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ABSTRACT Several mathematical for- surface pressures. The formulas are mulas predict stresses in a variety of
mulas are presented for estimating primarily intended for application to the chambers to within 3% of finite element
regional average circumferential stress left ventricle in the short axis plane near values determined from a large-scale
and shear stress in a thick-wall, noncir- the base (where the meridional radius structural analysis computer program
cular cylinder with a plane of symmetry. of curvature is normally much larger called ANSYS.
The formulas require images of exterior than the circumferential radius of cur-
and interior chamber silhouettes plus vature) and to blood vessels. The for-

INTRODUCTION

Based on our knowledge of structures in general, we know
that stress varies with position depending on regional
geometry, loading, and material properties. When data
are available on these quantities, reliable predictions of
stress can be obtained albeit with complex software and
powerful mainframe computers. However, data on
regional geometry, loading, and material properties for
the left ventricle are only partially available.

Experimentally, it has been found that estimates of
wall stress correlate with important physiologic events in
the heart, such as left ventricular ischemia and left
ventricular hypertrophy in a wide range of normal and
pathologic states. Thus, improved methods of estimating
left ventricular wall stress would have important physio-
logic and clinical implications. With the rapid technical
advances in image acquisition and processing in recent
years (Robb, 1985), it has become possible to obtain
high-resolution data on regional geometry with relatively
little risk to the patient. Short axis images are particularly
important in the study of left ventricular function for two
reasons. First, they are usually of better quality, so that
endocardial and epicardial definition are more accurate
and reproducible. Second, the distribution of all the major
coronary arteries can be visualized in a single short axis
image so that the effects of regional ischemia can be
readily ascertained. Although not routine, simultaneous
measurements of cavity pressure (i.e., loading) are also
technically feasible. The biggest source of uncertainty is
in the area of regional material properties.
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Extensive measurements of one-dimensional material
properties have been made with passive and active animal
papillary muscles. However, severe technical problems
have limited multidimensional research, although signifi-
cant progress has been made in the acquisition of two-
dimensional data for passive dog myocardium (Demer
and Yin, 1983; Yin et al., 1986).

Attempts to reconstruct the required three-dimen-
sional properties from one-dimensional papillary muscle
data and measurements of fiber orientation in animal
hearts generally assume the fiber direction is a principal
direction (implying shear stresses in a coordinate system
aligned with the fiber direction are equal to zero) and
stresses transverse to the fiber direction are equal to the
local hydrostatic pressure (e.g., Tozeren, 1983). While
these two assumptions seem plausible, recent measure-

ments of regional strain indicate that at least the first one
may not be strictly valid (Waldman, et al. 1985). In any
case, the applicability of this approach for the purpose of
determining regional stress seems remote at the present
time in that it will take a large number of parameters to
define the three-dimensional behavior of a material as

complex as the myocardium which exhibits both passive
and active, directionally dependent properties that
degrade regionally with disease.
The lack of data on three-dimensional myocardial

material properties plus considerations of computational
economy and insight provided by closed-form mathemati-
cal formulas have promoted the wide spread use of
various versions of LaPlace's law for predicting stress
(Mirsky, 1979; Huisman et al., 1980; Yin, 1981). This
law takes advantage of the fact that stresses in statically
determinate structures such as thin-wall spheres, cylin-
ders, and ellipsoids are characterized completely by con-

ditions of equilibrium (i.e., force balances).
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Although the left ventricle does not fall within this
category of structures these methods have been used for
estimating global average stress, or average stress at the
base of the ventricle in clinical studies since they do not
require knowledge of the myocardial material properties
(e.g., Mirsky et al., 1983; DePace et al., 1983; St. John
Sutton et al., 1984; Zile et al., 1984; Douglas and
Reichek, 1986).
The methodology suggested by LaPlace's law was

recently extended to include the estimation of average

circumferential and meridional stress at arbitrary loca-
tions in a thick-wall solid with circular cross section in the
short axis plane (Janz, 1982). One of the first applications
for this new formulation involved an analysis of relaxation
in patients with coronary artery disease (Pouleur et al.,
1984). However, in spite of the enhanced flexibility of this
formulation relative to previous models, it too was limited
by the unrealistic assumptions of circular symmetry and
negligible shear stress.

In this paper we address the absence of circular sym-
metry and the presence of shear stress in the left ventricle.
Surprisingly enough, the results have a simple geometric
interpretation in spite of the rigorous treatment. Of
particular significance is the introduction of a new geo-
metric parameter that replaces radius of curvature in the
membrane theory of cylindrical shells. At the same time,
we point out that the results represent only another step in
the application of the Laplace methodology. They should
not be used indiscriminately at arbitrary locations in the
ventricular wall.

METHODS

TABLE 1 Summary of assumptions In theoretical
models

Analytical Finite
Assumption formulas element cases

Neglect inertia Yes Yes
Zero stresses in axial direction Yes Yes
Plane of symmetry Yes Yes
Uniform wall thickness Yes 1, 2
Uniform surface pressures Yes Yes
Isotropic * Yes
Passive * Yes
Nearly incompressible * Yes
Homogeneous * Yes

*Not relevant.

(Heethaar et al., 1976; Janz and Waldron, 1978; McPherson et al.,
1987). For this purpose we chose to use a computer program called
ANSYS developed by Swanson Analysis Systems, Inc. (Houston, PA),
and the CYBER 170/760 computer. Since the finite element method
requires a specification of material properties, for simplicity we chose a
linear, homogeneous, isotropic material for the test cases with a ratio of
cavity pressure to Young's modulus which assured small strains and
displacements. All cases were based on ANSYS element number 42
(two-dimensional isoparametric solid element).
We checked the adequacy of our finite element meshes by computing

stresses in a thick-wall, hollow circular cylinder. Agreement to within
1% of the Lame' solution was considered adequate.

For the purposes of comparing the finite element results with Eqs.
B13 and B14, we also wrote a small computer program for the IBM
Personal Computer which determines average stresses predicted by
these equations from the regional wall geometry of the finite element
models and their surface pressures, transforms the finite element
stresses element-by-element from the ANSYS Cartesian (x-y) coordi-
nate system to the R - 4, coordinate system introduced in Appendix A,
and averages the transformed stresses across the wall at selected
positions.

Two equations for circumferential stress (h), shear stress (TrN), and
stress normal (UR) to the inner surface of a hollow, thick-wall cylinder
with noncircular cross section are derived in Appendix A by equating
opposing forces on an infinitesimal volume element. Since we neglect
inertia, we are assuming that static equilibrium is achieved at each
instant in time. Although these two equations are inadequate to specify
the positional dependence of all three-stresses, we show by elementary
mathematical methods in Appendix B that they are adequate to specify
the positional dependence of aj and Tr, averaged across the wall of the
cylinder. We also provide a simple geometric interpretation of our

results in Appendix B. For the convenience of the reader, we summarize
all assumptions pertaining to our results in Table 1.

Unfortunately, the present lack of reliable experimental techniques
for measuring regional stresses in the left ventricle precludes direct
validation of our results. However, we have attempted to demonstrate
the plausibility of our findings by comparisons with other independent
theoretical results.
We have surveyed the literature and except for the circular cylinder

there appear to be no other relevant analytical results which are

available to serve as bench marks. (For the circular cylinder L = R and
dL/d# = dR/d4/ = 0 in Eqs. B1 3 and B14 in Appendix B. We therefore
obtain the correct result for this limiting case.) Consequently, we have
created a series of three test cases of increasing complexity for which it is
possible to obtain numerical results using the finite element method

RESULTS

The main results of this study consist of formulas for
estimating regional average circumferential stress (- (V/))
and shear stress (TR4()) in a thick-wall, noncircular
cylinder with a plane of symmetry. They are derived in
the appendixes and presented in their most general form
by Eqs. B9-B1 2. These formulas involve two classes of
parameters: (1) pressures (internal and external to the
chamber cavity), and (2) chamber dimensions (refer to
Figs. B2 and B3). The latter quantities may be estimated
from a short axis image of the chamber.
We evaluated these formulas theoretically by compar-

ing stresses predicted by the formulas with corresponding
stresses obtained from three finite element models of
noncircular cylinders of increasingly complex shape rang-
ing from an elliptical cylinder of uniform wall thickness to
a cylinder of nonuniform wall thickness whose shape is
based on a short axis echocardiographic image of the dog
left ventricle obtained near the base. In each of the three
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finite element models, the outer surface pressure (P0) was

set equal to zero.

The first of the finite element models is the elliptical
cylinder of uniform wall thickness shown in Fig. 1.
Average circumferential stresses at three positions were

determined from the finite elements highlighted in this
figure. (Since the formulas determine average stress
along a perpendicular to the interior wall of the chamber,
the highlighted elements correspond to those that inter-
sect this perpendicular at the indicated angle, 4'. In some

instances, the intersection involves two adjacent elements
in a given concentric layer of elements. When this occurs,

stresses in the adjacent elements are also included in the
average finite element stress calculation.) They were

compared with stresses predicted by Eq. B27. As indi-
cated in Table 2, the stresses at all three positions agreed
to within 1%.
The second finite element model is the more complex

cylinder of uniform wall thickness shown in Fig. 2.
Average circumferential stresses at five positions were

determined from the highlighted finite elements. They
were compared with stresses predicted by Eq. B25 (iden-
tical results would have been obtained if we had used Eqs.
B21 or B23) with vi,(0) and (r) determined from Eqs.
B 17 and B 18 and y0 and y1 determined from Eqs. B 19 and
B20. As indicated in Table 2, the maximum difference in
stresses for the five positions was 2% at positon 3.
The third finite element model is the cylinder of

nonuniform wall thickness shown in Fig. 3. Average
circumferential stresses at five positions were determined
from the highlighted finite elements. They were com-

pared with stresses predicted by the following formulas.
For positions 1 and 2, Eq. B21 was used with -A(0)
determined from Eq. B 17, y0 and y1 determined from Eqs.

Position 3
(4' = 90°)

Position i

(4 = 0o)

FIGURE 1 Finite element model for an elliptical cylinder. The angle
denoted 4' is the angle between the x-axis and a perpendicular to the
interior wall of the chamber. Average circumferential stresses deter-
mined from the highlighted finite elements were compared with average
stresses predicted by one of the formulas presented in this article at the
three values of 4' indicated in the figure.

TABLE 2 Comparison of regional average
circumferential stresses predicted by mathematical
formulas and ANSYS finite element computer program

'I()/AP*
Mathematical
(equation) ANSYS

Elliptical cylinder
(Fig. 1)

Position 1 (4 00)
Position 2 (4 = 67.80)
Position 3 (4 = 900)

Less symmetrical
cylinder/uniform
wall thickness (Fig. 2)

Position 1 (i = 0°)
Position 2 (4 = 52.70)
Position 3 (4' 91.20)
Position 4 (4' = 137.60)
Position 5 (4' 1800)

Less symmetrical
cylinder/nonuniform
wall thickness (Fig. 3)

Position 1 (4' = 00)
Position 2 (4 = 52.70)
Position 3 (4' = 95.80)
Position 4 (4 = 142.60)
Position 5 (4 = 1800)

2.00 (B27)
1.21 (B27)
1.00 (B27)

1.47 (B25)
1.11 (B25)
1.27 (B25)
1.30 (B25)
1.20 (B25)

1.42 (B21)
1.07 (B21)
1.55 (B23)
1.95 (B23)
2.24 (B23)

2.00
1.20
1.00

1.46
1.11
1.30
1.28
1.20

1.39
1.07
1.50
1.92
2.27

*Since the outer surface pressure (P0) was set equal to zero, transmural
pressure (AP) is equal to the inner surface pressure.

Position 3
(4 = 91.20)

Position 5 Position
(*8 = 1 80°) (* = 0°)

FIGURE 2 Finite element model for a cylinder of uniform wall thickness
with one plane of symmetry (i/ = 0). Average circumferential stresses
determined from the highlighted finite elements were compared with
average stresses predicted by the formulas presented in this article at the
five values of 4' indicated in the figure.
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Position 3
(* 95.8°)

Position 4
(* = 142.6°1) f

Position 5
(4 = 180°)

FIGURE 3 Finite element model for a cylinder of nonuniform wall
thickness with one plane of symmetry (4' = 0) based on a short axis
echocardiographic image of the dog left ventricle obtained near the base.
Average circumferential stresses determined from the highlighted finite
elements were compared with average stresses predicted by the formulas
presented in this article at the five values of 4 indicated in the figure.

B19 and B20, and wall thickness (7) in the denominator
of the third term in the coefficient of cos i/ set equal to its
value at position 1. For positions 3, 4, and 5, Eq. B23 was

used with (r) determined from Eq. B1 8, and the
corresponding value of wall thickness (7) set equal to its
value at position 5. As indicated in Table 2, the maximum
difference in stresses for the five positions was 3% at
position 3.
As indicated in Appendix B, for cylinders with uniform

wall thickness and one plane of symmetry (Fig. 2) Eqs.
B21, B23, and B25 all give equivalent results. For cylin-
ders with nonuniform wall thickness and one plane of
symmetry (Fig. 3), it is recommended that either Eq. B21
or B23 be used depending on whether the position (it) of
interest is closer to 6t = 0 or = 7r. In either case, two
different wall thicknesses are used in the equations. The
coefficient of cos 6 requires the wall thickness at V/ = 0

(Eq. B21) or = 7r (Eq. B23). The remaining wall
thickness appearing in the term APL/T in either of these
two equations should be interpreted as wall thickness at
the position (i/) of interest. For cylinders with two planes
of symmetry (Fig. 1) Eqs. B2 1, B23, B25, and B27 all give
equivalent results since the coefficients of cos 41 in Eqs.
B21, B23, and B25 are all equal to zero.

DISCUSSION

In a previous study (Janz, 1982) two formulas were
presented for estimating regional average circumferential
stress in an axisymmetric model of the left ventricular
chamber. This was an initial attempt to extend the

LaPlace methodology to a more realistic representation of
ventricular geometry in the long axis plane than previ-
ously reported. This extension, however, was limited by
the assumptions of circular symmetry in the short axis
plane and negligible shear stress.

In the present study we focus on a more realistic
representation of ventricular geometry in the short axis
plane than previously reported and account for the pres-

ence of shear stress. The formulas presented in this paper

are therefore intended to compliment rather than replace
those of the previous study. Unfortunately, the new

formulas also have their limitations. The most restrictive
of these is their applicability only to regions where the
meridional radius of curvature in the long axis plane is
very large compared with short axis cavity dimensions
and wall thickness. This restriction generally limits their
application to regions near the base of the ventricle.

In addition to their surprising simplicity, the most
significant theoretical aspect of the new formulas is their
dependence on the geometric parameter, L, illustrated in
Fig. B2. This parameter replaces circumferential radius
of curvature which appears in formulas based on the
membrane theory of noncircular cylinders. This differ-
ence in the dependence of stress on shape is significant for
two reasons. First, and most importantly, in cylinders
such as the one shown in Fig. 1 membrane theory would
predict a higher value for average circumferential stress
at position 3 rather than position 1 because of the relative
magnitudes of the radii of curvature at these two loca-
tions. However, the thick-wall theory presented in this
study predicts an average circumferential stress at posi-
tion 3 which is a factor of 2 lower than the value at
position 1 owing to the relative magnitude of L. Second,
the parameter L can be determined numerically in a

relatively simple manner from its definition in Eq. B29.
Radii of curvature are more difficult to determine with
acceptable accuracy from digitized contours.
The remarkable agreement in stresses predicted by the

simple formulas presented in this study and those pre-

dicted by an industry standard finite element computer
program provides evidence of their theoretical validity.
The favorable agreement in the third test case (Fig. 3)
indicates that the formulas may also be applied beyond
their theoretical range of applicability which includes a

restriction to cylinders with uniform wall thickness (refer
to Table 1). To what extent the conditions associated with
a plane of symmetry and large meridional radius of
curvature relative to short axis dimensions can also be
relaxed remains to be determined. Further comparisons
with other finite element results are required to more fully
establish the limitations of the formulas.

Several additional observations need to be made rela-
tive to the application of the formulas presented in this
study to the left ventricle. (1) It would be desirable to
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have a condition that provides a quantitative estimate of
how large the meridional radius of curvature in the long
axis plane needs to be before meaningful estimates of
regional stress can be obtained with these formulas. An
exact determination of this condition would require a

three-dimentional analysis. However, an indication of the
nature of this condition can be obtained from our previous
axisymmetric analysis (Janz, 1982). The formula we

presented in that study for average circumferential stress
may be written in the following way (modified slightly to
account for transmural pressure):

APr 1- r/(2R,, sin /))
N T [sin4[l + T/(2R,)]J'

where PO = outer surface pressure, AP= transmural
pressure, r = circumferential radius of curvature, T =

wall thickness, = angle between long axis and perpen-
dicular to inner wall in long axis plane, and R,, =

meridional radius of curvature. From this equation we

can determine how large R, has to be relative to r and T
for average circumferential stress in a circular cylinder
(APr/T) to be a good approximation to average circum-
ferential stress in an axisymmetric solid at a given loca-
tion, 4. For example, for rIR,, = TIR,, = 0.05, APr/T
would overestimate a + P0 at = 850 by 5%.

(2) Stresses in the heart wall will, in general, include
elastic, viscous, contractile, and hydrostatic components.
However, the regional stresses predicted by our formulas
(as well as the global stresses predicted by Laplace's law)
represent the net combination of all of these component
stresses. Currently we have no way of determining, for
example, what fraction of the stress predicted by our

formulas is due to active contraction or passive extension
of elastic elements (except for a qualitative determination
based on the phase of the cardiac cycle). We do know,
however, that all of these stress components relate
directly to the muscle fiber except for the hydrostatic
component which arises from the incompressibility of the
myocardium. Consequently, if the stresses predicted by
our formulas are to be interpreted as fiber stresses, the
formulas need to be corrected for the hydrostatic compo-
nent.

Several investigators have evaluated the assumption
that stress in a direction perpendicular to the interior
surface is purely hydrostatic (Streeter et al., 1970; Janz
and Waldron, 1976; Arts et al., 1979; Tozeren, 1983). We
also know that this stress is compressive (negative) and
varies continuously in absolute value between the two
surface pressures. If this variation is linear and normal
stress is indeed purely hydrostatic, average normal stress
will be equal to the negative of the average of the two
surface pressures.

In Appendix C we attempt to eliminate the hydrostatic
component from our formulas by subtracting an expres-

sion for normal stress (based on the assumptions that this
stress is purely hydrostatic and varies linearly with dis-
tance through the wall) from total circumferential stress.
Although the resulting formulas (C3-C6) represent an
attempt to relate total stress more closely to fiber stress,
the expression for normal stress is not based on the same
theoretical foundation as the formulas for total stress
(B21-B28), which are the main results of this study.

(3) If average circumferential stress (properly adjusted
for the hydrostatic component) is actually attained near
midwall, it may be interpreted as fiber stress since the
dominant fiber direction at midwall is circumferential
(Streeter et al., 1969). Whether or not average stress is a
good estimate of midwall stress depends on the (un-
known) stress distribution across the wall. We conducted
a review of theoretical circumferential stress distributions
ranging from those which are monotonic as in the Lame
cylinder, to those which are not as in some of the more
recent "fiber" models (e.g., Tozeren, 1983; Jan, 1985)
and found that regardless of the model, average circum-
ferential stresses consistently occurred very near the
midwall. We therefore interpret stresses predicted by
Eqs. B21-B28 as total stress in the fiber direction at
midwall, and stresses predicted by Eqs. C3-C6 as approx-
imations for midwall fiber stress.

(4) It is not recommended that either of the above sets
of formulas be applied in their current form across the
junctions between the two ventricles because of the dis-
continuity in exterior pressure on the free wall relative to
the septum. As indicated in Table 1 the theoretical
development presented in this study is based on the
assumption of uniform internal and external surface
pressure.

SUMMARY

In spite of the limitations discussed above relative to the
quantitative application of the newly derived formulas for
stress to the left ventricle, these formulas are capable of
predicting stresses in noncircular cylinders of nonuniform
wall thickness with remarkable accuracy. In addition, the
emergence of another geometric parameter as a replace-
ment for radius of curvature may provide new qualitative
insight into the significance of both chronic and acute
geometric changes as possible mechanisms for ventricular
compensation.

APPENDIX A

Derivation of equilibrium equations
Neglecting inertia, the forces acting on an infinitesimal volume element
of an asymmetrical cylindrical chamber of unit height are shown in Fig.
Al. Equating opposing forces in the circumferential direction we obtain,
after some manipulation, the following equation relating circumferen-
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CIRCUMFERENTIAL FORCES

ac,d R

(0- + a;, d*r) dR cos di

[TR,R +
C3

(TR4,R)dR] d4'

TR,, RRd

(rR, + c3rR* d*)dRsind4,

where R. and R; denote the outer and inner radii of curvature for a given
value of 4,.

Average circumferential stress ( )

UNIT HEIGHT

T

IT f'-f

NORMAL ("RADIAL2') FORCES

6 aRRd4'

7 [aRR+ 'b (oRR)dR]d*
8 TR,+,dR
9 (r, + a< d )dRcosd

I' (;, + a., d )dR sind

FIGURE Al Forces acting on an infinitesimal volume element in a
cylinder of arbitrary cross section and unit height. R denotes radius of
curvature and 46 denotes the angle between an arbitrary reference
perpendicular at the interior wall and the perpendicular at a position of
interest.

tial stress (oN) to shear stress (Tr):

+ a (Rr,) + TR =0.

Equating opposing forces in a direction normal to the interior s
we obtain an equation relating circumferential stress and shear s

the normal stress ((rR):

l(RaR ) Cl(rROF)
aR + =

With hydrostatic pressure acting on the inner and outer surfacer
cylinder, we also need to impose four other mathematical conditi

on the inner surface
0TR,P = °

Ion the outer surface,
TRR= 0

where Pi and P. denote inner and outer surface pressures, respect
Although the above two equations and four conditions do not ui

characterize the positional dependence of all three stresses, as sh
Appendix B they are adequate to uniquely define the circumfe
stress and shear stress averaged across the wall of the cylinder.

Average shear stress (TRP)

rR,1 = T ,4 TR#dR

Transmural pressure (AP)

AP=Pi -P0

Integrating Eq. Al with respect to R between R; and Ro, we obtain the
following result for a cylinder with uniform wall thickness:

do + To ==O. (Bi)

Integrating Eq. A2 with respect to R between R; and Ro we obtain the
following result by using the relationship R. = R; + T and dropping the
subscript, i, on the inner radius of curvature:

drw APR
-=- ±T+ PO.

d4v ~ T(Al)
(B2)

Eqs. BI and B2 can be uncoupled by differentiating with respect to 4'

and combining results. At this point we also make the additional
assumption that the surface pressures are uniform.

d_ a, _ APR
do2 + fa= T -PO (B3)

d2 AP dR
dyl2 N = T - (B4)

Eqs. B3 and B4 can be solved by standard methods for ordinary
differential equations. The results are as follows:

(A3) a^(O) + P0 = [- (0) + P0 ] cos 41 - (0) sin 41

AP 14

tively. + T in R cos {d -cos V/ R sin {d{ (B5)
niquely

W(41) [ (O) + Po] sin 41 + W(0) cos 41

iown in a++
erential APRR

~in 4/ 1R sin ~dt + cos4'J1Rcos4dt). (B6)

APPENDIX B

Derivation of formulas for regional
average stresses
We begin with the following definitions:

Wall thickness (T)

T = f dR = Ro-Ri,

At this point in the discussion, 4' = 0 corresponds to an arbitrary
reference position, and Eqs. B5 and B6 completely define the average

circumferential and shear stresses (a() and , (4')) relative to their
values at this position (a;(O) and sv(0)). In this form, however, the
results are too complex for routine implementation, and they offer little
insight into the nature of the primary determinants of wall stress. To
further simplify these results we use the two elementary relations from
differential geometry shown in Fig. B 1. In this figure we have superim-
posed a Cartesian coordinate system aligned with the reference position
(4, = 0) on a short axis view of a portion of the inner surface of the
cylinder. Substituting dx/dt for R cos t and -dy/dt for R sin t in Eqs.
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dx

Rdyi

sin =dy

FIGURE BI Portion of the inner surface of a noncircular cylinder. Two
differential equations for the cartesian coordinates x and y in terms ofR
and 4' are readily derived from this figure.

B5 and B6 and performing all integrations we obtain the following
results:

APY(O)]4(4+(0 ) + Po- T cos 4

T

- i^(O) sin + T [x(4') sin 4, + y(4') cos 4'] (B7)
T

APy(O)T*rR#W = [s(0) + P°- T sin

+ T (0) Cos 4'-

AP

[x(40) cos 4'- y(o) sin 4']. (B8)

From a computational point of view, these two equations are much
simpler than Eqs. B5 and B6. Part of this simplification is due to the
absence of radius of curvature in both equations. In fact, radius of
curvature has been replaced by the quantity [x(4O) sin + y(4O) cos 4]

as the second (next to wall thickness) primary geometric determinant of
wall stress. Referring to Fig. B2 we see that this quantity has a simple
geometric interpretation.

Since x t sin 4' andy A + t cos 4, x sin 4' + y cos 4' - t + A cos

4' = L. The quantity, L, as defined in this figure should be used in place
of radius of curvature for determining stress in noncircular cylinders.

Substituting back into Eqs. B7 and B8 we get the following results:

I(0') + Po = [(0) + P0 - -P(0)]cos

T ~ ~ ~APL
-R(0) sin A + T~ (B9)

TWO( a[v (0) + PI - Tr) i

+ (°)COS4 '---. (BO0)
T d4'

If we had chosen = ir as our reference position we would have obtained
the following equivalent forms of Eqs. B9 and B1O by a completely
analogous procedure:

(4(0) + PO= -[ir( ) + Po ]APIy(r)1

APL
+,p(7r)sin4+ T (BlI)'TIW

T

FIGURE B2 Portion of the inner surface of a noncircular cylinder
illustrating the geometric quantity, L, a major determinant of stress.

Tjw(o - (70 + P0 IT( rI]sin
~~~~~AP dL

-T(7r) Cos - (B'1-2)
T do'

We consider Eqs. B9-B12 to be our primary theoretical result. However,
we are still unable to apply them until we use some other conditions
which will allow us to specify the stresses at our reference positions (i.e.,
either a (0) and ,**(O) or (r) and ,(ix)). We choose to assume that
our noncircular cylinder has a plane of symmetry. The manner in which
this assumption allows us to determine a (0), (0), (ir), and T7(ir) is
discussed below.
As indicated in Fig. B3a, we take the reference position (4' = 0) along

the plane of symmetry. For the sake of generality we will develop the
needed conditions for a noncircular cylinder with a nonuniform wall
thickness. We first observe that because of symmetry d-/d4y and -rw are
both equal to zero at 4, = 0 and 4' = 7r. We show the remaining forces
(and two new dimensions defined later) acting on a free-body diagram of
the upper half of the cylinder in Fig. B3b. (Recall that we take the
cylinder to be of unit height.) One condition is immediately apparent
from the free-body diagram. Equating forces in the vertical (i.e.,
4' = vr/2) direction we obtain:

T50^(0) + Tri#(7r) = AP[y(O) + Iy(ir)I]
-Po(To + T,). (B 13)

We obtain a second condition by equating moments about the origin to
zero. However, before doing this, we first define the two dimensions, y.
and y, shown in Fig. B3b, as follows:

fy(O)+To ao(Y)I+_o ydy
iy(O)
fIy(w) +

To (Y)I-Ody
y(O)

Iy(s)I+T, y
Iy(7)l

(B14)

(B1 5)

That is, they are defined in such a way that the quantities y.TiOc(O) and
y,T,i!4 (X) are the clockwise and counterclockwise moments, respec-

tively, about the origin of the upper half of the cylinder shown in Fig.

Janz et al.ReinlSrsinaNniclrCidr17

(4' =0)
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P[y(O) + y(7)I]

(b)

'of Symmetry: * - 0)

FIGURE B3 (a) Geometric parameters in mathematical conditions required for a unique determination of stress. (b) Free-body diagram illustrating
the forces acting on a noncircular cylinder with nonuniform wall thickness and a single plane of symmetry (4' - 0).

B3b owing to circumferential stresses acting at 4' - 0 and 4, r. The

second condition may therefore be stated as follows:

y.Toa o(0) -Y.T1*(7r) = [y2(0) y2(7r)]
2

-
PI {[y(0) + T [y(7r) + TJ2 I. (B 16)

We can obtain (0) and (r) by solving Eqs. B13 and B16. The results
are as follows:

P[Y(O) + y(7r)I] Y(O) -Iy(r)I]
~(0) =Y.y0 yr) 1~ +2

P0[Y(0) + To + IY(ir)j + T.]
TO(Y. + Y.)

1YS + Y(0) + To [IlY(7r)I+ T (B17)

P[y(O) + Iy(r)I ] [y(O) - Iy(ir)I ]I
+yrIO T,(Yo + YS.) YO- 2

_ P0[y(O) + TO + Iy(w)I + TSJ
T1(Y0 + Y.)

{y(0) + To [Iy(w)I +sl] (B18)

While these expressions for -O(0) and (r) may seem complex, they are

simple to evaluate, numerically, provided we have all the required
parameters. We assume that the pressures (P and P.), thicknesses (T.
and T,) and the dimension y(O) + Iy(w)I can be measured. We choose
the origin to correspond to the point where 4' = r/2 as shown in Fig. B3.
Once the origin has been selected, individual values for y(0) and Iy(ir)I
are determined. The remaining parameters required are y0 and y. They
cannot be evaluated from their definitions (Eqs. B14 and B15) because
the variation in or across the wall cannot be determined from conditions
of equilibrium alone. This variation will depend on the properties of the
material in the wall of the cylinder. We resort to the following empirical
formulas for y. and y,:

Y. = (1 - a)y(O) + aly(ir)| + fBT.

Y. = ay(O) + (1 - a) Iy(w)I + jT.,

(B19)

(B20)

where, a and # are constants. For the cylinders considered in this article,
we have found that a and - 1/3 work well.
At this point we would like to make several observations regarding the

above results.
First of all, as noted earlier, with a plane of symmetry at 0 (or ir),

the shear stresses along this plane are equal to zero. Therefore Eqs.
B9-B12 may be simplified as follows:

Lt()+ PO= )+ P APy(0)] APL
(O+ Po Ia(0) +Po- ICos4'+ (B21)

~~~~TT
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L ~~~APy(O)]. APdL-'rRO = + Po T Jsn4--T- (B22)

4(0) + Po0
APIly(w) APL

a[a,() + POc- Cos4'+ T (B23)
T T

F- A~~~PIy(w)I APdL
T - [oW(1r) + P0 -

T
sin 4'- T d4l (B24)

An alternate form for these formulas which suggests a further simplifi-
cation may be obtained by adding corresponding formulas and dividing
by two. Proceeding along these lines we obtain:

-(4')+P0 (pr) AP [Y(O) -Iy(r)IIJ

COS+ APL (B25)
T

-R(O) ={i(O) -a+(7) AP [Y(O) -LY()Iri}

i 1
APdL

sin4' - T d4 (B26)

Therefore, if in addition to a plane of symmetry at 4' 0 (or ir), we also
have a plane of symmetry at 4' = zr/2 such as for an elliptical cylinder for
which -+(O) = (w) and y(O) = Iy() |, we obtain a surprisingly compact
set of formulas (note the similarity between Eq. B27 and LaPlace's law
for a thick-wall circular cylinder or a noncircular cylindrical mem-
brane):

+() + Po = T (B27)

AP dL
T R*(N) =- T d4 (B28)

Finally, with respect to the application of Eqs. B21-B28 we make the
following suggestion. For an evaluation of L and dL/d4' the expressions
first introduced in Eqs. B7 and B8 should be used; namely,

L(4y) = x() sin 4, + y(4') cos 4 (B29)

dL(4,
dL(4') - x(0) cos 6- y(4y) sin 4'. (B30)d4l

That is, there is no point in numerically differentiating a table of values
of L when a closed form expression is available.

APPENDIX C

An approximation for stress
difference
If we assume that stress normal to the interior surface of the cylinder
varies linearly between its two extreme values at the inner and outer
surfaces of the cylinder (refer to the conditions specified by Eq. A3), it

will have the following mathematical form:

APAP= (R- RO) -Po. (C1)aR T

If we define average normal stress consistent with our previous defini-
tions of average stress,

R= T f RdR,

it follows that

AP
UR = Po. (C2)

2

Subtracting Eq. C2 from B21, B23, B25, and B27, respectively, we
obtain the following results. For a single plane of symmetry,

APy(O)1cs
o+i(0 -aR( t[a+(°) + P T

TAP( + 2) (C3)
(7)~~~~~~(3

=(7) + PO AP Y( )cos#
TJ

T

AP

L
2) (C4)

((0)(r) AP [Y(O) - ly(r)I]l
12 -T 2 co /

TAP(L + 2 (C5)

For two planes of symmetry,

(+) - T (C6)
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