JOURNAL OF Number Theory

On reduction maps and support problem in K-theory and abelian varieties

Stefan Barańczuk
Department of Mathematics, Adam Mickiewicz University, Poznań, Poland
Received 1 March 2005; revised 19 July 2005
Available online 13 December 2005
Communicated by David Goss

Abstract

In this paper we consider orders of images of nontorsion points by reduction maps for abelian varieties defined over number fields and for odd dimensional K-groups of number fields. As an application we obtain the generalization of the support problem for abelian varieties and K-groups.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

By $\operatorname{Supp}(m)$ we will denote the set of prime numbers dividing a positive number m. Pál Erdös asked the following question:

Suppose that for some integers x, y, the following condition holds

$$
\operatorname{Supp}\left(x^{n}-1\right)=\operatorname{Supp}\left(y^{n}-1\right)
$$

for every natural number n. Is then $x=y$?
Corrales-Rodrigáñez and Schoof answered the question and proved its analogue for number fields and for elliptic curves in [C-RS].

Schinzel proved the support problem for the pair of sets of natural numbers in [S].

[^0]Banaszak, Gajda and Krasoń examined the support problem for abelian varieties for which the images of the l-adic representation is well controlled and for K-theory of number fields in [BGK1,BGK2].

The support problem for abelian varieties over number fields was considered independently by Khare and Prasad in [KP].

Larsen in [Lar] gave a solution of the support problem for all abelian varieties over number fields.

Weston gave in [We] a solution to a question of Gajda which is related to the support problem for abelian varieties. In [BGK3] Banaszak, Gajda and Krasoń considered similar question as in Weston's paper in the framework of Mordell-Weil systems. In the present work I apply this framework.

In this paper we consider the generalization of the support problem for K-theory and abelian varieties; namely, we deal with the pair of sets of points instead of pair of points. Let us state, for example, Theorem 8.2.

Theorem 8.2. Let A be an abelian variety defined over number field F such that $\operatorname{End}(A)$ is an integral domain. Let $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n} \in A(F)$ be the points of infinite order. Assume that for almost every prime l the following condition holds:

For every set of positive integers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=0 .
$$

Then there exist $k_{i} \in \mathbb{Z} \backslash\{0\}, \beta_{i} \in \operatorname{End}(A) \backslash\{0\}$ such that $k_{i} P_{i}+\beta_{i} Q_{i}=0$ for every $i \in\{1, \ldots, n\}$.

Intuitively, the condition from the generalized support problem means that for almost every v each linear dependence satisfied by the points $r_{v}\left(P_{1}\right), \ldots, r_{v}\left(P_{n}\right)$ is also satisfied by the points $r_{v}\left(Q_{1}\right), \ldots, r_{v}\left(Q_{n}\right)$.

The main technical result of the paper is Theorem 5.1 which lets us control the images of linearly independent points of K-groups and abelian varieties over number fields via reduction maps. These theorems are the refinement of Theorem 3.1 of [BGK3] and are proven using similar methods. I have recently found out that Pink has proven by a different method a result similar to Theorem 5.1 in the abelian variety case, cf. [Pink, Corollary 4.3].

2. Groups of the Mordell-Weil type

The following axiomatic setup of Mordell-Weil systems was developed in [BGK3].
Notation.
$\mathbb{N} \quad$ the set of positive integers
l a prime number
$F \quad$ a number field, \mathcal{O}_{F} its ring of integers
$\bar{F} \quad$ fixed algebraic closure of F
$G_{F}=G(\bar{F} / F)$
$v \quad$ a finite prime of $\mathcal{O}_{F}, \kappa_{v}=\mathcal{O}_{F} / v$ the residue field at v
$g_{v}=G\left(\overline{\kappa_{v}} / \kappa_{v}\right)$
$T_{l} \quad$ a free \mathbb{Z}_{l}-module of finite rank d

V_{l}	$=T_{l} \otimes_{\mathbb{Z}_{l}} \mathbb{Q}_{l}$
A_{l}	$=V_{l} / T_{l}$
S_{l}	a fixed finite set of primes of \mathcal{O}_{F} containing all primes above l
$\rho_{l}: G_{F} \rightarrow G L\left(T_{l}\right)$	a Galois representation unramified outside the set S_{l}
$\overline{\rho_{l^{k}}}: G_{F} \rightarrow G L\left(T_{l} / l^{k}\right)$	the residual representation induced by ρ_{l}
$F_{l^{k}}$	the number field $\bar{F} \bar{F}^{\operatorname{Ker} \rho_{l^{k}}}$
$F_{l^{\infty}}$	$=\bigcup_{k} F_{l^{k}}$
G_{l}	$=G\left(F_{l} / F\right)$
$G_{l^{k}}$	$=G\left(F_{l^{k}} / F\right)$
$G_{l^{\infty}}$	$=G\left(F_{\left.l^{\infty} / F\right)}\right.$
$C\left[l^{k}\right]$	the subgroup of l^{k}-torsion elements of an abelian group C
C_{l}	$=\bigcup_{k} C\left[l^{k}\right]$, the l-torsion subgroup of C.

Let L / F be a finite extension contained in \bar{F} and w a finite prime in L. We write $w \notin S_{l}$ to indicate that w is not over any prime in S_{l}.

Let \mathcal{O} be a ring with unity, free as \mathbb{Z}-module, which acts on T_{l} in such a way that the action commutes with the G_{F} action. All modules over the ring \mathcal{O} considered in this paper are left \mathcal{O}-modules.

Let $\{B(L)\}_{L}$ be a direct system of finitely generated \mathcal{O}-modules indexed by all finite field extensions L / F. We assume that for every embedding $L \hookrightarrow L^{\prime}$ of extensions of F the induced structure map $B(L) \rightarrow B\left(L^{\prime}\right)$ is a homomorphism of \mathcal{O}-modules.

Similarly, for every prime v of F we define a direct system $\left\{B_{v}\left(\kappa_{w}\right)\right\}_{\kappa_{w}}$ of \mathcal{O}-modules where κ_{w} is a residue field for a prime w over v in a finite extension L / F. We suppose that the system $\left\{B_{v}\left(\kappa_{w}\right)\right\}_{\kappa_{w}}$ is compatible with G_{F} action. Namely, if $\kappa_{w^{\prime}}$ is a residue field for a prime w^{\prime} over w in a finite extension L^{\prime} / L then a natural map $B_{v}\left(\kappa_{w}\right) \rightarrow B_{v}\left(\kappa_{w^{\prime}}\right)$ assumes G_{F} action in the following way: if $\sigma \in G_{F}$ then the map $B_{v}\left(\kappa_{\sigma(w)}\right) \rightarrow B_{v}\left(\kappa_{\sigma\left(w^{\prime}\right)}\right)$ is the image of the map $B_{v}\left(\kappa_{w}\right) \rightarrow B_{v}\left(\kappa_{w^{\prime}}\right)$ under σ.

We make the following assumptions on the action of the G_{F} and \mathcal{O} :
(A1) for each l, each finite extension L / F and any prime w of L, such that $w \notin S_{l}$ we have $T_{l}{ }^{F r_{w}}=0$, where $F r_{w} \in g_{w}$ denotes the arithmetic Frobenius at w;
(A2) for every L and $w \notin S_{l}$ there are natural maps $\psi_{l, L}, \psi_{l, w}$ and r_{w} respecting G_{F} and \mathcal{O} actions such that the diagram commutes:

where $H_{f, S_{l}}^{1}\left(G_{L}, T_{l}\right)$ is the group defined by Bloch and Kato [BK]. The left (respectively the right) vertical arrow in the diagram (1) is an embedding (respectively an isomorphism) for every L (respectively for every $w \notin S_{l}$);
(A3) either for every L the map $\psi_{l, L}$ is an isomorphism for almost all l or $B(\bar{F})$ is a discrete G_{F}-module divisible by l for almost l;
(A4) for every L we have: $B(\bar{F})^{G_{L}} \cong B(L)$ and there is a Galois equivariant and \mathcal{O}-equivariant map $j_{L, l}$ such that the following diagram commutes:

and by abuse of notation we will consider $H^{0}\left(G_{L}, A_{l}\right)$ as a subgroup of $B(L)$.
As in [Ri] we impose the following four axioms on the representations which we consider:
(B1) $\operatorname{End}_{G_{l}}\left(A_{l}[l]\right) \cong \mathcal{O} / l \mathcal{O}$, for almost all l and $\operatorname{End}_{G_{l} \infty}\left(T_{l}\right) \cong \mathcal{O} \otimes \mathbb{Z}_{l}$, for all l;
(B2) $A_{l}[l]$ is a semisimple $\mathbb{F}_{l}\left[G_{l}\right]$-module for almost all l and V_{l} is a semisimple $\mathbb{Q}_{l}\left[G_{l \infty}\right]-$ module for all l;
(B3) $H^{1}\left(G_{l}, A_{l}[l]\right)=0$ for almost all l and $H^{1}\left(G_{l}, T_{l}\right)$ is a finite group for all l;
(B4) for each finitely generated subgroup $\Gamma \subset B(F)$ the group

$$
\Gamma^{\prime}=\{P \in B(F): m P \in \Gamma \text { for some } m \in \mathbb{N}\}
$$

is such that Γ^{\prime} / Γ has a finite exponent.
For a point $R \in B(L)$ (respectively a subgroup $\Gamma \subset B(F)$) we denote $\hat{R}=\psi_{l, L}(R)$ (respectively $\left.\hat{\Gamma}=\psi_{l, L}(\Gamma)\right)$.

Definition 2.1. The system of modules $\{B(L)\}_{L}$ fulfilling the above axioms is called a MordellWeil system.

3. Examples of Mordell-Weil systems

In all cases below the axioms $\left(A_{1}\right)-\left(A_{4}\right)$ and $\left(B_{1}\right)-\left(B_{4}\right)$ are satisfied by [BGK3], proofs of Theorems 4.1 and 4.2 loc. cit. In particular, in the case of abelian varieties, the assumptions are fulfilled due to results of Faltings [Fa], Zarhin [Za], Serre [Serre], and Mordell and Weil.

The cyclotomic character. Let $T_{l}=\mathbb{Z}_{l}(1)$, $V_{l}=\mathbb{Q}_{l}(1), A_{l}=\mathbb{Q}_{l} / \mathbb{Z}_{l}(1)$. Let S be an arbitrary finite set of primes in \mathcal{O}_{F}. We put

$$
B(L)=\mathcal{O}_{L, S}^{\times}
$$

for any finite extension L / F and we have $\mathcal{O}=\mathbb{Z}$.

Algebraic \boldsymbol{K}-theory of number fields. Let n be a natural number. For every finite extension L / F consider the Dwyer-Friedlander maps [DF]:

$$
K_{2 n+1}(L) \rightarrow K_{2 n+1}(L) \otimes \mathbb{Z}_{l} \rightarrow H^{1}\left(G_{L} ; \mathbb{Z}_{l}(n+1)\right)
$$

where the action of G_{L} on $\mathbb{Z}_{l}(n+1)$ is given by the $(n+1)$ th tensor power of the cyclotomic character.

Let C_{L} be the subgroup of $K_{2 n+1}(L)$ generated by the l-parts of kernels of the maps $K_{2 n+1}(L) \rightarrow H^{1}\left(G_{L} ; \mathbb{Z}_{l}(n+1)\right)$ for all primes l. By [DF] C_{L} is finite and according to QuillenLichtenbaum conjecture should be trivial. We put

$$
B(L)=K_{2 n+1}(L) / C_{L}
$$

and we have $\mathcal{O}=\mathbb{Z}$. The map $\psi_{L, l}$ is induced by the Dwyer-Friedlander map.

Abelian varieties over number fields. Let A be an abelian variety over number field F and let

$$
\rho_{l}: G_{F} \rightarrow G L\left(T_{l}(A)\right)
$$

be the l-adic representation given by the action of absolute Galois group on the Tate module $T_{l}(A)$ of A. In this case we put $B(L)=A(L)$ for every finite field extension L / F and $\mathcal{O}=$ $\operatorname{End}(A)$.

4. Kummer theory for l-adic representations

We introduce the Kummer theory for l-adic representations, following [Ri,BGK3]. Let Λ be a finitely generated free \mathcal{O}-submodule of $B(F)$ with basis P_{1}, \ldots, P_{r}.

For natural numbers k we have the Kummer maps:

$$
\begin{aligned}
& \phi_{P_{i}}^{k}: G\left(\bar{F} / F_{l^{k}}\right) \rightarrow A_{l}\left[l^{k}\right], \\
& \phi_{P_{i}}^{k}(\sigma)=\sigma\left(\frac{1}{l^{k}} \hat{P}_{i}\right)-\frac{1}{l^{k}} \hat{P}_{i} .
\end{aligned}
$$

These maps are well defined by the definition of maps $j_{L, l}$ in axiom (A4).
We define

$$
\Phi^{k}: G\left(\bar{F} / F_{l^{k}}\right) \rightarrow \bigoplus_{i=1}^{r} A_{l}\left[l^{k}\right], \quad \Phi^{k}=\left(\phi_{P_{1}}^{k}, \ldots, \phi_{P_{r}}^{k}\right)
$$

We define the field:

$$
F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Lambda}\right):=\bar{F}^{\operatorname{Ker} \Phi^{k}}
$$

Taking the inverse limit in the following commutative diagram

$$
\begin{array}{ccc}
G\left(\bar{F} / F_{l^{k}}\right) \xrightarrow{\phi_{P_{i}}^{k}} & A_{l}\left[l^{k}\right] \\
\downarrow & & \mid \times l \\
& & \\
G\left(\bar{F} / F_{l^{k-1}}\right) \xrightarrow{\phi_{P_{i}}^{k-1}} & A_{l}\left[l^{k-1}\right]
\end{array}
$$

we obtain a map:

$$
\phi_{P_{i}}^{\infty}: G\left(\bar{F} / F_{l} \infty\right) \rightarrow T_{l} .
$$

We define:

$$
\Phi^{\infty}: G\left(\bar{F} / F_{l} \infty\right) \rightarrow \bigoplus_{i=1}^{r} T_{l}, \quad \Phi=\left(\phi_{P_{1}}^{\infty}, \ldots, \phi_{P_{r}}^{\infty}\right)
$$

Lemma 4.1. For k big enough

$$
F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Lambda}\right) \cap F_{l^{k+1}}=F_{l^{k}}
$$

Proof. The proof follows the lines of step 1 of the proof of Proposition 2.2 in [BGK4] that partly repeats the argument in the proof of Lemma 5 in [KP].

Consider the following commutative diagram:

where the horizontal arrows are the Kummer maps and $m \in \mathbb{N}$ is big enough so that $l^{m} T_{l}^{r} \subset$ $\operatorname{Im}\left(G\left(F_{l \infty}\left(\frac{1}{l \infty} \hat{\Lambda}\right) / F_{l \infty}\right) \rightarrow T_{l}^{r}\right)$. Such m exists by [BGK3] Lemma 2.13.

Now we see that for k big enough the images of the maps

$$
G\left(F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Lambda}\right) / F_{l^{k}}\right) \rightarrow\left(A_{l}\left[l^{k}\right]\right)^{r} / l^{m}\left(A_{l}\left[l^{k}\right]\right)^{r}
$$

must be all isomorphic. Hence the maps $G\left(F_{l^{k+1}}\left(\frac{1}{l^{k+1}} \hat{\Lambda}\right) / F_{l^{k+1}}\right) \rightarrow G\left(F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Lambda}\right) / F_{l^{k}}\right)$ are surjective.

Now the diagram

shows that

$$
F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Lambda}\right) \cap F_{l^{k+1}}=F_{l^{k}}
$$

5. Main technical result

Theorem 5.1. Assume that $\rho\left(G_{F}\right)$ contains an open subgroup of the group of homotheties. Let

$$
P_{1}, \ldots, P_{s} \in B(F)
$$

be points of infinite order, which are linearly independent over \mathcal{O}.
Then for any prime l, and for any set $\left\{k_{1}, \ldots, k_{s}\right\} \subset \mathbb{N} \cup\{0\}$, there are infinitely many primes v, such that the image of the point P_{t} via the map

$$
r_{v}: B(F) \rightarrow B_{v}\left(\kappa_{v}\right)_{l}
$$

has order equal to $l^{k_{t}}$ for every $t \in\{1, \ldots, s\}$.
Proof. Let us rename the points $P_{1}, \ldots, P_{s} \in B(F)$ in the following way:

$$
P_{1}, \ldots, P_{i}, Q_{1}, \ldots, Q_{j} \in B(F)
$$

and we are going to show that for any prime l, and for any set $\left\{k_{1}, \ldots, k_{i}\right\} \subset \mathbb{N}$, there are infinitely many primes v, such that the image of the point P_{t} via the map

$$
r_{v}: B(F) \rightarrow B_{v}\left(\kappa_{v}\right)_{l}
$$

has order equal to $l^{k_{t}}$ for every $t \in\{1, \ldots, i\}$ and the images of the points Q_{1}, \ldots, Q_{j} are trivial. It is enough to prove the theorem in a case when $k_{t}=1$ for every $t \in\{1, \ldots, i\}$, since if $r_{v}\left(l^{k_{t}-1} P_{t}\right)$ has order equal to l then $r_{v}\left(P_{t}\right)$ has order equal to $l^{k_{t}}$.

We will make use of the following diagram:

where Π (respectively Σ) is the \mathcal{O}-submodule of $B(F)$ generated by P_{1}, \ldots, P_{i} (respectively by Q_{1}, \ldots, Q_{j}).

It follows by Lemma 4.1 applied to the \mathcal{O}-submodule of $B(F)$ generated by $l P_{1}, \ldots, l P_{i}, Q_{1}$, \ldots, Q_{j} that for k big enough

$$
F_{l^{k}}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right) \cap F_{l^{k+1}}=F_{l^{k}}
$$

Step 1. Consider the following commutative diagram:

The horizontal arrows in the diagram (2) are the Kummer maps. The upper horizontal arrow has finite cokernel by [BGK3, Lemma 2.13], so for k big enough the horizontal arrows have cokernels bounded independently of k. Hence for k big enough there exists $\sigma \in G\left(F_{l^{\infty}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{\infty}} \hat{\Sigma}\right) / F_{l^{\infty}}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{\infty}} \hat{\Sigma}\right)\right)$ such that σ maps via the Kummer map

$$
\begin{equation*}
G\left(F_{l \infty}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{\infty}} \hat{\Sigma}\right) / F_{l \infty}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{\infty}} \hat{\Sigma}\right)\right) \rightarrow\left(A_{l}[l]\right)^{i} \tag{3}
\end{equation*}
$$

to an element whose all i projections on the direct summands $\left(A_{l}[l]\right)^{i}$ are nontrivial. Then the following tower of fields

shows that there exist $\sigma \in G\left(F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right) / F_{l^{k}}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right)\right)$ such that σ maps via the Kummer map

$$
\begin{equation*}
G\left(F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right) / F_{l^{k}}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right)\right) \rightarrow\left(A_{l}[l]\right)^{i} \tag{5}
\end{equation*}
$$

to an element whose all i projections on the direct summands $\left(A_{l}[l]\right)^{i}$ are nontrivial.
Step 2. Let k be big enough that there is an element σ constructed in a previous step and such that there exists a nontrivial homothety $h \in G\left(F_{l^{k+1}} / F_{l^{k}}\right)$ acting on the module T_{l} as a multiplication by $1+l^{k} u_{0}$, for some $u_{0} \in \mathbb{Z}_{l}^{\times}$.

We choose an automorphism

$$
\gamma \in G\left(F_{l^{k+1}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right) / F\right)
$$

such that

$$
\begin{gathered}
\left.\gamma\right|_{F_{l^{k}}\left(\frac{1}{k^{\prime}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right)}=\sigma, \\
\left.\gamma\right|_{F_{l^{k+1}}}=h .
\end{gathered}
$$

By the Tchebotarev Density Theorem there exist infinitely many prime ideals v in \mathcal{O}_{F} such that γ is equal to the Frobenius element for the prime v in the extension $F_{l^{k+1}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right) / F$. In the remainder of the proof we work with prime ideals v we have just selected.

Step 3. Using the same argument as in [BGK3], step 4, we show that $l r_{v}\left(P_{1}\right), \ldots, l r_{v}\left(P_{i}\right)$, $r_{v}\left(Q_{1}\right), \ldots, r_{v}\left(Q_{j}\right)$ are trivial in $B_{v}\left(\kappa_{v}\right)_{l}$:

Let P denote any of the points $l P_{1}, \ldots, l P_{i}, Q_{1}, \ldots, Q_{j}$. Let l^{c} be an order of the point $r_{v}(P)$ in the group $B_{v}\left(\kappa_{v}\right)_{l}$ (see the axiom (A2)). Let w_{1} be a prime ideal of $F_{l^{k+1}}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right)$ below w. A point $\frac{1}{l^{k}} P \in B\left(F_{l^{k+1}}\left(\frac{1}{l^{k-1}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right)\right)$ and its image $r_{w_{1}}\left(\frac{1}{l^{k}} P\right) \in B_{v}\left(\kappa_{w_{1}}\right) l$ has order equal l^{k+c}. By the choice v the point $r_{w_{1}}\left(\frac{1}{l^{k}} P\right)$ comes from an element of $B_{v}\left(\kappa_{v}\right)_{l}$. The right vertical arrow in the diagram (1) is an isomorphism, hence by the choice of v,

$$
h\left(r_{w_{1}}\left(\frac{1}{l^{k}} P\right)\right)=\left(1+l^{k} u_{0}\right) r_{w_{1}}\left(\frac{1}{l^{k}} P\right)
$$

But $r_{w_{1}}\left(\frac{1}{l^{k}} P\right) \in B_{v}\left(\kappa_{v}\right)_{l}$, hence $h\left(r_{w_{1}}\left(\frac{1}{l^{k}} P\right)\right)=r_{w_{1}}\left(\frac{1}{l^{k}} P\right)$, again by the choice of v. Thus $l^{k} r_{w_{1}}\left(\frac{1}{l^{k}} P\right)=0$ and $c=0$.

Step 4. Using similar argument, as in [BGK3] step 5, we show that $r_{v}\left(P_{1}\right), \ldots, r_{v}\left(P_{i}\right)$ have order divisible by l in $B_{v}\left(\kappa_{v}\right)_{l}$:

Let w_{2} denote the prime ideal in $F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right)$ below w and let u_{2} denote the prime in $F_{l^{k}}$ below w_{2}. Consider the following commutative diagram:

Every point P_{j} maps via the left vertical arrow in the diagram (6) to the Kummer map $\phi_{P_{j}}^{k}$. The homomorphism $\phi_{P_{j}}^{k}$ factors through the group $G\left(F_{l^{k}}\left(\frac{1}{l^{k}} \hat{\Pi}, \frac{1}{l^{k}} \hat{\Sigma}\right) / F_{l^{k}}\right)$. We denote this factorization with the same symbol $\phi_{P_{j}}^{k}$. By the choice of the automorphism γ the element $\phi_{P_{j}}^{k}\left(\left.\gamma\right|_{F_{l^{k}}\left(\left(1 / l^{k}\right) \hat{\Pi},\left(1 / l^{k}\right) \hat{\Sigma}\right)}\right) \in A_{l}\left[l^{k}\right]$ is nontrivial. Hence the element $\phi_{P_{j}}^{k} \in$ $\operatorname{Hom}\left(G\left(\bar{F} / F_{l^{k}}\right)^{a b} ; A_{l}\left[l^{k}\right]\right)$ is nontrivial. Thus by the choice of v image of the element $\phi_{P_{j}}^{k}$ via map $\operatorname{Hom}\left(H_{l^{k}}^{a b} ; A_{l}\left[l^{k}\right]\right) \rightarrow \operatorname{Hom}\left(g_{u_{2}} ; A_{l}\left[l^{k}\right]\right)$ from diagram (6) is nontrivial. Hence the image of P_{j} via the bottom horizontal arrow in the diagram (6) is nontrivial.

Thus every point $r_{v}\left(P_{1}\right), \ldots, r_{v}\left(P_{i}\right)$ has the order divisible by l in $B_{v}\left(\kappa_{v}\right)_{l}$. But step 3 shows that every point $l r_{v}\left(P_{1}\right), \ldots, l r_{v}\left(P_{i}\right)$ is trivial. Hence elements $r_{v}\left(P_{1}\right), \ldots, r_{v}\left(P_{i}\right)$ have orders equal l.

6. Support problem for K-theory and abelian varieties

Let \mathcal{O} be an integral domain.

Theorem 6.1. Let $P_{1}, \ldots, P_{n}, P_{0}, Q_{1}, \ldots, Q_{n}, Q_{0} \in B(F)$ be the points nontorsion over \mathcal{O}. Assume that for almost every prime l the following condition holds in the group $B_{v}\left(\kappa_{v}\right)_{l}$:

For every set of nonnegative integers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=r_{v}\left(P_{0}\right) \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=r_{v}\left(Q_{0}\right) .
$$

Then there exist $\alpha_{i}, \beta_{i} \in \mathcal{O} \backslash\{0\}$ such that $\alpha_{i} P_{i}+\beta_{i} Q_{i}=0$ in $B(F)$ for every $i \in\{0, \ldots, n\}$.
Proof. Set $m_{i}=0$ for every $i \in\{1, \ldots, n\}$. We get

$$
\begin{equation*}
r_{v}\left(P_{0}\right)=0 \quad \text { implies } \quad r_{v}\left(Q_{0}\right)=0 \tag{7}
\end{equation*}
$$

for almost every prime v. Assume that P_{0} and Q_{0} are linearly independent in $B(F)$ over \mathcal{O}. By Theorem 5.1 there are infinitely many primes v such that $r_{v}\left(P_{0}\right)=0$ and $r_{v}\left(Q_{0}\right)$ has order l. This contradicts (7). Hence there exist $\alpha_{0}, \beta_{0} \in \mathcal{O} \backslash\{0\}$ such that $\alpha_{0} P_{0}+\beta_{0} Q_{0}=0$ in $B(F)$.

Now fix $m_{1}=\cdots=m_{j-1}=m_{j+1}=\cdots=m_{n}=0$. Let m_{j} be a natural number such that $m_{j} P_{j}+P_{0},\left(m_{j}+1\right) P_{j}+P_{0},\left(m_{j}+2\right) P_{j}+P_{0}, m_{j} Q_{j}+Q_{0},\left(m_{j}+1\right) Q_{j}+Q_{0}$, $\left(m_{j}+2\right) Q_{j}+Q_{0}$ be nontorsion points.

As above we show that there exist $x_{0}, y_{0}, x_{1}, y_{1}, x_{2}, y_{2} \in \mathcal{O} \backslash\{0\}$ such that

$$
\left\{\begin{array}{l}
x_{0}\left(m_{j} P_{j}+P_{0}\right)+y_{0}\left(m_{j} Q_{j}+Q_{0}\right)=0 \\
x_{1}\left(\left(m_{j}+1\right) P_{j}+P_{0}\right)+y_{1}\left(\left(m_{j}+1\right) Q_{j}+Q_{0}\right)=0, \\
x_{2}\left(\left(m_{j}+2\right) P_{j}+P_{0}\right)+y_{2}\left(\left(m_{j}+2\right) Q_{j}+Q_{0}\right)=0
\end{array}\right.
$$

Hence

$$
\left\{\begin{array}{l}
x_{1} y_{0} P_{j}+y_{1} y_{0} Q_{j}=\left(x_{0} y_{1}-x_{1} y_{0}\right)\left(m_{j} P_{j}+P_{0}\right), \tag{8}\\
2\left(x_{2} y_{0} P_{j}+y_{2} y_{0} Q_{j}\right)=\left(x_{0} y_{2}-x_{2} y_{0}\right)\left(m_{j} P_{j}+P_{0}\right)
\end{array}\right.
$$

If $\left(x_{0} y_{1}-x_{1} y_{0}\right)=0$ or $\left(x_{0} y_{2}-x_{2} y_{0}\right)=0$ we are done. So assume that

$$
\begin{equation*}
\left(x_{0} y_{1}-x_{1} y_{0}\right)\left(x_{0} y_{2}-x_{2} y_{0}\right) \neq 0 \tag{9}
\end{equation*}
$$

Hence from (8) we get

$$
y_{0}\left(x_{0}\left(x_{2} y_{1}-x_{1} y_{2}\right)+x_{2}\left(x_{0} y_{1}-x_{1} y_{0}\right)\right) P_{j}=y_{0}\left(y_{0}\left(x_{1} y_{2}-x_{2} y_{1}\right)+y_{2}\left(x_{1} y_{0}-x_{0} y_{1}\right)\right) Q_{j} .
$$

If $y_{0}\left(x_{0}\left(x_{2} y_{1}-x_{1} y_{2}\right)+x_{2}\left(x_{0} y_{1}-x_{1} y_{0}\right)\right) \neq 0$ or $y_{0}\left(y_{0}\left(x_{1} y_{2}-x_{2} y_{1}\right)+y_{2}\left(x_{1} y_{0}-x_{0} y_{1}\right)\right) \neq 0$ we are done. So assume that

$$
\left\{\begin{array}{l}
y_{0}\left(x_{0}\left(x_{2} y_{1}-x_{1} y_{2}\right)+x_{2}\left(x_{0} y_{1}-x_{1} y_{0}\right)\right)=0 \\
y_{0}\left(y_{0}\left(x_{1} y_{2}-x_{2} y_{1}\right)+y_{2}\left(x_{1} y_{0}-x_{0} y_{1}\right)\right)=0
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
x_{0}\left(x_{2} y_{1}-x_{1} y_{2}\right)+x_{2}\left(x_{0} y_{1}-x_{1} y_{0}\right)=0 \\
y_{0}\left(x_{1} y_{2}-x_{2} y_{1}\right)+y_{2}\left(x_{1} y_{0}-x_{0} y_{1}\right)=0
\end{array}\right.
$$

Hence we get

$$
\left(x_{0} y_{1}-x_{1} y_{0}\right)\left(x_{0} y_{2}-x_{2} y_{0}\right)=0
$$

that contradicts (9).
Theorem 6.2. Let $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n} \in B(F)$ be the points nontorsion over \mathcal{O}. Assume that for almost every prime l the following condition holds in the group $B_{v}\left(\kappa_{v}\right)_{l}$:

For every set of natural numbers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=0
$$

Then there exist $\alpha_{i}, \beta_{i} \in \mathcal{O} \backslash\{0\}$ such that $\alpha_{i} P_{i}+\beta_{i} Q_{i}=0$ in $B(F)$ for every $i \in\{1, \ldots, n\}$.

Proof. The proof of the theorem is analogous to the proof of Theorem 6.1:
Let m_{j} be a natural number such that

$$
\begin{aligned}
& m_{1} P_{1}+\cdots+m_{j-1} P_{j-1}+m_{j} P_{j}+m_{j+1} P_{j+1}+\cdots+m_{n} P_{n}, \\
& m_{1} P_{1}+\cdots+m_{j-1} P_{j-1}+\left(m_{j}+1\right) P_{j}+m_{j+1} P_{j+1}+\cdots+m_{n} P_{n}, \\
& m_{1} P_{1}+\cdots+m_{j-1} P_{j-1}+\left(m_{j}+2\right) P_{j}+m_{j+1} P_{j+1}+\cdots+m_{n} P_{n}, \\
& m_{1} Q_{1}+\cdots+m_{j-1} Q_{j-1}+m_{j} Q_{j}+m_{j+1} Q_{j+1}+\cdots+m_{n} Q_{n}, \\
& m_{1} Q_{1}+\cdots+m_{j-1} Q_{j-1}+\left(m_{j}+1\right) Q_{j}+m_{j+1} Q_{j+1}+\cdots+m_{n} Q_{n}, \\
& m_{1} Q_{1}+\cdots+m_{j-1} Q_{j-1}+\left(m_{j}+2\right) Q_{j}+m_{j+1} Q_{j+1}+\cdots+m_{n} Q_{n}
\end{aligned}
$$

be nontorsion points. There exist $x_{0}, y_{0}, x_{1}, y_{1}, x_{2}, y_{2} \in \mathcal{O} \backslash\{0\}$ such that

$$
\left\{\begin{array}{l}
x_{0}\left(m_{1} P_{1}+\cdots+m_{j-1} P_{j-1}+m_{j} P_{j}+m_{j+1} P_{j+1}+\cdots+m_{n} P_{n}\right) \\
\quad+y_{0}\left(m_{1} Q_{1}+\cdots+m_{j-1} Q_{j-1}+m_{j} Q_{j}+m_{j+1} Q_{j+1}+\cdots+m_{n} Q_{n}\right)=0, \\
x_{1}\left(m_{1} P_{1}+\cdots+m_{j-1} P_{j-1}+\left(m_{j}+1\right) P_{j}+m_{j+1} P_{j+1}+\cdots+m_{n} P_{n}\right) \\
\quad+y_{1}\left(m_{1} Q_{1}+\cdots+m_{j-1} Q_{j-1}+\left(m_{j}+1\right) Q_{j}+m_{j+1} Q_{j+1}+\cdots+m_{n} Q_{n}\right)=0, \\
x_{2}\left(m_{1} P_{1}+\cdots+m_{j-1} P_{j-1}+\left(m_{j}+2\right) P_{j}+m_{j+1} P_{j+1}+\cdots+m_{n} P_{n}\right) \\
\quad+y_{2}\left(m_{1} Q_{1}+\cdots+m_{j-1} Q_{j-1}+\left(m_{j}+2\right) Q_{j}+m_{j+1} Q_{j+1}+\cdots+m_{n} Q_{n}\right)=0 .
\end{array}\right.
$$

The rest of the proof follows the lines of the proof of Theorem 6.1.
Remark 6.2.1. Assume that $\mathcal{O}=\mathcal{O}_{E}$ for some number field E. Assume that there exist $\alpha, \beta \in \mathcal{O}_{E} \backslash\{0\}$ such that $\alpha P+\beta Q=0$ in $B(F)$. Then there exist $z \in \mathbb{Z} \backslash\{0\}$ such that $z \frac{\beta}{\alpha} \in \mathcal{O}_{E}$ (see [Mol, p. 46]). Hence $z P+z \frac{\beta}{\alpha} Q=0$ in $B(F)$. We can then replace the expression " $\alpha_{i}, \beta_{i} \in \mathcal{O} \backslash\{0\}$ " in Theorem 6.1 by " $\alpha_{i} \in \mathbb{Z} \backslash\{0\}, \beta_{i} \in \mathcal{O} \backslash\{0\}$."

7. The case $\mathcal{O}=\mathbb{Z}$

We consider the special case $\mathcal{O}=\mathbb{Z}$. The following lemma was proved in the abelian varieties case using different method by Larsen in [Lar]:

Lemma 7.1. Let $P, Q \in B(F)$ be points of infinite order. Assume that for every prime number l the following condition holds in the group $B_{v}\left(\kappa_{v}\right)_{l}$:

For every natural number n and for almost every prime v :

$$
\begin{equation*}
n r_{v}(P)=0 \quad \text { implies } \quad n r_{v}(Q)=0 \tag{10}
\end{equation*}
$$

Then there is an integer e such that $Q=e P$.
Proof. By Theorem 6.2 there are $\alpha, \beta \in \mathbb{Z} \backslash 0$ such that $\alpha P=\beta Q$. Let l^{k} be the largest power of prime number l that divides $\beta, \beta=b l^{k}$. By (10) we have

$$
\alpha r_{v}(P)=0 \quad \text { implies } \quad \alpha r_{v}(Q)=0,
$$

hence

$$
\beta r_{v}(Q)=0 \quad \text { implies } \quad \alpha r_{v}(Q)=0
$$

and

$$
b l^{k} r_{v}(Q)=0 \quad \text { implies } \quad \alpha r_{v}(Q)=0 .
$$

But obviously $\alpha r_{v}(Q)=0$ implies $b \alpha r_{v}(Q)=0$. Hence we get

$$
\begin{equation*}
l^{k} r_{v}(b Q)=0 \quad \text { implies } \quad \alpha r_{v}(b Q)=0 . \tag{11}
\end{equation*}
$$

By Theorem 5.1 there are infinitely many primes v such that the order of $r_{v}(b Q)$ is l^{k}. So by (11) we get $\alpha r_{v}(b Q)=0$ and l^{k} divides α.

Now repeating an argument from the proof of the Theorem 3.12 of [BGK3] we show that $Q=\frac{\alpha}{\beta} P$ with $\frac{\alpha}{\beta} \in \mathbb{Z}$:

We have $\frac{\alpha}{l^{k}} P=\frac{\beta}{l^{k}} Q+R$ where $R \in B(F)\left[l^{k}\right]$. By Theorem 5.1 and by Assumption 10 there are infinitely many primes v such that $r_{v}(P)=r_{v}(Q)=0$. Hence we get $r_{v}(R)=0$ for infinitely many primes v. But the map

$$
r_{v}: B(F)_{\mathrm{tor}} \rightarrow B_{v}\left(\kappa_{v}\right)
$$

is an embedding for any prime $v \notin S_{l}$ by Lemma 3.11 of [BGK3]. Thus $R=0$.
Lemma 7.2. Let $P_{1}, P_{2}, Q_{1}, Q_{2} \in B(F)$ be points of infinite order. Assume that for every prime number l the following condition holds in the group $B_{v}\left(\kappa_{v}\right)_{l}$:

For every set of natural numbers m_{1}, m_{2} and for almost every prime v :

$$
\begin{equation*}
m_{1} r_{v}\left(P_{1}\right)+m_{2} r_{v}\left(P_{2}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+m_{2} r_{v}\left(Q_{2}\right)=0 . \tag{12}
\end{equation*}
$$

Then there is an integer e such that $Q_{1}=e P_{1}$ and $Q_{2}=e P_{2}$.
Proof. By Theorem 6.2 there are integers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ such that $\alpha_{1} P_{1}=\beta_{1} Q_{1}, \alpha_{2} P_{2}=\beta_{2} Q_{2}$. We can assume that $\alpha_{1}, \alpha_{2}>0$.

Now we have to consider two cases.
First, assume that P_{1} and P_{2} are linearly independent over \mathbb{Z}. Hence P_{1} and $|b| Q_{2}$ are also linearly independent, where $\beta_{2}=b l^{k}$ and l^{k} is the largest power of prime number l that divides β_{2}.

By Theorem 5.1 there are infinitely many primes v such that $r_{v}\left(P_{1}\right)=0$ and $r_{v}\left(|b| Q_{2}\right)$ has order l^{k}.

By (12), for $m_{1}=\left|\beta_{1}\right|$ and $m_{2}=\alpha_{2}$, and by the choice of v we have:

$$
\begin{aligned}
& \left|\beta_{2}\right| r_{v}\left(Q_{2}\right)=0 \quad \text { implies } \quad \alpha_{2} r_{v}\left(Q_{2}\right)=0 \\
& l^{k} r_{v}\left(|b| Q_{2}\right)=0 \quad \text { implies } \quad \alpha_{2} r_{v}\left(|b| Q_{2}\right)=0
\end{aligned}
$$

Again by the choice of v

$$
\alpha_{2} r_{v}\left(|b| Q_{2}\right)=0 .
$$

Hence l^{k} divides α_{2}. Now we repeat again the argument from the proof of Theorem 3.12 of [BGK3] showing that $Q_{2}=e_{2} P_{2}$ for some nonzero integer e_{2} and analogously $Q_{1}=e_{1} P_{1}$ for some nonzero integer e_{1}.

Now by (12)

$$
r_{v}\left(P_{1}\right)+r_{v}\left(P_{2}\right)=0 \quad \text { implies } \quad r_{v}\left(Q_{1}\right)+r_{v}\left(Q_{2}\right)=0 .
$$

Hence

$$
\begin{equation*}
r_{v}\left(P_{1}\right)+r_{v}\left(P_{2}\right)=0 \quad \text { implies } \quad\left(e_{1}-e_{2}\right) r_{v}\left(P_{2}\right)=0 . \tag{13}
\end{equation*}
$$

Let now k be arbitrary natural number and l be arbitrary prime number. By Theorem 5.1 there are infinitely many primes v such that $r_{v}\left(P_{1}+P_{2}\right)=0$ and $r_{v}\left(P_{2}\right)$ has order l^{k}. Hence by (13), l^{k} divides $e_{1}-e_{2}$. So $e_{1}-e_{2}=0$.

Now we assume that P_{1} and P_{2} are linearly dependent over \mathbb{Z}, i.e. there are numbers $x \in \mathbb{N}$ and $y \in \mathbb{Z} \backslash\{0\}$ such that $x P_{1}=y P_{2}$. Hence $\alpha_{2} \beta_{1} x Q_{1}=\alpha_{1} \beta_{2} y Q_{2}$. Put $m_{2}=m_{1} \alpha_{1} \beta_{2} y \operatorname{sgn}\left(\beta_{2} y\right)$ in (12):

$$
\begin{aligned}
& m_{1} r_{v}\left(P_{1}\right)+m_{1} \alpha_{1} \beta_{2} y \operatorname{sgn}\left(\beta_{2} y\right) r_{v}\left(P_{2}\right)=0 \quad \text { implies } \\
& m_{1} r_{v}\left(Q_{1}\right)+m_{1} \alpha_{1} \beta_{2} y \operatorname{sgn}\left(\beta_{2} y\right) r_{v}\left(Q_{2}\right)=0
\end{aligned}
$$

hence

$$
m_{1}\left[1+\alpha_{1} \beta_{2} x \operatorname{sgn}\left(\beta_{2} y\right)\right] r_{v}\left(P_{1}\right)=0 \quad \text { implies } \quad m_{1}\left[1+\alpha_{2} \beta_{1} x \operatorname{sgn}\left(\beta_{2} y\right)\right] r_{v}\left(Q_{1}\right)=0 .
$$

Putting $P:=\left[1+\alpha_{1} \beta_{2} x \operatorname{sgn}\left(\beta_{2} y\right)\right] P_{1}, Q:=\left[1+\alpha_{2} \beta_{1} x \operatorname{sgn}\left(\beta_{2} y\right)\right] Q_{1}$ we get

$$
m_{1} r_{v}(P)=0 \quad \text { implies } \quad m_{1} r_{v}(Q)=0 .
$$

By Lemma 7.1 there is an integer s such that $Q=s P$. So

$$
\left[1+\alpha_{2} \beta_{1} x \operatorname{sgn}\left(\beta_{2} y\right)\right] Q_{1}=s\left[1+\alpha_{1} \beta_{2} x \operatorname{sgn}\left(\beta_{2} y\right)\right] P_{1} .
$$

Hence

$$
Q_{1}=\left[s\left(1+\alpha_{1} \beta_{2} x \operatorname{sgn}\left(\beta_{2} y\right)\right)-\alpha_{1} \alpha_{2} x \operatorname{sgn}\left(\beta_{2} y\right)\right] P_{1}
$$

i.e. there is an integer e_{1} such that $Q_{1}=e_{1} P_{1}$. Analogously there is an integer e_{2} such that $Q_{2}=e_{2} P_{2}$.

Now, by (12), for $m_{1}=x, m_{2}=l^{k}-y$ where k is an arbitrary natural number and l is an arbitrary prime number such that $l^{k}-y>0$, we get

$$
l^{k} r_{v}\left(P_{2}\right)=0 \quad \text { implies } \quad y\left(e_{1}-e_{2}\right) r_{v}\left(P_{2}\right)=0
$$

By Theorem 5.1 there are infinitely many primes v such that $r_{v}\left(P_{2}\right)$ has order l^{k}, so l^{k} divides $y\left(e_{1}-e_{2}\right)$. But k was arbitrary, so $e_{1}-e_{2}=0$.

Theorem 7.3. Let $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n} \in B(F)$ be the points of infinite order. Assume that for every prime number l the following condition holds in the group $B_{v}\left(\kappa_{v}\right)_{l}$:

For every set of natural numbers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=0
$$

Then there exists an integer e such that $Q_{i}=e P_{i}$ in $B(F)$ for every $i \in\{1, \ldots, n\}$.
Proof. There is $s \in \mathbb{N}$ such that $P:=s P_{2}+P_{3}+\cdots+P_{n}, \bar{P}:=(s+1) P_{2}+P_{3}+\cdots+P_{n}$, $Q:=s P_{2}+P_{3}+\cdots+P_{n}, \bar{Q}:=(s+1) Q_{2}+Q_{3}+\cdots+Q_{n}$ are nontorsion points.

By the assumption of the theorem the following condition holds for every set of natural numbers m_{1}, m_{2} and for almost every prime v :

$$
\begin{array}{lll}
m_{1} r_{v}\left(P_{1}\right)+m_{2} r_{v}(P)=0 & \text { implies } & m_{1} r_{v}\left(Q_{1}\right)+m_{2} r_{v}(Q)=0 \\
m_{1} r_{v}\left(P_{1}\right)+m_{2} r_{v}(\bar{P})=0 & \text { implies } & m_{1} r_{v}\left(Q_{1}\right)+m_{2} r_{v}(\bar{Q})=0 .
\end{array}
$$

By Lemma 7.2 there is an integer e such that $Q_{1}=e P_{1}, Q=e P, \bar{Q}=e \bar{P}$, i.e.

$$
\left\{\begin{array}{l}
e\left[s P_{2}+P_{3}+\cdots+P_{n}\right]=s Q_{2}+Q_{3}+\cdots+Q_{n}, \\
e\left[(s+1) P_{2}+P_{3}+\cdots+P_{n}\right]=(s+1) Q_{2}+Q_{3}+\cdots+Q_{n},
\end{array}\right.
$$

hence $Q_{2}=e P_{2}$. Analogously $Q_{i}=e P_{i}$ for every $i \in\{3, \ldots, n\}$.

8. Corollaries of Theorems 6.1 and 6.2

We obtain the specializations of Theorems 6.1 and 6.2 for cyclotomic character, K-theory and abelian varieties (see Section 3). Let us state these results in abelian variety case.

Theorem 8.1. Let A be an abelian variety defined over number field F such that $\operatorname{End}(A)$ is an integral domain. Let $P_{1}, \ldots, P_{n}, P_{0}, Q_{1}, \ldots, Q_{n}, Q_{0} \in A(F)$ be the points of infinite order. Assume that for almost every prime l the following condition holds:

For every set of nonnegative integers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=r_{v}\left(P_{0}\right) \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=r_{v}\left(Q_{0}\right) .
$$

Then there exist $k_{i} \in \mathbb{Z} \backslash\{0\}, \beta_{i} \in \operatorname{End}(A) \backslash\{0\}$ such that $k_{i} P_{i}+\beta_{i} Q_{i}=0$ for every $i \in\{0, \ldots, n\}$.

Proof. By Theorem 6.1 there exist $\alpha_{i}, \beta_{i} \in \operatorname{End}(A) \backslash\{0\}$ such that $\alpha_{i} P_{i}+\beta_{i} Q_{i}=0$ for every $i \in\{0, \ldots, n\}$. But $\operatorname{End}(A)$ is an integral domain, hence A is simple and $\operatorname{End}(A) \otimes \mathbb{Q}$ is division algebra. So there exists an endomorphism $\gamma_{i} \in \operatorname{End}(A)$ such that $\gamma_{i} \alpha_{i}=\left[k_{i}\right]$ for some $k_{i} \in \mathbb{Z} \backslash\{0\}$. Hence $k_{i} P_{i}+\gamma_{i} \beta_{i} Q_{i}=0$.

Theorem 8.2. Let A be an abelian variety defined over number field F such that $\operatorname{End}(A)$ is an integral domain. Let $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n} \in A(F)$ be the points of infinite order. Assume that for almost every prime l the following condition holds:

For every set of positive integers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=0 .
$$

Then there exist $k_{i} \in \mathbb{Z} \backslash\{0\}, \beta_{i} \in \operatorname{End}(A) \backslash\{0\}$ such that $k_{i} P_{i}+\beta_{i} Q_{i}=0$ for every $i \in\{1, \ldots, n\}$.

9. Corollaries of Theorem 7.3

Theorem 9.1. Let $p_{1}, \ldots, p_{s}, q_{1}, \ldots, q_{s} \in F^{*}$ and suppose that for almost every prime ideal \wp in \mathcal{O}_{F} and for every set of natural numbers m_{1}, \ldots, m_{s} the following condition holds:

$$
\prod_{i=1}^{s} p_{i}^{m_{i}}=1(\bmod \wp) \quad \text { implies } \quad \prod_{i=1}^{s} q_{i}^{m_{i}}=1(\bmod \wp)
$$

Then there exists $e \in \mathbb{Z} \backslash\{0\}$ such that $q_{i}=p_{i}^{e}$ for every $i \in\{1, \ldots, s\}$.
Remark 9.1.2. Schinzel [S, Theorem 1] proved by a different method a similar result. Theorem 9.1 is a bit more general since it assumes only positive coefficients m_{i}.

Theorem 9.2. Let $P_{1}, \ldots, P_{s}, Q_{1}, \ldots, Q_{s} \in K_{2 n+1}(F) / C_{F}$ be the points of infinite order, where $n \geqslant 1$. Assume that for every prime l the following condition holds:

For every set of natural numbers m_{1}, \ldots, m_{s} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{s} r_{v}\left(P_{s}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{s} r_{v}\left(Q_{s}\right)=0
$$

Then there exists $e \in \mathbb{Z} \backslash\{0\}$ such that $Q_{i}=e P_{i}$ for every $i \in\{1, \ldots, s\}$.
Theorem 9.3. Let A be an abelian variety defined over number field F such that $\operatorname{End}(A)=\mathbb{Z}$. Let $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n} \in A(F)$ be the points of infinite order. Assume that for every prime l the following condition holds:

For every set of natural numbers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=0
$$

Then there exists $e \in \mathbb{Z} \backslash\{0\}$ such that $Q_{i}=e P_{i}$ for every $i \in\{1, \ldots, n\}$.

Corollary 9.4. Let E be an elliptic curve without complex multiplication defined over number field F. Let $P_{1}, \ldots, P_{n}, Q_{1}, \ldots, Q_{n} \in A(F)$ be the points of infinite order. Assume that for every prime l the following condition holds:

For every set of natural numbers m_{1}, \ldots, m_{n} and for almost every prime v

$$
m_{1} r_{v}\left(P_{1}\right)+\cdots+m_{n} r_{v}\left(P_{n}\right)=0 \quad \text { implies } \quad m_{1} r_{v}\left(Q_{1}\right)+\cdots+m_{n} r_{v}\left(Q_{n}\right)=0
$$

Then there exists $e \in \mathbb{Z} \backslash\{0\}$ such that $Q_{i}=e P_{i}$ for every $i \in\{1, \ldots, n\}$.

Acknowledgments

This paper forms a part of my PhD thesis. I thank my thesis adviser Grzegorz Banaszak for suggesting the problem. I thank Wojciech Gajda for discussions and especially for pointing out an argument in the proof of Lemma 5 in [KP] and an argument in the proof of Theorem 8.1. I also thank the anonymous referee for many suggestions which let me improve the paper.

The research was partially financed by AAG EU grant MRTN-CT 2003-504917.

References

[C-RS] C. Corrales-Rodrigáñez, R. Schoof, The support problem and its elliptic analogue, J. Number Theory 64 (1997) 276-290.
[BGK1] G. Banaszak, W. Gajda, P. Krasoń, A support problem for K-theory of number fields, C. R. Acad. Sci. Paris Sér. 1 Math. 331 (3) (2000) 185-190.
[BGK2] G. Banaszak, W. Gajda, P. Krasoń, Support problem for the unterediate jacobians of l-adic representations, J. Number Theory 100 (2003) 133-168.
[BGK3] G. Banaszak, W. Gajda, P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115 (2005) 322-342.
[BGK4] G. Banaszak, W. Gajda, P. Krasoń, On reduction map for étale K-theory of curves, Homology Homotopy Appl. 7 (2005) 1-10.
[BK] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift I (1990) 333400.
[DF] W. Dwyer, E. Friedlander, Algebraic and étale K-theory, Trans. Amer. Math. Soc. 292 (1985) 247-280.
[Fa] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983) 349-366.
[KP] Ch. Khare, D. Prasad, Reduction of homomorphisms mod p and algebraicity, J. Number Theory 105 (2004) 322-332.
[Lar] M. Larsen, The support problem for abelian varieties, J. Number Theory 101 (2003) 398-403.
[Mol] R.A. Mollin, Algebraic Number Theory, CRC Press, Boca Raton, FL, 1999.
[Pink] R. Pink, On the order of the reduction of a point on an abelian variety, Math. Ann. 330 (2004) 275-291.
[Ri] K.A. Ribet, Kummer theory on extensions of abelian varieties by tori, Duke Math. J. 46 (4) (1979) 745-761.
[S] A. Schinzel, O pokazatelnych sravneniach, Mat. Zapiski 2 (1996) 121-126.
[Serre] J.-P. Serre, Sur les groupes de congruence des variétés abéliennes II, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 731-737.
[We] T. Weston, Kummer theory of abelian varieties and reductions of Mordell-Weil groups, Acta Arith. 110 (1) (2003) 77-88.
[Za] J.G. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction, Invent. Math. 79 (1985) 309-321.

[^0]: E-mail address: stefbar@amu.edu.pl.
 0022-314X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jnt.2005.10.011

