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Abstract

In this paper we consider orders of images of nontorsion points by reduction maps for abelian varieties
defined over number fields and for odd dimensional K-groups of number fields. As an application we obtain
the generalization of the support problem for abelian varieties and K-groups.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

By Supp(m) we will denote the set of prime numbers dividing a positive number m. Pál Erdös
asked the following question:

Suppose that for some integers x, y, the following condition holds

Supp
(
xn − 1

) = Supp
(
yn − 1

)

for every natural number n. Is then x = y?

Corrales-Rodrigáñez and Schoof answered the question and proved its analogue for number
fields and for elliptic curves in [C-RS].

Schinzel proved the support problem for the pair of sets of natural numbers in [S].
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Banaszak, Gajda and Krasoń examined the support problem for abelian varieties for which
the images of the l-adic representation is well controlled and for K-theory of number fields in
[BGK1,BGK2].

The support problem for abelian varieties over number fields was considered independently
by Khare and Prasad in [KP].

Larsen in [Lar] gave a solution of the support problem for all abelian varieties over number
fields.

Weston gave in [We] a solution to a question of Gajda which is related to the support problem
for abelian varieties. In [BGK3] Banaszak, Gajda and Krasoń considered similar question as
in Weston’s paper in the framework of Mordell–Weil systems. In the present work I apply this
framework.

In this paper we consider the generalization of the support problem for K-theory and abelian
varieties; namely, we deal with the pair of sets of points instead of pair of points. Let us state, for
example, Theorem 8.2.

Theorem 8.2. Let A be an abelian variety defined over number field F such that End(A) is an
integral domain. Let P1, . . . ,Pn,Q1, . . . ,Qn ∈ A(F) be the points of infinite order. Assume that
for almost every prime l the following condition holds:

For every set of positive integers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = 0 implies m1rv(Q1) + · · · + mnrv(Qn) = 0.

Then there exist ki ∈ Z\{0}, βi ∈ End(A)\{0} such that kiPi +βiQi = 0 for every i ∈ {1, . . . , n}.

Intuitively, the condition from the generalized support problem means that for almost every v

each linear dependence satisfied by the points rv(P1), . . . , rv(Pn) is also satisfied by the points
rv(Q1), . . . , rv(Qn).

The main technical result of the paper is Theorem 5.1 which lets us control the images of
linearly independent points of K-groups and abelian varieties over number fields via reduction
maps. These theorems are the refinement of Theorem 3.1 of [BGK3] and are proven using similar
methods. I have recently found out that Pink has proven by a different method a result similar to
Theorem 5.1 in the abelian variety case, cf. [Pink, Corollary 4.3].

2. Groups of the Mordell–Weil type

The following axiomatic setup of Mordell–Weil systems was developed in [BGK3].
Notation.
N the set of positive integers
l a prime number
F a number field, OF its ring of integers
F̄ fixed algebraic closure of F

GF = G(F̄ /F )

v a finite prime of OF , κv = OF /v the residue field at v

gv = G(κ̄v/κv)

T a free Z -module of finite rank d
l l
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Vl = Tl ⊗Zl
Ql

Al = Vl/Tl

Sl a fixed finite set of primes of OF containing all primes above l

ρl :GF → GL(Tl) a Galois representation unramified outside the set Sl

ρ̄lk :GF → GL(Tl/ lk) the residual representation induced by ρl

Flk the number field F̄ Ker ¯ρ
lk

Fl∞ = ⋃
k Flk

Gl = G(Fl/F )

Glk = G(Flk /F )

Gl∞ = G(Fl∞/F )

C[lk] the subgroup of lk-torsion elements of an abelian group C

Cl = ⋃
k C[lk], the l-torsion subgroup of C.

Let L/F be a finite extension contained in F̄ and w a finite prime in L. We write w /∈ Sl to
indicate that w is not over any prime in Sl .

Let O be a ring with unity, free as Z-module, which acts on Tl in such a way that the action
commutes with the GF action. All modules over the ring O considered in this paper are left
O-modules.

Let {B(L)}L be a direct system of finitely generated O-modules indexed by all finite field
extensions L/F . We assume that for every embedding L ↪→ L′ of extensions of F the induced
structure map B(L) → B(L′) is a homomorphism of O-modules.

Similarly, for every prime v of F we define a direct system {Bv(κw)}κw of O -modules where
κw is a residue field for a prime w over v in a finite extension L/F . We suppose that the sys-
tem {Bv(κw)}κw is compatible with GF action. Namely, if κw′ is a residue field for a prime w′
over w in a finite extension L′/L then a natural map Bv(κw) → Bv(κw′) assumes GF action in
the following way: if σ ∈ GF then the map Bv(κσ(w)) → Bv(κσ(w′)) is the image of the map
Bv(κw) → Bv(κw′) under σ .

We make the following assumptions on the action of the GF and O:

(A1) for each l, each finite extension L/F and any prime w of L, such that w /∈ Sl we have
T

Frw

l = 0, where Frw ∈ gw denotes the arithmetic Frobenius at w;
(A2) for every L and w /∈ Sl there are natural maps ψl,L, ψl,w and rw respecting GF and O

actions such that the diagram commutes:

B(L) ⊗ Zl

rw

ψl,L

Bv(κw)l

∼= ψl,w

H 1
f,Sl

(GL,Tl)
rw

H 1(gw,Tl)

(1)

where H 1
f,Sl

(GL,Tl) is the group defined by Bloch and Kato [BK]. The left (respectively
the right) vertical arrow in the diagram (1) is an embedding (respectively an isomorphism)
for every L (respectively for every w /∈ Sl);

(A3) either for every L the map ψl,L is an isomorphism for almost all l or B(F̄ ) is a discrete
GF -module divisible by l for almost l;
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(A4) for every L we have: B(F̄ )GL ∼= B(L) and there is a Galois equivariant and O-equivariant
map jL,l such that the following diagram commutes:

B(L)

B(L) ⊗ Zl

H 0(GL,Al)

jL,l

H 1
f,Sl

(GL,Tl)

and by abuse of notation we will consider H 0(GL,Al) as a subgroup of B(L).

As in [Ri] we impose the following four axioms on the representations which we consider:

(B1) EndGl
(Al[l]) ∼= O/lO, for almost all l and EndGl∞ (Tl) ∼= O ⊗ Zl , for all l;

(B2) Al[l] is a semisimple Fl[Gl]-module for almost all l and Vl is a semisimple Ql[Gl∞]-
module for all l;

(B3) H 1(Gl,Al[l]) = 0 for almost all l and H 1(Gl∞ , Tl) is a finite group for all l;
(B4) for each finitely generated subgroup Γ ⊂ B(F) the group

Γ ′ = {
P ∈ B(F): mP ∈ Γ for some m ∈ N

}

is such that Γ ′/Γ has a finite exponent.

For a point R ∈ B(L) (respectively a subgroup Γ ⊂ B(F)) we denote R̂ = ψl,L(R) (respec-
tively Γ̂ = ψl,L(Γ )).

Definition 2.1. The system of modules {B(L)}L fulfilling the above axioms is called a Mordell–
Weil system.

3. Examples of Mordell–Weil systems

In all cases below the axioms (A1)–(A4) and (B1)–(B4) are satisfied by [BGK3], proofs of
Theorems 4.1 and 4.2 loc. cit. In particular, in the case of abelian varieties, the assumptions are
fulfilled due to results of Faltings [Fa], Zarhin [Za], Serre [Serre], and Mordell and Weil.

The cyclotomic character. Let Tl = Zl (1), Vl = Ql (1), Al = Ql/Zl (1). Let S be an arbitrary
finite set of primes in OF . We put

B(L) = O×
L,S

for any finite extension L/F and we have O = Z.
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Algebraic K-theory of number fields. Let n be a natural number. For every finite extension
L/F consider the Dwyer–Friedlander maps [DF]:

K2n+1(L) → K2n+1(L) ⊗ Zl → H 1(GL;Zl (n + 1)
)
,

where the action of GL on Zl(n + 1) is given by the (n + 1)th tensor power of the cyclotomic
character.

Let CL be the subgroup of K2n+1(L) generated by the l-parts of kernels of the maps
K2n+1(L) → H 1(GL;Zl(n+1)) for all primes l. By [DF] CL is finite and according to Quillen–
Lichtenbaum conjecture should be trivial. We put

B(L) = K2n+1(L)/CL

and we have O = Z. The map ψL,l is induced by the Dwyer–Friedlander map.

Abelian varieties over number fields. Let A be an abelian variety over number field F and let

ρl :GF → GL
(
Tl(A)

)

be the l-adic representation given by the action of absolute Galois group on the Tate module
Tl(A) of A. In this case we put B(L) = A(L) for every finite field extension L/F and O =
End(A).

4. Kummer theory for l-adic representations

We introduce the Kummer theory for l-adic representations, following [Ri,BGK3]. Let Λ be
a finitely generated free O-submodule of B(F) with basis P1, . . . ,Pr .

For natural numbers k we have the Kummer maps:

φk
Pi

:G(F̄ /Flk ) → Al

[
lk

]
,

φk
Pi

(σ ) = σ

(
1

lk
P̂i

)
− 1

lk
P̂i .

These maps are well defined by the definition of maps jL,l in axiom (A4).
We define

Φk :G(F̄ /Flk ) →
r⊕

i=1

Al

[
lk

]
, Φk = (

φk
P1

, . . . , φk
Pr

)
.

We define the field:

Flk

(
1
k
Λ̂

)
:= F̄ KerΦk

.

l
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Taking the inverse limit in the following commutative diagram

G(F̄ /Flk )

φk
Pi

Al

[
lk

]
,

×l

G(F̄ /Flk−1)

φk−1
Pi

Al

[
lk−1

]

we obtain a map:

φ∞
Pi

:G(F̄ /Fl∞) → Tl.

We define:

Φ∞ :G(F̄ /Fl∞) →
r⊕

i=1

Tl, Φ = (
φ∞

P1
, . . . , φ∞

Pr

)
.

Lemma 4.1. For k big enough

Flk

(
1

lk
Λ̂

)
∩ Flk+1 = Flk .

Proof. The proof follows the lines of step 1 of the proof of Proposition 2.2 in [BGK4] that partly
repeats the argument in the proof of Lemma 5 in [KP].

Consider the following commutative diagram:

G
(
Fl∞

( 1
l∞ Λ̂

)
/Fl∞

)
T r

l / lmT r
l

∼=

G
(
Flk+1

( 1
lk+1 Λ̂

)
/Flk+1

) (
Al

[
lk+1

])r
/ lm

(
Al

[
lk+1

])r

∼=

G
(
Flk

( 1
lk

Λ̂
)
/Flk

) (
Al

[
lk

])r
/ lm

(
Al

[
lk

])r

where the horizontal arrows are the Kummer maps and m ∈ N is big enough so that lmT r
l ⊂

Im(G(Fl∞( 1
l∞ Λ̂)/Fl∞) → T r

l ). Such m exists by [BGK3] Lemma 2.13.
Now we see that for k big enough the images of the maps

G

(
Flk

(
1

lk
Λ̂

)
/Flk

)
→ (

Al

[
lk

])r
/ lm

(
Al

[
lk

])r

must be all isomorphic. Hence the maps G(Flk+1( 1
lk+1 Λ̂)/Flk+1) → G(Flk (

1
lk

Λ̂)/Flk ) are surjec-
tive.
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Now the diagram

Flk+1

( 1
lk+1 Λ̂

)

Flk
( 1

lk
Λ̂

)Flk+1

Flk

shows that

Flk

(
1

lk
Λ̂

)
∩ Flk+1 = Flk . �

5. Main technical result

Theorem 5.1. Assume that ρ(GF ) contains an open subgroup of the group of homotheties. Let

P1, . . . ,Ps ∈ B(F)

be points of infinite order, which are linearly independent over O.
Then for any prime l, and for any set {k1, . . . , ks} ⊂ N∪{0}, there are infinitely many primes v,

such that the image of the point Pt via the map

rv :B(F) → Bv(κv)l

has order equal to lkt for every t ∈ {1, . . . , s}.

Proof. Let us rename the points P1, . . . ,Ps ∈ B(F) in the following way:

P1, . . . ,Pi,Q1, . . . ,Qj ∈ B(F),

and we are going to show that for any prime l, and for any set {k1, . . . , ki} ⊂ N, there are infinitely
many primes v, such that the image of the point Pt via the map

rv :B(F) → Bv(κv)l

has order equal to lkt for every t ∈ {1, . . . , i} and the images of the points Q1, . . . ,Qj are triv-
ial. It is enough to prove the theorem in a case when kt = 1 for every t ∈ {1, . . . , i}, since if
rv(l

kt−1Pt ) has order equal to l then rv(Pt ) has order equal to lkt.
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We will make use of the following diagram:

Flk+1

( 1
lk

Π̂ , 1
lk

Σ̂
)

Flk
( 1

lk
Π̂ , 1

lk
Σ̂

)

σ

Flk+1

( 1
lk−1 Π̂, 1

lk
Σ̂

)

Flk
( 1

lk−1 Π̂, 1
lk

Σ̂
)

Flk+1

h

Flk

F

where Π (respectively Σ ) is the O-submodule of B(F) generated by P1, . . . ,Pi (respectively
by Q1, . . . ,Qj ).

It follows by Lemma 4.1 applied to the O-submodule of B(F) generated by lP1, . . . , lPi,Q1,

. . . ,Qj that for k big enough

Flk

(
1

lk−1
Π̂,

1

lk
Σ̂

)
∩ Flk+1 = Flk .

Step 1. Consider the following commutative diagram:

G
(
Fl∞

( 1
l∞ Π̂, 1

l∞ Σ̂
)
/Fl∞

( 1
l∞ Σ̂

))
T i

l

G
(
Fl∞

( 1
lk

Π̂ , 1
l∞ Σ̂

)
/Fl∞

( 1
l∞ Σ̂

)) (
Al

[
lk

])i

l

G
(
Fl∞

( 1
lk−1 Π̂, 1

l∞ Σ̂
)
/Fl∞

( 1
l∞ Σ̂

)) (
Al

[
lk−1

])i

(2)

The horizontal arrows in the diagram (2) are the Kummer maps. The upper horizontal ar-
row has finite cokernel by [BGK3, Lemma 2.13], so for k big enough the horizontal ar-
rows have cokernels bounded independently of k. Hence for k big enough there exists
σ ∈ G(Fl∞( 1

lk
Π̂ , 1

l∞ Σ̂)/Fl∞( 1
lk−1 Π̂, 1

l∞ Σ̂)) such that σ maps via the Kummer map

G

(
Fl∞

(
1
k
Π̂,

1
∞ Σ̂

)/
Fl∞

(
1

k−1
Π̂,

1
∞ Σ̂

))
→ (

Al[l]
)i (3)
l l l l
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to an element whose all i projections on the direct summands (Al[l])i are nontrivial. Then the
following tower of fields

Fl∞
( 1

lk
Π̂ , 1

l∞ Σ̂
)

Flk
( 1

lk
Π̂ , 1

lk
Σ̂

)
Fl∞

( 1
lk−1 Π̂, 1

l∞ Σ̂
)

Flk
( 1

lk−1 Π̂, 1
lk

Σ̂
)

(4)

shows that there exist σ ∈ G(Flk (
1
lk

Π̂ , 1
lk

Σ̂)/Flk (
1

lk−1 Π̂, 1
lk

Σ̂)) such that σ maps via the Kum-
mer map

G

(
Flk

(
1

lk
Π̂,

1

lk
Σ̂

)/
Flk

(
1

lk−1
Π̂,

1

lk
Σ̂

))
→ (

Al[l]
)i

(5)

to an element whose all i projections on the direct summands (Al[l])i are nontrivial.
Step 2. Let k be big enough that there is an element σ constructed in a previous step and

such that there exists a nontrivial homothety h ∈ G(Flk+1/Flk ) acting on the module Tl as a
multiplication by 1 + lku0, for some u0 ∈ Z×

l .
We choose an automorphism

γ ∈ G

(
Flk+1

(
1

lk
Π̂,

1

lk
Σ̂

)
/F

)

such that

γ |
F

lk
( 1

lk
Π̂, 1

lk
Σ̂)

= σ,

γ |F
lk+1 = h.

By the Tchebotarev Density Theorem there exist infinitely many prime ideals v in OF such that
γ is equal to the Frobenius element for the prime v in the extension Flk+1( 1

lk
Π̂ , 1

lk
Σ̂)/F . In the

remainder of the proof we work with prime ideals v we have just selected.
Step 3. Using the same argument as in [BGK3], step 4, we show that lrv(P1), . . . , lrv(Pi),

rv(Q1), . . . , rv(Qj ) are trivial in Bv(κv)l :
Let P denote any of the points lP1, . . . , lPi,Q1, . . . ,Qj . Let lc be an order of the point

rv(P ) in the group Bv(κv)l (see the axiom (A2)). Let w1 be a prime ideal of Flk+1( 1
lk−1 Π̂, 1

lk
Σ̂)

below w. A point 1
lk

P ∈ B(Flk+1( 1
lk−1 Π̂, 1

lk
Σ̂)) and its image rw1(

1
lk

P ) ∈ Bv(κw1)l has order

equal lk+c. By the choice v the point rw1(
1
lk

P ) comes from an element of Bv(κv)l . The right
vertical arrow in the diagram (1) is an isomorphism, hence by the choice of v,

h

(
rw1

(
1
k
P

))
= (

1 + lku0
)
rw1

(
1
k
P

)
.

l l
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But rw1(
1
lk

P ) ∈ Bv(κv)l , hence h(rw1(
1
lk

P )) = rw1(
1
lk

P ), again by the choice of v. Thus

lkrw1(
1
lk

P ) = 0 and c = 0.
Step 4. Using similar argument, as in [BGK3] step 5, we show that rv(P1), . . . , rv(Pi) have

order divisible by l in Bv(κv)l :
Let w2 denote the prime ideal in Flk (

1
lk

Π̂ , 1
lk

Σ̂) below w and let u2 denote the prime in Flk

below w2. Consider the following commutative diagram:

B(F)/lkB(F ) Bv(κv)/ lkBv(κv)

B(Flk )/ lkB(Flk ) Bv(κu2)/ lkBv(κu2)

Hom
(
G(F̄ /Flk )

ab;Al

[
lk

])
Hom

(
gu2;Al[lk]

)
.

(6)

Every point Pj maps via the left vertical arrow in the diagram (6) to the Kummer map φk
Pj

.

The homomorphism φk
Pj

factors through the group G(Flk (
1
lk

Π̂ , 1
lk

Σ̂)/Flk ). We denote this fac-

torization with the same symbol φk
Pj

. By the choice of the automorphism γ the

element φk
Pj

(γ |
F

lk
((1/lk)Π̂,(1/lk)Σ̂)

) ∈ Al[lk] is nontrivial. Hence the element φk
Pj

∈
Hom(G(F̄ /Flk )

ab;Al[lk]) is nontrivial. Thus by the choice of v image of the element φk
Pj

via

map Hom(Hab
lk

;Al[lk]) → Hom(gu2;Al[lk]) from diagram (6) is nontrivial. Hence the image of
Pj via the bottom horizontal arrow in the diagram (6) is nontrivial.

Thus every point rv(P1), . . . , rv(Pi) has the order divisible by l in Bv(κv)l . But step 3 shows
that every point lrv(P1), . . . , lrv(Pi) is trivial. Hence elements rv(P1), . . . , rv(Pi) have orders
equal l. �
6. Support problem for K-theory and abelian varieties

Let O be an integral domain.

Theorem 6.1. Let P1, . . . ,Pn,P0,Q1, . . . ,Qn,Q0 ∈ B(F) be the points nontorsion over O.
Assume that for almost every prime l the following condition holds in the group Bv(κv)l :

For every set of nonnegative integers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = rv(P0) implies m1rv(Q1) + · · · + mnrv(Qn) = rv(Q0).

Then there exist αi , βi ∈ O \ {0} such that αiPi + βiQi = 0 in B(F) for every i ∈ {0, . . . , n}.

Proof. Set mi = 0 for every i ∈ {1, . . . , n}. We get

rv(P0) = 0 implies rv(Q0) = 0 (7)
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for almost every prime v. Assume that P0 and Q0 are linearly independent in B(F) over O. By
Theorem 5.1 there are infinitely many primes v such that rv(P0) = 0 and rv(Q0) has order l.
This contradicts (7). Hence there exist α0, β0 ∈ O \ {0} such that α0P0 + β0Q0 = 0 in B(F).

Now fix m1 = · · · = mj−1 = mj+1 = · · · = mn = 0. Let mj be a natural number such
that mjPj + P0, (mj + 1)Pj + P0, (mj + 2)Pj + P0, mjQj + Q0, (mj + 1)Qj + Q0,
(mj + 2)Qj + Q0 be nontorsion points.

As above we show that there exist x0, y0, x1, y1, x2, y2 ∈O \ {0} such that

⎧⎨
⎩

x0(mjPj + P0) + y0(mjQj + Q0) = 0,

x1((mj + 1)Pj + P0) + y1((mj + 1)Qj + Q0) = 0,

x2((mj + 2)Pj + P0) + y2((mj + 2)Qj + Q0) = 0.

Hence
{

x1y0Pj + y1y0Qj = (x0y1 − x1y0)(mjPj + P0),

2(x2y0Pj + y2y0Qj) = (x0y2 − x2y0)(mjPj + P0).
(8)

If (x0y1 − x1y0) = 0 or (x0y2 − x2y0) = 0 we are done. So assume that

(x0y1 − x1y0)(x0y2 − x2y0) �= 0. (9)

Hence from (8) we get

y0
(
x0(x2y1 − x1y2) + x2(x0y1 − x1y0)

)
Pj = y0

(
y0(x1y2 − x2y1) + y2(x1y0 − x0y1)

)
Qj .

If y0(x0(x2y1 −x1y2)+x2(x0y1 −x1y0)) �= 0 or y0(y0(x1y2 −x2y1)+y2(x1y0 −x0y1)) �= 0 we
are done. So assume that

{
y0(x0(x2y1 − x1y2) + x2(x0y1 − x1y0)) = 0,

y0(y0(x1y2 − x2y1) + y2(x1y0 − x0y1)) = 0.

Then
{

x0(x2y1 − x1y2) + x2(x0y1 − x1y0) = 0,

y0(x1y2 − x2y1) + y2(x1y0 − x0y1) = 0.

Hence we get

(x0y1 − x1y0)(x0y2 − x2y0) = 0

that contradicts (9). �
Theorem 6.2. Let P1, . . . ,Pn,Q1, . . . ,Qn ∈ B(F) be the points nontorsion over O. Assume
that for almost every prime l the following condition holds in the group Bv(κv)l :

For every set of natural numbers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = 0 implies m1rv(Q1) + · · · + mnrv(Qn) = 0.

Then there exist αi , βi ∈O \ {0} such that αiPi + βiQi = 0 in B(F) for every i ∈ {1, . . . , n}.
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Proof. The proof of the theorem is analogous to the proof of Theorem 6.1:
Let mj be a natural number such that

m1P1 + · · · + mj−1Pj−1 + mjPj + mj+1Pj+1 + · · · + mnPn,

m1P1 + · · · + mj−1Pj−1 + (mj + 1)Pj + mj+1Pj+1 + · · · + mnPn,

m1P1 + · · · + mj−1Pj−1 + (mj + 2)Pj + mj+1Pj+1 + · · · + mnPn,

m1Q1 + · · · + mj−1Qj−1 + mjQj + mj+1Qj+1 + · · · + mnQn,

m1Q1 + · · · + mj−1Qj−1 + (mj + 1)Qj + mj+1Qj+1 + · · · + mnQn,

m1Q1 + · · · + mj−1Qj−1 + (mj + 2)Qj + mj+1Qj+1 + · · · + mnQn

be nontorsion points. There exist x0, y0, x1, y1, x2, y2 ∈ O \ {0} such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0(m1P1 + · · · + mj−1Pj−1 + mjPj + mj+1Pj+1 + · · · + mnPn)

+ y0(m1Q1 + · · · + mj−1Qj−1 + mjQj + mj+1Qj+1 + · · · + mnQn) = 0,

x1(m1P1 + · · · + mj−1Pj−1 + (mj + 1)Pj + mj+1Pj+1 + · · · + mnPn)

+ y1(m1Q1 + · · · + mj−1Qj−1 + (mj + 1)Qj + mj+1Qj+1 + · · · + mnQn) = 0,

x2(m1P1 + · · · + mj−1Pj−1 + (mj + 2)Pj + mj+1Pj+1 + · · · + mnPn)

+ y2(m1Q1 + · · · + mj−1Qj−1 + (mj + 2)Qj + mj+1Qj+1 + · · · + mnQn) = 0.

The rest of the proof follows the lines of the proof of Theorem 6.1. �
Remark 6.2.1. Assume that O = OE for some number field E. Assume that there exist
α, β ∈ OE \ {0} such that αP + βQ = 0 in B(F). Then there exist z ∈ Z \ {0} such that
z

β
α

∈OE (see [Mol, p. 46]). Hence zP + z
β
α
Q = 0 in B(F). We can then replace the expression

“αi , βi ∈ O \ {0}” in Theorem 6.1 by “αi ∈ Z \ {0}, βi ∈ O \ {0}.”

7. The case O = Z

We consider the special case O = Z. The following lemma was proved in the abelian varieties
case using different method by Larsen in [Lar]:

Lemma 7.1. Let P,Q ∈ B(F) be points of infinite order. Assume that for every prime number l

the following condition holds in the group Bv(κv)l :
For every natural number n and for almost every prime v:

nrv(P ) = 0 implies nrv(Q) = 0. (10)

Then there is an integer e such that Q = eP .

Proof. By Theorem 6.2 there are α,β ∈ Z \ 0 such that αP = βQ. Let lk be the largest power
of prime number l that divides β , β = blk . By (10) we have

αrv(P ) = 0 implies αrv(Q) = 0,
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hence

βrv(Q) = 0 implies αrv(Q) = 0

and

blkrv(Q) = 0 implies αrv(Q) = 0.

But obviously αrv(Q) = 0 implies bαrv(Q) = 0. Hence we get

lkrv(bQ) = 0 implies αrv(bQ) = 0. (11)

By Theorem 5.1 there are infinitely many primes v such that the order of rv(bQ) is lk . So by (11)
we get αrv(bQ) = 0 and lk divides α.

Now repeating an argument from the proof of the Theorem 3.12 of [BGK3] we show that
Q = α

β
P with α

β
∈ Z:

We have α
lk

P = β

lk
Q + R where R ∈ B(F)[lk]. By Theorem 5.1 and by Assumption 10 there

are infinitely many primes v such that rv(P ) = rv(Q) = 0. Hence we get rv(R) = 0 for infinitely
many primes v. But the map

rv :B(F)tor → Bv(κv)

is an embedding for any prime v /∈ Sl by Lemma 3.11 of [BGK3]. Thus R = 0. �
Lemma 7.2. Let P1,P2,Q1,Q2 ∈ B(F) be points of infinite order. Assume that for every prime
number l the following condition holds in the group Bv(κv)l :

For every set of natural numbers m1,m2 and for almost every prime v:

m1rv(P1) + m2rv(P2) = 0 implies m1rv(Q1) + m2rv(Q2) = 0. (12)

Then there is an integer e such that Q1 = eP1 and Q2 = eP2.

Proof. By Theorem 6.2 there are integers α1, α2, β1, β2 such that α1P1 = β1Q1, α2P2 = β2Q2.
We can assume that α1, α2 > 0.

Now we have to consider two cases.
First, assume that P1 and P2 are linearly independent over Z. Hence P1 and |b|Q2 are also lin-

early independent, where β2 = blk and lk is the largest power of prime number l that divides β2.
By Theorem 5.1 there are infinitely many primes v such that rv(P1) = 0 and rv(|b|Q2) has

order lk .
By (12), for m1 = |β1| and m2 = α2, and by the choice of v we have:

|β2|rv(Q2) = 0 implies α2rv(Q2) = 0,

lkrv
(|b|Q2

) = 0 implies α2rv
(|b|Q2

) = 0.

Again by the choice of v

α2rv
(|b|Q2

) = 0.
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Hence lk divides α2. Now we repeat again the argument from the proof of Theorem 3.12 of
[BGK3] showing that Q2 = e2P2 for some nonzero integer e2 and analogously Q1 = e1P1 for
some nonzero integer e1.

Now by (12)

rv(P1) + rv(P2) = 0 implies rv(Q1) + rv(Q2) = 0.

Hence

rv(P1) + rv(P2) = 0 implies (e1 − e2)rv(P2) = 0. (13)

Let now k be arbitrary natural number and l be arbitrary prime number. By Theorem 5.1 there
are infinitely many primes v such that rv(P1 + P2) = 0 and rv(P2) has order lk . Hence by (13),
lk divides e1 − e2. So e1 − e2 = 0.

Now we assume that P1 and P2 are linearly dependent over Z, i.e. there are numbers x ∈ N

and y ∈ Z\{0} such that xP1 = yP2. Hence α2β1xQ1 = α1β2yQ2. Put m2 = m1α1β2y sgn(β2y)

in (12):

m1rv(P1) + m1α1β2y sgn(β2y)rv(P2) = 0 implies

m1rv(Q1) + m1α1β2y sgn(β2y)rv(Q2) = 0,

hence

m1
[
1 + α1β2x sgn(β2y)

]
rv(P1) = 0 implies m1

[
1 + α2β1x sgn(β2y)

]
rv(Q1) = 0.

Putting P := [1 + α1β2x sgn(β2y)]P1, Q := [1 + α2β1x sgn(β2y)]Q1 we get

m1rv(P ) = 0 implies m1rv(Q) = 0.

By Lemma 7.1 there is an integer s such that Q = sP . So

[
1 + α2β1x sgn(β2y)

]
Q1 = s

[
1 + α1β2x sgn(β2y)

]
P1.

Hence

Q1 = [
s
(
1 + α1β2x sgn(β2y)

) − α1α2x sgn(β2y)
]
P1,

i.e. there is an integer e1 such that Q1 = e1P1. Analogously there is an integer e2 such that
Q2 = e2P2.

Now, by (12), for m1 = x, m2 = lk − y where k is an arbitrary natural number and l is an
arbitrary prime number such that lk − y > 0, we get

lkrv(P2) = 0 implies y(e1 − e2)rv(P2) = 0.

By Theorem 5.1 there are infinitely many primes v such that rv(P2) has order lk , so lk divides
y(e1 − e2). But k was arbitrary, so e1 − e2 = 0. �
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Theorem 7.3. Let P1, . . . ,Pn,Q1, . . . ,Qn ∈ B(F) be the points of infinite order. Assume that
for every prime number l the following condition holds in the group Bv(κv)l :

For every set of natural numbers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = 0 implies m1rv(Q1) + · · · + mnrv(Qn) = 0.

Then there exists an integer e such that Qi = ePi in B(F) for every i ∈ {1, . . . , n}.

Proof. There is s ∈ N such that P := sP2 + P3 + · · · + Pn, P̄ := (s + 1)P2 + P3 + · · · + Pn,
Q := sP2 + P3 + · · · + Pn, Q̄ := (s + 1)Q2 + Q3 + · · · + Qn are nontorsion points.

By the assumption of the theorem the following condition holds for every set of natural num-
bers m1,m2 and for almost every prime v:

m1rv(P1) + m2rv(P ) = 0 implies m1rv(Q1) + m2rv(Q) = 0,

m1rv(P1) + m2rv(P̄ ) = 0 implies m1rv(Q1) + m2rv(Q̄) = 0.

By Lemma 7.2 there is an integer e such that Q1 = eP1, Q = eP , Q̄ = eP̄ , i.e.

{
e[sP2 + P3 + · · · + Pn] = sQ2 + Q3 + · · · + Qn,

e[(s + 1)P2 + P3 + · · · + Pn] = (s + 1)Q2 + Q3 + · · · + Qn,

hence Q2 = eP2. Analogously Qi = ePi for every i ∈ {3, . . . , n}. �
8. Corollaries of Theorems 6.1 and 6.2

We obtain the specializations of Theorems 6.1 and 6.2 for cyclotomic character, K-theory and
abelian varieties (see Section 3). Let us state these results in abelian variety case.

Theorem 8.1. Let A be an abelian variety defined over number field F such that End(A) is
an integral domain. Let P1, . . . ,Pn,P0,Q1, . . . ,Qn,Q0 ∈ A(F) be the points of infinite order.
Assume that for almost every prime l the following condition holds:

For every set of nonnegative integers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = rv(P0) implies m1rv(Q1) + · · · + mnrv(Qn) = rv(Q0).

Then there exist ki ∈ Z \ {0}, βi ∈ End(A) \ {0} such that kiPi + βiQi = 0 for every
i ∈ {0, . . . , n}.

Proof. By Theorem 6.1 there exist αi , βi ∈ End(A) \ {0} such that αiPi + βiQi = 0 for every
i ∈ {0, . . . , n}. But End(A) is an integral domain, hence A is simple and End(A) ⊗ Q is di-
vision algebra. So there exists an endomorphism γi ∈ End(A) such that γiαi = [ki] for some
ki ∈ Z \ {0}. Hence kiPi + γiβiQi = 0. �
Theorem 8.2. Let A be an abelian variety defined over number field F such that End(A) is an
integral domain. Let P1, . . . ,Pn,Q1, . . . ,Qn ∈ A(F) be the points of infinite order. Assume that
for almost every prime l the following condition holds:
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For every set of positive integers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = 0 implies m1rv(Q1) + · · · + mnrv(Qn) = 0.

Then there exist ki ∈ Z\{0}, βi ∈ End(A)\{0} such that kiPi +βiQi = 0 for every i ∈ {1, . . . , n}.

9. Corollaries of Theorem 7.3

Theorem 9.1. Let p1, . . . , ps, q1, . . . , qs ∈ F ∗ and suppose that for almost every prime ideal ℘
in OF and for every set of natural numbers m1, . . . ,ms the following condition holds:

s∏
i=1

p
mi

i = 1 (mod ℘) implies
s∏

i=1

q
mi

i = 1 (mod ℘).

Then there exists e ∈ Z \ {0} such that qi = pe
i for every i ∈ {1, . . . , s}.

Remark 9.1.2. Schinzel [S, Theorem 1] proved by a different method a similar result. Theo-
rem 9.1 is a bit more general since it assumes only positive coefficients mi .

Theorem 9.2. Let P1, . . . ,Ps,Q1, . . . ,Qs ∈ K2n+1(F )/CF be the points of infinite order, where
n � 1. Assume that for every prime l the following condition holds:

For every set of natural numbers m1, . . . ,ms and for almost every prime v

m1rv(P1) + · · · + msrv(Ps) = 0 implies m1rv(Q1) + · · · + msrv(Qs) = 0.

Then there exists e ∈ Z \ {0} such that Qi = ePi for every i ∈ {1, . . . , s}.

Theorem 9.3. Let A be an abelian variety defined over number field F such that End(A) = Z.
Let P1, . . . ,Pn,Q1, . . . ,Qn ∈ A(F) be the points of infinite order. Assume that for every prime l

the following condition holds:
For every set of natural numbers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = 0 implies m1rv(Q1) + · · · + mnrv(Qn) = 0.

Then there exists e ∈ Z \ {0} such that Qi = ePi for every i ∈ {1, . . . , n}.

Corollary 9.4. Let E be an elliptic curve without complex multiplication defined over number
field F . Let P1, . . . ,Pn,Q1, . . . ,Qn ∈ A(F) be the points of infinite order. Assume that for every
prime l the following condition holds:

For every set of natural numbers m1, . . . ,mn and for almost every prime v

m1rv(P1) + · · · + mnrv(Pn) = 0 implies m1rv(Q1) + · · · + mnrv(Qn) = 0.

Then there exists e ∈ Z \ {0} such that Qi = ePi for every i ∈ {1, . . . , n}.
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[BGK3] G. Banaszak, W. Gajda, P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115
(2005) 322–342.
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