
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Journal of Functional Analysis 259 (2010) 1799–1815

www.elsevier.com/locate/jfa

Convolution with measures on flat curves in low
dimensions

Daniel M. Oberlin 1

Department of Mathematics, Florida State University, Tallahassee, FL 32306, United States

Received 16 December 2009; accepted 17 May 2010

Available online 2 June 2010

Communicated by I. Rodnianski

Abstract

We prove Lp → Lq convolution estimates for the affine arclength measure on certain flat curves in R
d

when d ∈ {2,3,4}. For d = 2,3, we also establish certain related Lorentz space estimates.
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1. Introduction

Let γ be a curve in R
d given by

γ (t) =
(

t,
t2

2
, . . . ,

td−1

(d − 1)! , φ(t)

)
(1.1)

where φ ∈ C(d)(a, b), where φ(j)(t) > 0 for t ∈ (a, b) and j = 0,1,2, . . . , d , and where φ(d) is
nondecreasing. Such curves are termed simple in [10]. We are interested in the possibility of
proving Lp → Lq convolution estimates for the affine arclength measure λ on (1.1), given by
dλ = φ(d)(t)2/(d2+d) dt . We begin by recalling a theorem from [13]. (In this note, |E| will stand
for the Lebesgue measure of E.)
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Theorem 1.1. Suppose d = 2. The inequality

‖λ ∗ χE‖3 � (12)1/3|E|2/3

holds for all measurable E ⊂ R
2.

Theorem 1.1 is equivalent to a weak-type (3/2,3) estimate for the operator given by convo-
lution with λ, an estimate which is uniform over the class of measures λ described above. Here
are two questions which are raised by Theorem 1.1:

(i) is there an analogous strong-type estimate, and
(ii) are there analogs of Theorem 1.1 if d > 2?

Having no idea how to attack these interesting questions in their natural generality, we follow
the usual practice of asking what can be said along such lines by imposing additional hypotheses
on φ. The requirement

(
n∏

j=1

φ(d)(sj )

)1/n

� Aφ(d)

(
s1 + · · · + sn

n

)
, (1.2)

to hold for sj ∈ (a, b), was used with n = d in [3] to obtain Fourier restriction estimates for
curves (1.1). It is obvious that if β � d then condition (1.2) holds with A = 1 for φ(t) = tβ on
the interval (0,∞). Moreover, as was observed in [3], if we define φ0(t) = tβ for some β > d

and then define

φj (t) =
t∫

0

(t − u)d−1 exp

(
− 1

φ
(d)
j−1(u)

)
du

for j � 1, each of the functions φj satisfies (1.2) with A = 1 on (0,∞). This yields a sequence
of functions which are progressively flatter at the origin. (See Section 4 of [3] for other examples
of flat functions satisfying (1.2).) In this note we will assume the n = 2 version of (1.2) which,
with ω

.= (φ(d))2/(d2+d), we write as

(
ω(s1)ω(s2)

)1/2 � Aω

(
s1 + s2

2

)
. (1.3)

We will obtain convolution estimates in only the dimensions d = 2,3 and 4:

Theorem 1.2. Suppose d = 2 and assume (1.3). Then there is the Lorentz space estimate

‖λ ∗ f ‖L3 � C(A)‖f ‖L3/2,3 .

Theorem 1.3. Suppose d = 3 and assume (1.3). Then, for any ε > 0, there is the Lorentz space
estimate

‖λ ∗ f ‖L2 � C(A)‖f ‖L3/2,2−ε .
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Theorem 1.4. Suppose d = 4 and assume (1.3). If

1

p
− 1

q
= 1

10
and

4

10
<

1

p
<

7

10
(1.4)

then there is the Lebesgue space estimate

‖λ ∗ f ‖Lq � C(A,p)‖f ‖Lp .

Here are some comments:
(a) Theorem 1.2 is the best possible Lorentz space estimate, even in the nondegenerate

case φ(t) = t2/2 (see Section 3 in [15]). It implies the sharp Lp → Lq mapping property,
an L3/2 → L3 estimate.

(b) Theorem 1.3 is analogous to a result from [8] for polynomial curves (whose proof we will
follow). Theorem 1.3 implies the sharp Lp → Lq estimates, which hold for

1

p
− 1

q
= 1

6
and

1

2
� 1

p
� 2

3
. (1.5)

But there are sharper Lorentz space estimates for the nondegenerate case φ(t) = t3/6 in [1] and
for polynomial curves (for all dimensions d) in [16].

(c) Theorem 1.4 is much less satisfactory. One would like, for example, at least the sharp
Lp → Lq mapping properties, which correspond to the endpoints in (1.4).

(d) An analog of Theorem 1.4 for all dimensions d , as well as analogs of the endpoint results
of [15] and [16], might follow from an analog of the band structure construction of [6] for the
curves and measures considered in this note. But, in view of the complicated nature of a Jacobian
determinant associated with our operators, it is not clear how to obtain such a band structure.

(e) The papers [9,4,5] contain some earlier results for convolution with affine arclength mea-
sures in dimensions 2 and 3.

Section 2 contains the proofs of Theorems 1.2–1.4 and Section 3 contains the proofs for the
lemmas required in Section 2.

2. Proofs of theorems

Proof of Theorem 1.2. According to the proof of Theorem 5 in [14], which abstracts an argu-
ment from [2], it is enough to establish the estimate

b∫
a

( b∫
a

χE

(
γ (t2) − γ (t1)

)
ω(t2) dt2

)2

ω(t1) dt1 � C(A)|E|

for measurable E ⊂ R
2. The inequality

b∫ ( b∫
χE

(
γ (t2) − γ (t1)

)
ω(t2) dt2

)2

ω(t1) dt1 � 4|E|

a t1
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from [13], which is true without any additional hypothesis like (1.3), shows that it suffices to
establish the estimate

b∫
a

( t1∫
a

χE

(
γ (t2) − γ (t1)

)
ω(t2) dt2

)2

ω(t1) dt1 � C(A)|E|. (2.1)

The mapping

(t1, t2) �→ γ (t2) − γ (t1)

is one-to-one by the convexity of the curve γ . If J (t1, t2) is the absolute value of the Jacobian
determinant of this mapping, then (2.1) is equivalent to∫ (∫

χΩ(t1, t2)ω(t2) dt2

)2

ω(t1) dt1 � C(A)

∫ ∫
χΩ(t1, t2)J (t1, t2) dt2 dt1 (2.2)

if Ω ⊂ {(t1, t2): a < t2 < t1 < b}. We will need the following estimate, a consequence of
Lemma 2.1 below,

J (t1, t2) � c(A)|t1 − t2|ω(t2)ω(t1)
2. (2.3)

Lemma 2.1. Suppose γ is as in (1.1) and let J (t1, . . . , td ) be the absolute value of the Jacobian
determinant of one of the mappings

(t1, . . . , td) �→ γ (t1) ± γ (t2) ± · · · ± γ (td).

Suppose that (1.3) holds and that n1 � · · · � nd are positive numbers satisfying n1 + · · · + nd =
d(d + 1)/2. Suppose that {i1, . . . , id} = {1, . . . , d} and that a < ti1 < · · · < tid < b. Then

J (t1, . . . , td) � c

(
d∏

j=1

ω(tij )
nj

)
V (t1, . . . , td), (2.4)

where

V (t1, . . . , td ) =
∣∣∣∣ ∏

1�i<j�d

(tj − ti )

∣∣∣∣
and where c depends only on A from (1.3) and on n1, . . . , nd .

Given (2.3), inequality (2.2) will follow from∫ (∫
χΩ(t1, t2)ω(t2) dt2

)2

ω(t1) dt1

� C

∫ (∫
χΩ(t1, t2)ω(t1)|t1 − t2|ω(t2) dt2

)
ω(t1) dt1. (2.5)

To see (2.5), we will use the following lemma.
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Lemma 2.2. Suppose ω is nonnegative and nondecreasing on some interval (c, d]. Suppose that
c1, . . . , cK ∈ R. For ρ > 0 let

Eρ =
{

t ∈ (c, d]: ω(t)K−1ω(d)

K∏
�=1

|t − cl | � ρK

}
.

Then ∫
Eρ

ω(t) dt � C(K)ρ.

Indeed, fix t1 and define ρ by

ρ = 1

2C(1)

∫
χΩ(t1, t2)ω(t2) dt2,

where C(1) is the constant in Lemma 2.2 corresponding to K = 1. It follows from Lemma 2.2
(with d = t1) that ∫

{ω(t1)|t2−t1|�ρ}
χΩ(t1, t2)ω(t2) dt2 � 1

2

∫
χΩ(t1, t2)ω(t2) dt2

and so

∫
χΩ(t1, t2)ω(t1)|t1 − t2|ω(t2) dt2 � 1

4C(1)

(∫
χΩ(t1, t2)ω(t2) dt2

)2

.

Now integrating with respect to t1 gives (2.5). �
Proof of Theorem 1.4. We will apply the iterated T T ∗ method introduced by Christ in [6] and
(see, e.g., the discussion and references in [16]) employed by many others since then. Thus,
assuming some familiarity with Christ’s method, Theorem 1.4 will follow if we establish the
inequality (2.9) below, where E, α, and β are as follows: let Ω ⊂ (a, b)4 be a set of the form

Ω = {
(t1, t2, t3, t4): t1 ∈ Ω0, t2 ∈ Ω(t1), t3 ∈ Ω(t1, t2), t4 ∈ Ω(t1, t2, t3)

}
where

λ(Ω0) � β > 0, λ
(
Ω(t1)

)
� α > 0 for each t1 ∈ Ω0, (2.6)

λ
(
Ω(t1, t2)

)
� β whenever t1 ∈ Ω0, t2 ∈ Ω(t1), and (2.7)

λ
(
Ω(t1, t2, t3)

)
� α whenever t1 ∈ Ω0, t2 ∈ Ω(t1), t3 ∈ Ω(t1, t2). (2.8)

(Here we are writing λ for the measure

dλ(t) = ω(t) dt = φ(4)(t)1/10 dt
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on (a, b) as well as for its image on γ .) The set E is defined by

E = {
γ (t1) − γ (t2) + γ (t3) − γ (t4): (t1, t2, t3, t4) ∈ Ω

}
,

and the desired inequality is

|E| � c(A)α7β3. (2.9)

By passing to a subset of Ω and replacing α and β by α/24 and β/24, we can assume that
there is some permutation {i1, i2, i3, i4} of {1,2,3,4} such that if (t1, t2, t3, t4) ∈ Ω then

ti1 < ti2 < ti3 < ti4 .

If J (t1, t2, t3, t4) is the absolute value of the Jacobian determinant of the mapping

(t1, t2, t3, t4) �→ γ (t1) − γ (t2) + γ (t3) − γ (t4),

we will use the following inequality, a consequence of Lemma 2.1,

J (t1, t2, t3, t4) � c(A)ω(ti4)
9

(
3∏

j=1

ω(tij )

)1/3

V (t1, t2, t3, t4). (2.10)

We will also need the following lemma.

Lemma 2.3. Suppose ω is nonnegative and nondecreasing on an interval [c, d). Suppose η > 0
and r > 1 satisfy

η <
1

r ′ =̇ 1 − 1

r
.

Suppose E ⊂ [c, d) and let

ρ =
∫
E

ω(t) dt.

Then, for t0 ∈ R,

ρ1+rη ω(c)r−(1+rη) � C(η, r)

∫
E

ω(t)r |t − t0|rη dt.

If t1, t2 ∈ R then also

ρ1+rη|t2 − t1|rηω(c)r−(1+rη) � C(η, r)

∫
E

ω(t)r
(|t − t1| · |t − t2|

)rη
dt.



D.M. Oberlin / Journal of Functional Analysis 259 (2010) 1799–1815 1805
Now define I by

I =
∫
Ω0

∫
Ω(t1)

∫
Ω(t1,t2)

∫
Ω(t1,t2,t3)

ω(ti4)
9

(
3∏

j=1

ω(tij )

)1/3

V (t1, t2, t3, t4) dt4 dt3 dt2 dt1

so that, because of (2.10), we have

|E| � c(A)I. (2.11)

(The change of variables needed for the estimate (2.11) is justified as in [11, p. 549].) In view
of (2.11), (2.9) will follow if we show that

I � α7β3. (2.12)

(The constants implied by � and � will not depend on any parameters.)
We will, unfortunately, need to consider several cases. To begin, if 4 = i4, we will use

Lemma 2.3 with r = 5 and η = 3/5 to estimate

∫
Ω(t1,t2,t3)

ω(t4)
5

3∏
j=1

|t4 − tj |dt4 �
∫

Ω(t1,t2,t3)

ω(t4)
5|t4 − ti3 |3 dt4

�
( ∫

Ω(t1,t2,t3)

ω(t4) dt4

)4

ω(ti3).

With the inequality ω(ti4) � ω(ti3) this gives

I �
∫
Ω0

∫
Ω(t1)

∫
Ω(t1,t2)

( ∫
Ω(t1,t2,t3)

ω(t4) dt4

)4

· ω(ti3)
16/3ω(ti2)

1/3ω(ti1)
1/3V (t1, t2, t3) dt3 dt2 dt1. (2.13)

If 4 = ik0 for some k0 = 1,2,3, then

ω(t4)
1/3ω(ti4)

11/3 � ω(t4)
3ω(tik0+1)

by the monotonicity of ω. Thus

∫
Ω(t1,t2,t3)

ω(t4)
1/3ω(ti4)

11/3
3∏

j=1

|t4 − tj |dt4 �
∫

Ω(t1,t2,t3)

ω(t4)
3ω(tik0+1)

3∏
j=1

|t4 − tj |dt4

�
( ∫

ω(t4) dt4

)4

,

Ω(t1,t2,t3)
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where the last inequality follows from an application of Lemma 2.2 as at the end of the proof of
Theorem 1.2 but with K = 3 instead of K = 1. Therefore

I �
∫
Ω0

∫
Ω(t1)

∫
Ω(t1,t2)

( ∫
Ω(t1,t2,t3)

ω(t4) dt4

)4

× ω(ti4)
16/3

3∏
k=1, k 
=k0

ω(tik )
1/3V (t1, t2, t3) dt3 dt2 dt1. (2.14)

Now if {j1, j2, j3} is the permutation of {1,2,3} such that tj1 < tj2 < tj3 whenever t1 ∈ Ω0,
t2 ∈ Ω(t1), t3 ∈ Ω(t1, t2), then (2.13), (2.14), and (2.8) imply that

I � α4
∫
Ω0

∫
Ω(t1)

∫
Ω(t1,t2)

ω(tj3)
16/3ω(tj2)

1/3ω(tj1)
1/3V (t1, t2, t3) dt3 dt2 dt1. (2.15)

If 3 = j3,

∫
Ω(t1,t2)

ω(t3)
3|t3 − t2| · |t3 − t1|dt3 � |t1 − t2|

∫
Ω(t1,t2)

ω(t3)
3|t3 − tj2 |dt3

� |t1 − t2|
( ∫

Ω(t1,t2)

ω(t3) dt3

)2

ω(tj2),

where the � results from an application of Lemma 2.3 with r = 3 and η = 1/3. With (2.15), (2.7),
and the monotonicity of ω this gives

I � α4β2
∫
Ω0

∫
Ω(t1)

ω(tj2)
7/2ω(tj1)

1/2|t1 − t2|2 dt2 dt1. (2.16)

If 3 = j2, the second conclusion of Lemma 2.3, with r = 13/6 and η = 6/13, gives

∫
Ω(t1,t2)

ω(t3)
13/6|t3 − t2| · |t3 − t1|dt3 � |t1 − t2|

( ∫
Ω(t1,t2)

ω(t3) dt3

)2

ω(tj1)
1/6.

From (2.15) it then follows that

I � α4β2
∫
Ω0

∫
Ω(t1)

ω(tj3)
7/2ω(tj1)

1/2|t1 − t2|2 dt2 dt1. (2.17)

And if 3 = j1 then
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∫
Ω(t1,t2)

ω(t3)ω(tj2)|t3 − t2| · |t3 − t1|dt3 � |t1 − t2|
∫

Ω(t1,t2)

ω(t3)ω(tj2)|t3 − tj2 |dt3

� |t1 − t2|
( ∫

Ω(t1,t2)

ω(t3) dt3

)2

by Lemma 2.2 with K = 1, and so (2.15) gives

I � α4β2
∫
Ω0

∫
Ω(t1)

ω(tj3)
7/2ω(tj2)

1/2|t1 − t2|2 dt2 dt1. (2.18)

Thus if {k1, k2} is the permutation of {1,2} such that tk1 < tk2 whenever t1 ∈ Ω0, t2 ∈ Ω(t1),
then (2.12) will follow from (2.16), (2.17), and (2.18) if we establish that

∫
Ω0

∫
Ω(t1)

ω(tk2)
7/2ω(tk1)

1/2|t1 − t2|2 dt2 dt1 � α3β. (2.19)

If 2 = k2, then

∫
Ω(t1)

ω(t2)
7/2|t1 − t2|2 dt2 �

( ∫
Ω(t1)

ω(t2) dt2

)3

ω(t1)
1/2

by Lemma 2.3 with r = 7/2, η = 4/7, and (2.19) follows from (2.6). If 2 = k1, then

ω(tk2)
7/2ω(tk1)

1/2 � ω(t1)
2ω(t2)

2

and

∫
Ω(t1)

ω(t2)
2ω(t1)|t1 − t2|2 dt2 �

( ∫
Ω(t1)

ω(t2) dt2

)3

by Lemma 2.2 with K = 2. Again, (2.19) follows from (2.6), and the proof of Theorem 1.4 is
complete. �
Proof of Theorem 1.3. The sharp Lp → Lq estimates (for the indices in (1.5)) can be obtained
by the method of [12]. But to obtain the Lorentz space estimates in Theorem 1.3, we will follow
the proof of the d = 3 case in [8], again using the method of Christ. Thus we will begin by estab-
lishing the following claim (which, by itself, implies the almost sharp Lebesgue space estimates
corresponding to strict inequality in (1.5)): suppose that Ω ⊂ (a, b)3 is a set of the form

Ω = {
(t1, t2, t3): t1 ∈ Ω0, t2 ∈ Ω(t1), t3 ∈ Ω(t1, t2)

}
where
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λ(Ω0) � α > 0, λ
(
Ω(t1)

)
� β > 0 for each t1 ∈ Ω0 and

λ
(
Ω(t1, t2)

)
� α whenever t1 ∈ Ω0, t2 ∈ Ω(t1). (2.20)

If

E = {
γ (t1) − γ (t2) + γ (t3): (t1, t2, t3) ∈ Ω

}
,

then we have

|E| � c(A)α4β2. (2.21)

As before, we can assume that there is some permutation {i1, i2, i3} of {1,2,3} such that if
(t1, t2, t3) ∈ Ω then

ti1 < ti2 < ti3 .

With J (t1, t2, t3) the absolute value of the Jacobian determinant of the mapping

(t1, t2, t3) �→ γ (t1) − γ (t2) + γ (t3),

we will need the following consequence of Lemma 2.1:

J (t1, t2, t3) � c(A)ω(ti3)
5

(
2∏

j=1

ω(tij )

)1/2

V (t1, t2, t3). (2.22)

Define I by

I =
∫
Ω0

∫
Ω(t1)

∫
Ω(t1,t2)

ω(ti3)
5

(
2∏

j=1

ω(tij )

)1/2

V (t1, t2, t3) dt3 dt2 dt1

so that, because of (2.22), we have

|E| � c(A)I.

(Again, the change of variables here is justified as in [11].) Then (2.21) will follow from

I � α4β2. (2.23)

Since the proof of (2.23) is very similar to the proof of (2.12), we will only sketch the argument.
The first step is to obtain the inequality

I � α3
∫ ∫

ω(tj2)
5/2ω(tj1)

1/2|t1 − t2|dt2 dt1,
Ω0 Ω(t1)
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where {t1, t2} = {tj1, tj2} and tj1 < tj2 . Recalling (2.20), this is done by using Lemma 2.3, with
r = 7/2 and η = 4/7, if 3 = i3 and by using Lemma 2.2, with K = 2, if 3 = i2 or 3 = i1. The
proof of (2.23) is then concluded by showing that

∫
Ω0

∫
Ω(t1)

ω(tj2)
5/2ω(tj1)

1/2|t1 − t2|dt2 dt1 � β2α

by using Lemma 2.3 with r = 5/2, η = 2/5 if t1 < t2 and Lemma 2.2 with K = 1 if t2 < t1. This
proves (2.23) and thus, as mentioned above, establishes the almost sharp Lebesgue space bounds
by the method of [6].

To obtain the Lorentz space bounds claimed in Theorem 1.3, we follow the proof of the
analogous result in [8] (itself based on a further argument of Christ [7]). Thus it is enough to
establish an analogue of Lemma 1 in [8] for our curves γ . The crux of the matter is to show the
following: if Ω ⊂ (a, b)3 is a set of the form

Ω = {
(t1, t2, t3): t1 ∈ Ω0, t2 ∈ Ω(t1), t3 ∈ Ω(t1, t2)

}
,

where

λ(Ω0) � β > 0, λ
(
Ω(t1)

)
� β|G|/|E| > 0 for each t1 ∈ Ω0 and

λ
(
Ω(t1, t2)

)
� δ > 0 whenever t1 ∈ Ω0, t2 ∈ Ω(t1),

and if

E′ = {
γ (t1) − γ (t2) + γ (t3): (t1, t2, t3) ∈ Ω

}
,

then we have

∣∣E′∣∣ � c(A)δ3
(

β|G|
|E|

)2

β.

This can be established by exactly the argument given above for (2.21). �
3. Proofs of lemmas

Proof of Lemma 2.1. Assume without loss of generality that

a < t1 < · · · < td < b. (3.1)

It is enough to prove the lemma in the special case when each nj can be written as

nj = d(d + 1)

2
· lj

2n
(3.2)

for some large integer n and positive integers lj . To see this, find n and l1 � · · · � ld such that
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d∑
j=1

lj = 2n

and

nj � d(d + 1)

2
· lj

2n
, j = 2, . . . , d. (3.3)

Then note that, since

d∑
j=1

nj =
d∑

j=1

d(d + 1)lj

2n+1
,

it follows from (3.1), the monotonicity of ω, and (3.3), that

d∏
j=1

ω(tj )
nj �

d∏
j=1

ω(tj )
d(d+1)lj

2n+1 .

There exists a nonnegative function ψ = ψd(u; t1, . . . , td) supported in [t1, td ] such that

J (t1, . . . , td) =
td∫

t1

ω(u)d(d+1)/2ψ(u)du. (3.4)

(It is easy to check that one can take ψ2(u; t2, t2) = χ[t1,t2](u). For d = 3,4, . . . , ψd is defined
recursively by a procedure described in detail in Section 2 of [3].) The choice φ(t) = td/d!
in (1.1) shows that

td∫
t1

ψ(u)du = c(d)V (t1, . . . , td).

For sufficiently small δ > 0, define

tδ = (
1 − (d − 1)δ

)
td + δ(t1 + t2 + · · · + td−1).

The inequality (2.4) will follow from (3.4), the monotonicity of ω, the inequality

td∫
tδ

ψ(u; t1, . . . , td) du � c(δ)V (t1, . . . , td ), (3.5)

and the fact that there is a δ = δ(n1, . . . , nd) > 0 such that

ω(tδ)
d(d+1)/2 � c(A;n1, . . . , nd)

d∏
ω(tj )

nj . (3.6)

j=1
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The proof of (3.5) is by induction on d . Since

ψ(u; t1, t2) = χ[t1,t2](u),

the case d = 2 is clear. The inductive step requires an identity from [3]:

ψ(u; t1, . . . , td ) =
t2∫

t1

· · ·
td∫

td−1

ψ(u; s1, . . . , sd−1) ds1 · · ·dsd−1.

Thus

td∫
tδ

ψ(u)du =
t2∫

t1

· · ·
td∫

td−1

∫
{u�tδ}

ψ(u; s1, . . . , sd−1) duds1 · · ·dsd−1. (3.7)

We need the following additional fact from [3]: suppose λj ∈ (0,1) for j = 1, . . . , d − 1 and let

t ′j = λj tj + (1 − λj )tj+1

for j = 1, . . . , d − 1. Then

t2∫
t ′1

· · ·
td∫

t ′d−1

V (s1, . . . , sd−1) ds1 · · ·dsd−1 � c(λ1, . . . , λd−1)V (t1, . . . , td ). (3.8)

Now choose λ1, . . . , λd−1 ∈ (0,1) and δ′ > 0 such that if t ′j � sj � tj+1 for j = 1, . . . , d − 1
then

sδ′ .= (
1 − (d − 2)δ′)sd−1 + δ′(s1 + s2 + · · · + sd−2)

� tδ = (
1 − (d − 1)δ

)
td + δ(t1 + t2 + · · · + td−1). (3.9)

(Here is how to make this choice: we can assume that td = 1. If

1 − (d − 2)δ′ > 0,

then (3.9) holds for all sj ∈ [t ′j , tj+1] if and only if it holds for sj = t ′j . So fix sj = t ′j for j =
1, . . . , d − 1. Then, with λ = (λ1, . . . , λd−1),

sδ′ = (1 − λd−1)
(
1 − (d − 2)δ′) +

d−1∑
j=1

cj

(
δ′, λ

)
tj

where

∣∣cj

(
δ′, λ

)∣∣ = O
(
δ′ + ‖λ‖).
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Assume that δ′ and λ are chosen so that

(1 − λd−1)
(
1 − (d − 2)δ′) �

(
1 − (d − 1)δ

)
and

∣∣cj

(
δ′, λ

)∣∣ � δ.

Since

tδ = (
1 − (d − 1)δ

) + δ(t1 + · · · + td−1),

it then follows from the fact that sδ′ = tδ = 1 when t1 = · · · = td−1 = 1 that sδ′ � tδ if 0 � tj � 1.)
Now

(3.7) �
t2∫

t ′1

· · ·
td∫

t ′d−1

∫
{u�tδ}

ψ(u; s1, . . . , sd−1) duds1 · · ·dsd−1

�
t2∫

t ′1

· · ·
td∫

t ′d−1

∫
{u�sδ′ }

ψ(u; s1, . . . , sd−1) duds1 · · ·dsd−1

� c
(
δ′) t2∫

t ′1

· · ·
td∫

t ′d−1

V (s1, . . . , sd−1) ds1 · · ·dsd−1

� c
(
δ′;λ1, . . . , λd−1

)
V (t1, . . . , td),

where the second inequality is due to (3.9) and the fact that ψ(u; s1, . . . , sd) is nonnegative, the
third to the induction hypothesis, and the fourth to (3.8). This completes the proof by induction
on d of (3.5).

To see (3.6), recall from (3.2) that

nj = d(d + 1)

2
· lj

2n

for some large integer n and positive integers lj satisfying

d∑
j=1

lj

2n
= 1.

Choose δ > 0 so small that

δ <
lj

2n

for j = 1, . . . , d − 1. Note that, since tj < td if j < d ,

tδ = (
1 − (d − 1)δ

)
td + δ(t2 + · · · + td−1) �

d∑ lj

2n
tj .
j=1
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Now the inequality

Anω

(
s1 + · · · + s2n

2n

)
�

(
2n∏

j=1

ω(sj )

)1/2n

(which follows from iterating (1.3)) and the monotonicity of ω imply that

ω(tδ) � ω

(
1

2n

d∑
j=1

lj tj

)
� A−n

d∏
j=1

ω(tj )
lj

2n .

This gives (3.6). �
Proof of Lemma 2.2. By scaling we can assume that ρ = 1. Partition (c, d] into disjoint intervals
Ij = (aj , aj+1] such that 2j � ω � 2j+1 on Ij . Assume d ∈ Ij0 . We will need the inequality

∣∣∣∣∣
{

t ∈ R:
K∏

l=1

|t − cl | � τ

}∣∣∣∣∣ � C(K)τ 1/K, τ > 0. (3.10)

(To see (3.10), observe that R can be partitioned into at most 2K intervals Jp with the property
that

K∏
l=1

|t − cl | � |t − cl(p)|K, t ∈ Jp.)

From (3.10) it follows that if

Ej =
{

t ∈ Ij : ω(t)K−1ω(d)

K∏
l=1

|t − cl | � 1

}
,

then

|Ej | � C(K)

2(j (K−1)+j0)/K
.

Thus

∫
Ej

ω(t) dt � C(K)2(j−j0)/K,

and the conclusion of Lemma 2.2 follows by summing a geometric series. �
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Proof of Lemma 2.3. We begin by observing that

ρ =
∫
E

ω(t)|t − t0|η|t − t0|−η dt

�
(∫

E

ω(t)r |t − t0|rη dt

)1/r(∫
E

|t − t0|−r ′η dt

)1/r ′

� C(r, η)

(∫
E

ω(t)r |t − t0|rη dt

)1/r

|E|1−η−1/r .

Thus, by the monotonicity of ω,

ρ1+rη
(
ω(c)|E|)r−1−rη � ρ1+rηρr−1−rη = ρr

� C(r, η)

∫
E

ω(t)r |t − t0|rη dt · |E|r−1−rη.

This gives the first conclusion of Lemma 2.3. Using the estimate

∫
E

(|t − t1| · |t − t2|
)−r ′η

dt � C(r, η)|E|1−r ′η|t1 − t2|−r ′η,

the second conclusion follows similarly. �
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