x)W(x) = ¥ a,P,(x)P,(x)W(x).

m>0

g(x) P, (x)W(x) = ¥ b,P,(x)P,(x)W(x).

n>0
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Integrating on (a, b) and using (2) then gives
1
an = o [T B ()W) dr.

L (4)
b= [(x)P.Lx)W(x) dr.

Recall the derivation of Parseval theorem’s for a bilinear inner product
(-, with associated orthogonal functions {P,},,. o, {P,., P,) = w,,8,, ,:

(.8 = (ZfuPor a8
= megn<Pm’Pn>

Zf gn/"(’m m,n Zf gml“l’m‘

In the case of interest here {f, g) = [°f(x)g(x)W(x) dx. Parseval’s theo-
rem then gives

/f(x)g(x)w(x)dx X by b (5)

m=>0

In all our applications below the interval of orthogonality is finite, so the
polynomials are complete in L?, and Parseval’s theorem holds.

In the next section we give applications of (5) beginning with an easy
proof of the Askey—Wilson integral.

3. THE ASKEY-WILSON INTEGRAL AND
OTHER APPLICATIONS

The Askey—Wilson integral (1) is important because it is the key to
proving the orthogonality of the Askey—Wilson polynomials which are the
most general known set of hypergeometric orthogonal polynomials [12]. A
much less general set of orthogonal polynomials, the continuous g-Hermite
(also called Rogers—Szegd) polynomials, were first discussed by Rogers in
1893 [14]. In fact (1) follows easily from (5) combined with an identity
involving the continuous g-Hermite polynomials first given by Rogers in
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1893 [14]. This identity is

(/\1)\2)\3/\4)00 _ hn(/\l’)\Z)hn()\B’)\4)
(A A5, A Ay, A A5, Ay Ay). n>0 (q)x ’

(6)

where

(@
a5 ) _'HZ;)(q)m(Q)nfm’

and is known as the g-Mehler formula. The proof of (6) is quite easy; it is
given as an exercise in Andrews [4]. For Rogers’ proof see Rogers [14] or
Bowman [8]. Carlitz rediscovered (6) in [9]. He later in [10] gave two more
proofs, the second of which is almost identical to the original proof of
Rogers [14].

The continuous g-Hermite polynomials {4,},., are defined by 4, =
A,(e'") = h, (e e ") with 6 real. Today these polynomials are denoted
by H,(x;¢q) where x = cos 6. It is not hard to see that the polynomial
H,(x) is of degree n in x. The orthogonality of {A4,},. , on (0, 7) is given
by

2

(9)

[ A, A7) d0 = ——(q),3,- (7)
0

The deepest result used in the proof of this relation is Jacobi’s triple
product identity. For details see [1-3]. (The first proof was apparently
given by Allaway [2]). For brevity we follow Rogers [14] and put P(z) =
(ze'?, ze719)oo,

Proof of the Askey—Wilson integral. Put P, = A,, f(8) =
1/P(A)DP(A,), and g(6) = 1/P(A;)P(),), which by (6) have the expan-
sions

1 hm()\h/\z)
18) = P(A)P(Ay) - m=0 (M2A2)o(G) "

and

1 h,(Ass Ay)
80 = B Py & T (),
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Hence by (5) and (7),

- (e—Zz't‘}’eZie)OC de
Jy Py P PO P

27 hm()\la Az)hm()\sa )\4)
(q)- m=0 (M) A3A4)(G)
2 (M A A58,

(@)= (Mg, Adg, MAg, A dg, M Ay, A3Ay)..
where the last equality followed again from (6). |

A proof very similar to this one was given by Ismail and Stanton [13].
Their proof, however, makes use of the linearization formula for the
polynomials A, (equivalent to the g-Mehler formula) and involves a
four-fold summation which is reduced using the g-binomial theorem,
reindexing and rearranging terms, instead of using the Parseval identity as
we do here. These differences result in our proof being substantially
shorter. The integral evaluations in Bowman [8] can also be proved more
quickly by this method.

It is interesting to note that the technique above can be stated com-
pactly in terms of the Poisson kernel. Let the Poisson kernel associated
with the arbitrary orthogonal system P, above be defined by

K(x,y,s) = ZOPn(X)Pn(y)S”/Mn-

Then we have the following formula:
J'K(x.y.5)K(x, 2.0)W(x) dx = K(y. 2. 5). (8)

The proof again is just an application of the Parseval theorem. To obtain
the Askey—Wilson integral note that the Poisson kernel for the continuous
g-Hermite polynomials is the g-Mehler formula.

We now give several new applications of the proof technique.

Define the polynomials J,(A;; A4, As, ..., A, ,3) by

Te(A5 Mgy Ay Ay i3)
- X [ , ](M)(M)
ny,...,Nn, 145 )\ 1% ) ny+n,

ny+ o tn, =k
n;>0

e n n coe n
X (M Ay 3) b o by AGAS2 o A s,
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where the g-multinomial brackets are defined by

[k] - (q)m(q()i)lf~(q)nm‘

Our first theorem is a vector extension of the Askey—Wilson integral.

THEOREM 1. For NP < 1,2 <k<m+3,1=1,2,

1 m+3 1 (A(zj)eie, /\gj)eie)k
/1:[1 (A e, APe™),, 4 (A7) =0 (A7), (9)«

j-w
0

XJk(e”’; AP, /\(,,’;)+3)e_ik9 (e*, e %1%, do

= ! 2m Z hk(/\(;)"“’A(n]1)+3)hk(/\(22)7"")‘(ri)+3)

(A2, A09).. (9)- =0 )

Remark on notation. The polynomials 4,(b,,...,b,,) are the a = 0 case
of the symmetric polynomials /,(a;b) studied in [7]. They are defined by

k
hk(a;b) = Z Ne,.... N [bl’al]n, "'[bm’am]nm,
1> > 'm

ny+ - +n

n;>0

where [x, y], = (x — y)x — yq) - (x — yq"~ ") so that

k n n n
ho(byyooisby) =hu(b) = Y [nl,m,nm]bllbzz e b,
: -k

In Theorem 2 we will use the b = 0 case of these polynomials. There

h(a:0) = Y [nl,..k.,nmh—l)"q(z*”'+("m)af‘azz e a.
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Proof. Theorem 4.2.3 of [8] states that
(A/\l)\z)\3)OC m+3 1
(AX).(AA3)e =2 (AA).

AA AA

X2(12)k(13)k
k>0 (AN A 05) ()i
_y (A M) (A Assees Ayis)

k>0 (9)«
Put A = e "% A, = €'’ to obtain
(A3). mi3 1
(Aze—ie’)\?’e—iﬁ)m ) (Aleie)oc

(Azeie)k(’\Seie)

ngo (M23)(9)k
~ Achi(Ayyees Ayys)

- kgo (9)« , ?

for [A] < 1,2 <1 <m+ 3. Now produce two copies of this identity for
the sets of variables {AY,..., A, .} and {A?,..., A%, .} and call the
respective left-hand sides of f(6) and g(6). Then (9) becomes the expan-
sions of f and g in the set of polynomials {A4,,}, . ,. Applying (5) gives the
theorem directly. [

Jk(/\l; )\4, /\57--" Am-%—3)/\k

k —i
Te(Agses Az e

For m > 1 define the sequence of rational functions N.(A;;A,,
wesA,. ) by
Ne = Ne(As Agses Ayiy)

ni 4o+ nm
_ 2: [ k ] q(z) (Z)A? R
ny+ - +n,=k Mo eees P (Al/\Z)nl(/\ll\S)n1+n2 '”(/\1/\m)n1+~~+nm,l

n;>0

Then we have the following theorem.

THEOREM 2.

r

S —e N (e 2D, .. AD } A
[1TT (). 3 LZE MM M) i iy
j=1i=2

k>0 (Aghlem)k(Q)k
2r (A, D, 0)h (AD, A2, 5 0)

)»

T (D) (@)
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Proof. Theorem 4.2.5 of [8] states that

k

mil (=) " Ne(Aj Ay A00)

[T 2

i=2 k=0 (@) (A A1)
/’lk(/\, /\l)hk(/\27)\35""/\m+1;0)

=X

k=0 ()«

Put A = e '’ and A, = ¢’ in this equation to get

m+1 , (—e’i")ka(eie;/\z,...,/\ 1)

I'T (ref), )Y - -

l=2( ! ) k>0 ()\m+166)k(q)k
hk(AZ’)\3""7)\m+l;0)

- ¥

k>0 (9)« k

The rest of the proof proceeds mutatis mutandis to the last one. |

For the next theorem we use the standard ¢ notation for basic hyperge-
ometric series. The function , ¢, _,(z) for |z| < 1 is defined by

T W I C KL
ke bl’bZ"“’bk 1’ n>0 (bl)n(bZ)n '”(bkfl)n(q)n ‘

THEOREM 3.  For |bl,1b,|, |t,¢,] < 1,

fw ﬁ (the"O,the*”))w aj,te’ e’ (€20, ¢=2%),
o |j=1 (tjte’""’,tje*"@)m 372 (B, Be 7).
_ 2m (B’Bq7a1b17a2b2)w bl,bz,Bz,B oy

(9)- (Bz,bl,bz)m o aby,ab,, Bq’ )

de

i0 —i0> 0
t;Be'",t; Be”"

Proof. Putm =2,d, =te', d, =te™"’, ¢, = tBe'’, and ¢, = tBe”"" in
[7, Corollary 2.1], to obtain

a,te' te” (tBe’,tBe™"’, ab),

3P, tBei® (Beit’ (1,1, b)..
B (D)«
k=0 (ab);

Ci(x; Blg)t*, (10)
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where x = cos 6 and {C,},. , are the continuous g-ultraspherical polyno-
mials. The orthogonality relation for this family is (see [11])

7TC . C . W d =L
[ "Cux Bla)C,(x: Bla) Wy (xlq) d6 v.(Blg)’

where | B8] < 1,

(B' ) _ (q7 Bz)w(q)n(l - Bqn)
PP = S (B, Ba)(BY),(1— B)

and
(€2i0’ 6—21'6)oo

(BEZiO’ Be*Zi(?)aQ .

Wy(xlg) =

Now produce two copies of (10) for the sets of variables {a,,¢,, b,} and
{a,, t,, b,} and call the respective left sides f(0) and g(6) and apply (5). 1

Here we have not considered applications of the idea in this paper to
polynomials with discrete measures. This will lead to summation theorems
instead of integrals. Also, the main idea works for biorthogonal polynomi-
als. We will consider topics like these in future papers.
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