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Abstract

This is the second in a series on configurations in an abelian category A. Given a finite poset
(I,�), an (I,�)-configuration (σ, ι,π) is a finite collection of objects σ(J ) and morphisms ι(J,K) or
π(J,K) :σ(J ) → σ(K) in A satisfying some axioms, where J,K ⊆ I . Configurations describe how an
object X in A decomposes into subobjects.

The first paper defined configurations and studied moduli spaces of (I,�)-configurations in A, using the
theory of Artin stacks. It showed well-behaved moduli stacks ObjA,M(I,�)A of objects and configura-
tions in A exist when A is the abelian category coh(P ) of coherent sheaves on a projective scheme P , or
mod-KQ of representations of a quiver Q.

Write CF(ObjA) for the vector space of Q-valued constructible functions on the stack ObjA. Moti-
vated by the idea of Ringel–Hall algebras, we define an associative multiplication ∗ on CF(ObjA) using
pushforwards and pullbacks along 1-morphisms between configuration moduli stacks, so that CF(ObjA)

is a Q-algebra. We also study representations of CF(ObjA), the Lie subalgebra CFind(ObjA) of functions
supported on indecomposables, and other algebraic structures on CF(ObjA).

Then we generalize all these ideas to stack functions SF(ObjA), a universal generalization of con-
structible functions, containing more information. When Exti (X,Y ) = 0 for all X,Y ∈ A and i > 1, or
when A = coh(P ) for P a Calabi–Yau 3-fold, we construct (Lie) algebra morphisms from stack algebras to
explicit algebras, which will be important in the sequels on invariants counting τ -semistable objects in A.
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1. Introduction

This is the second in a series of papers [12–14] developing the concept of configuration
in an abelian category A. Given a finite partially ordered set (poset) (I,�), we define an
(I,�)-configuration (σ, ι,π) in A to be a collection of objects σ(J ) and morphisms ι(J,K)

or π(J,K) :σ(J ) → σ(K) in A satisfying certain axioms, where J,K are subsets of I . Config-
urations are a tool for describing how an object X in A decomposes into subobjects.

The first paper [12] defined configurations and developed their basic properties, and studied
moduli spaces of (I,�)-configurations in A, using the theory of Artin stacks. It proved well-
behaved moduli stacks M(I,�)A exist when A is the abelian category of coherent sheaves on a
projective scheme P , or of representations of a quiver Q.

This paper develops versions of Ringel–Hall algebras [23,24] in the framework of configu-
rations and Artin stacks. The idea of Ringel–Hall algebras is to make a Q-algebra H from an
abelian category A. In the simplest version, the isomorphism classes [X] of objects X ∈A form
a basis for H with multiplication [X] ∗ [Z] =∑

[Y ] gY
XZ[Y ], where gY

XZ is the ‘number’ of exact
sequences 0 → X → Y → Z → 0 in A. The important point is that ∗ is associative.

Ringel–Hall type algebras are defined in four main contexts:

• Counting subobjects over finite fields, as in Ringel [23,24].
• Perverse sheaves on moduli spaces are used by Lusztig [19].
• Homology of moduli spaces, as in Nakajima [20].
• Constructible functions on moduli spaces are used by Lusztig [19, §§10.18 and 10.19], Naka-

jima [20, §10], Frenkel, Malkin and Vybornov [5], Riedtmann [21] and others.

In the first half of the paper we follow the latter path. After some background on stacks and
configurations in Sections 2 and 3, we begin in Section 4 with a detailed account of Ringel–Hall
algebras CF(ObjA) of constructible functions on Artin stacks, using the constructible functions
theory developed in [10]. Using quiver representations A = mod-KQ we construct examples
of algebras of constructible functions isomorphic to universal enveloping algebras U(n+), for
g = n+ ⊕ h ⊕ n− a Kac–Moody algebra.

A distinctive feature of our treatment is the use of configurations. Working with configuration
moduli stacks M(I,�)A and 1-morphisms between them makes the proofs more systematic, and
also suggests new ideas. In particular we construct representations of Ringel–Hall algebras in a
way that appears to be new, and define bialgebras and other algebraic structures. The only other
paper known to the author using stacks in this way is the brief sketch in Kapranov and Vasserot
[16, §3], but stacks appear to be the most natural setting.

The second half of our paper (Sections 5 and 6) studies various Ringel–Hall algebras of
stack functions SF(ObjA),SF(ObjA,Υ,Λ), . . . . Stack functions are a universal generalization
of constructible functions on stacks introduced in [11], which contain much more information
than constructible functions. Using quiver representations A = mod-KQ we construct algebras
of stack functions isomorphic to (or more generally quotients of) versions of quantum groups
U�(n+), for g = n+ ⊕ h ⊕ n− a Kac–Moody algebra. This suggests stack functions can be re-
garded as a quantized version of constructible functions.

When Exti (X,Y ) = 0 for all X,Y ∈ A and i > 1, Section 6 constructs algebra morphisms
ΦΛ, ΨΛ, ΨΛ◦

, ΨΩ from stack algebras SF(ObjA), S̄Fal(ObjA,∗,∗) to certain explicit alge-
bras A(A,Λ,χ), B(A,Λ,χ), B(A,Λ◦, χ), C(A,Ω,χ). When A = coh(P ) for P a Calabi–
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Yau 3-fold, the same techniques give a Lie algebra morphism ΨΩ : S̄F
ind
al (ObjA,Θ,Ω) →

Cind(A,Ω,χ).
These ideas will be applied in the sequels [13,14]. Given a stability condition (τ, T ,�)

on A, we will define stack functions δ̄αss(τ ) in SFal(ObjA) parametrizing τ -semistable objects in
class α. These satisfy many identities in the stack algebra SFal(ObjA). Applying ΦΛ, . . . ,ΨΩ to
δ̄αss(τ ) yields invariants of A, (τ, T ,�) in A(A,Λ,χ), . . . ,C(A,Ω,χ), with interesting trans-
formation laws.

2. Background material

We begin with some background material on Artin stacks, constructible functions, stack func-
tions, and motivic invariants, drawn mostly from [10,11].

2.1. Introduction to Artin K-stacks

Fix an algebraically closed field K throughout. There are four main classes of ‘spaces’ over
K used in algebraic geometry, in increasing order of generality:

K-varieties ⊂ K-schemes ⊂ algebraic K-spaces ⊂ algebraic K-stacks.

Algebraic stacks (also known as Artin stacks) were introduced by Artin, generalizing Deligne–
Mumford stacks. For a good introduction to algebraic stacks see Gómez [7], and for a thorough
treatment see Laumon and Moret-Bailly [18]. We make the convention that all algebraic K-stacks
in this paper are locally of finite type, and K-substacks are locally closed.

Algebraic K-stacks form a 2-category. That is, we have objects which are K-stacks F,G, and
also two kinds of morphisms, 1-morphisms φ,ψ :F → G between K-stacks, and 2-morphisms
A :φ → ψ between 1-morphisms. An analogy to keep in mind is a 2-category of categories,
where objects are categories, 1-morphisms are functors between the categories, and 2-morphisms
are isomorphisms (natural transformations) between functors.

We define the set of K-points of a stack.

Definition 2.1. Let F be a K-stack. Write F(K) for the set of 2-isomorphism classes [x] of
1-morphisms x : Spec K → F. Elements of F(K) are called K-points, or geometric points, of F.
If φ :F → G is a 1-morphism then composition with φ induces a map of sets φ∗ :F(K) → G(K).

For a 1-morphism x : SpecK → F, the stabilizer group IsoK(x) is the group of 2-morphisms
x → x. When F is an algebraic K-stack, IsoK(x) is an algebraic K-group. We say that F

has affine geometric stabilizers if IsoK(x) is an affine algebraic K-group for all 1-morphisms
x : SpecK → F.

As an algebraic K-group up to isomorphism, IsoK(x) depends only on the isomorphism class
[x] ∈ F(K) of x in Hom(Spec K,F). If φ :F → G is a 1-morphism, composition induces a mor-
phism of algebraic K-groups φ∗ : IsoK([x]) → IsoK(φ∗([x])), for [x] ∈ F(K).

One important difference in working with 2-categories rather than ordinary categories is that
in diagram-chasing one only requires 1-morphisms to be 2-isomorphic rather than equal. The
simplest kind of commutative diagram is:

G

F

ψ

F

φ

χ
H,
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by which we mean that F, G, H are K-stacks, φ, ψ , χ are 1-morphisms, and F :ψ ◦ φ → χ is a
2-isomorphism. Usually we omit F , and mean that ψ ◦ φ ∼= χ .

Definition 2.2. Let φ :F → H, ψ :G → H be 1-morphisms of K-stacks. Then one can define the
fibre product stack F ×φ,H,ψ G, or F ×H G for short, with 1-morphisms πF, πG fitting into a
commutative diagram:

F φ

F ×H G

πG

πF

H.

G ψ

(1)

A commutative diagram

F φ

E

η

θ

H

G ψ

is a Cartesian square if it is isomorphic to (1), so there is a 1-isomorphism E ∼= F×HG. Cartesian
squares may also be characterized by a universal property.

2.2. Constructible functions on stacks

Next we discuss constructible functions on K-stacks, following [10]. For this section we need
K to have characteristic zero.

Definition 2.3. Let F be an algebraic K-stack. We call C ⊆ F(K) constructible if C =⋃
i∈I Fi (K), where {Fi : i ∈ I } is a finite collection of finite type algebraic K-substacks Fi of F.

We call S ⊆ F(K) locally constructible if S ∩ C is constructible for all constructible C ⊆ F(K).
A function f :F(K) → Q is called constructible if f (F(K)) is finite and f −1(c) is a con-

structible set in F(K) for each c ∈ f (F(K)) \ {0}. A function f :F(K) → Q is called locally
constructible if f · δC is constructible for all constructible C ⊆ F(K), where δC is the character-
istic function of C. Write CF(F) and LCF(F) for the Q-vector spaces of Q-valued constructible
and locally constructible functions on F.

Following [10, Definitions 4.8, 5.1 and 5.5] we define pushforwards and pullbacks of con-
structible functions along 1-morphisms.

Definition 2.4. Let F be an algebraic K-stack with affine geometric stabilizers and C ⊆ F(K) be
constructible. Then [10, Definition 4.8] defines the naïve Euler characteristic χna(C) of C. It is
called naïve as it takes no account of stabilizer groups. For f ∈ CF(F), define χna(F, f ) in Q by

χna(F, f ) =
∑

c∈f (F(K))\{0}
cχna(f −1(c)

)
.

Let F, G be algebraic K-stacks with affine geometric stabilizers, and φ :F → G a repre-
sentable 1-morphism. Then for any x ∈ F(K) we have an injective morphism φ∗ : IsoK(x) →
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IsoK(φ∗(x)) of affine algebraic K-groups. The image φ∗(IsoK(x)) is an affine algebraic K-group
closed in IsoK(φ∗(x)), so the quotient IsoK(φ∗(x))/φ∗(IsoK(x)) exists as a quasiprojective
K-variety. Define a function mφ :F(K) → Z by mφ(x) = χ(IsoK(φ∗(x))/φ∗(IsoK(x))) for
x ∈ F(K).

For f ∈ CF(F), define CFstk(φ)f :G(K) → Q by

CFstk(φ)f (y) = χna(F,mφ · f · δ
φ−1∗ (y)

) for y ∈ G(K),

where δφ−1∗ (y) is the characteristic function of φ−1∗ ({y}) ⊆ G(K) on G(K). Then CFstk(φ) :
CF(F) → CF(G) is a Q-linear map called the stack pushforward.

Let θ :F → G be a finite type 1-morphism. If C ⊆ G(K) is constructible then so is θ−1∗ (C) ⊆
F(K). It follows that if f ∈ CF(G) then f ◦ θ∗ lies in CF(F). Define the pullback θ∗ : CF(G) →
CF(F) by θ∗(f ) = f ◦ θ∗. It is a linear map.

Here [10, Theorems 5.4, 5.6 and Definition 5.5] are some properties of these.

Theorem 2.5. Let E, F, G, H be algebraic K-stacks with affine geometric stabilizers, and
β :F → G, γ :G → H be 1-morphisms. Then

CFstk(γ ◦ β) = CFstk(γ ) ◦ CFstk(β) : CF(F) → CF(H), (2)

(γ ◦ β)∗ = β∗ ◦ γ ∗ : CF(H) → CF(F), (3)

supposing β,γ representable in (2), and of finite type in (3). If

E
η

θ

G

ψ

F
φ

H

is a Cartesian square with
η, φ representable and
θ , ψ of finite type, then

the following commutes:

CF(E)
CFstk(η)

CF(G)

CF(F)
CFstk(φ)

θ∗

CF(H).

ψ∗ (4)

As discussed in [10, §3.3] for the K-scheme case, Eq. (2) is false for algebraically closed
fields K of characteristic p > 0. This is our reason for restricting to K of characteristic zero
in Section 4. In [10, §5.3] we extend Definition 2.4 and Theorem 2.5 to locally constructible
functions.

2.3. Stack functions

Stack functions are a universal generalization of constructible functions introduced in [11, §3].
Here [11, Definition 3.1] is the basic definition. Throughout K is algebraically closed of arbitrary
characteristic, except when we specify charK = 0.

Definition 2.6. Let F be an algebraic K-stack with affine geometric stabilizers. Consider pairs
(R, ρ), where R is a finite type algebraic K-stack with affine geometric stabilizers and ρ :R → F

is a 1-morphism. We call two pairs (R, ρ), (R′, ρ′) equivalent if there exists a 1-isomorphism
ι :R → R′ such that ρ′ ◦ ι and ρ are 2-isomorphic 1-morphisms R → F. Write [(R, ρ)] for the
equivalence class of (R, ρ). If (R, ρ) is such a pair and S is a closed K-substack of R then
(S, ρ|S), (R \ S, ρ|R\S) are pairs of the same kind.



640 D. Joyce / Advances in Mathematics 210 (2007) 635–706
Define SF(F) to be the Q-vector space generated by equivalence classes [(R, ρ)] as above,
with for each closed K-substack S of R a relation[

(R, ρ)
]= [

(S, ρ|S)
]+ [

(R \ S, ρ|R\S)
]
. (5)

Define SF(F) to be the Q-vector space generated by [(R, ρ)] with ρ representable, with the same
relations (5). Then SF(F) ⊆ SF(F).

Elements of SF(F) will be called stack functions. In [11, Definition 3.2] we relate CF(F)
and SF(F).

Definition 2.7. Let F be an algebraic K-stack with affine geometric stabilizers, and C ⊆ F(K)

be constructible. Then C = ∐n
i=1 Ri (K), for R1, . . . ,Rn finite type K-substacks of F. Let ρi :

Ri → F be the inclusion 1-morphism. Then [(Ri , ρi)] ∈ SF(F). Define δ̄C =∑n
i=1[(Ri , ρi)] ∈

SF(F). We think of this stack function as the analogue of the characteristic function δC ∈ CF(F)
of C. Define a Q-linear map ιF : CF(F) → SF(F) by

ιF(f ) =
∑

0�=c∈f (F(K))

c · δ̄f−1(c).

For K of characteristic zero, define a Q-linear map π stk
F

: SF(F) → CF(F) by

π stk
F

(
n∑

i=1

ci
[
(Ri , ρi)

])=
n∑

i=1

ci CFstk(ρi)1Ri
,

where 1Ri
is the function 1 in CF(Ri ). Then [11, Proposition 3.3] shows π stk

F
◦ ιF is the identity

on CF(F). Thus, ιF is injective and π stk
F

is surjective. In general ιF is far from surjective, and
SF,SF(F) are much larger than CF(F).

All the operations of constructible functions in Section 2.2 extend to stack functions.

Definition 2.8. Define multiplication ‘ · ’ on SF(F) by[
(R, ρ)

] · [(S, σ )
]= [

(R ×ρ,F,σ S, ρ ◦ πR)
]
. (6)

This extends to a Q-bilinear product SF(F) × SF(F) → SF(F) which is commutative and asso-
ciative, and SF(F) is closed under ‘·’. Let φ :F → G be a 1-morphism of algebraic K-stacks with
affine geometric stabilizers. Define the pushforward φ∗ : SF(F) → SF(G) by

φ∗ :
m∑

i=1

ci
[
(Ri , ρi)

] 
→
m∑

i=1

ci
[
(Ri , φ ◦ ρi)

]
. (7)

If φ is representable then φ∗ maps SF(F) → SF(G). For φ of finite type, define pullbacks
φ∗ : SF(G) → SF(F), φ∗ : SF(G) → SF(F) by

φ∗ :
m∑

ci
[
(Ri , ρi)

] 
→
m∑

ci
[
(Ri ×ρi ,G,φ F,πF)

]
. (8)
i=1 i=1
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The tensor product ⊗ : SF(F) × SF(G) → SF(F × G) or SF(F) × SF(G) → SF(F × G) is(
m∑

i=1

ci
[
(Ri , ρi)

])⊗
(

n∑
j=1

dj
[
(Sj , σj )

])=
∑
i,j

cidj
[
(Ri × Sj , ρi × σj )

]
. (9)

Here [11, Theorem 3.5] is the analogue of Theorem 2.5.

Theorem 2.9. Let E, F, G, H be algebraic K-stacks with affine geometric stabilizers, and
β :F → G, γ :G → H be 1-morphisms. Then

(γ ◦ β)∗ = γ∗ ◦ β∗ : SF(F) → SF(H), (γ ◦ β)∗ = γ∗ ◦ β∗ : SF(F) → SF(H),

(γ ◦ β)∗ = β∗ ◦ γ ∗ : SF(H) → SF(F), (γ ◦ β)∗ = β∗ ◦ γ ∗ : SF(H) → SF(F),

for β,γ representable in the second equation, and of finite type in the third and fourth. If f,g ∈
SF(G) and β is finite type then β∗(f · g) = β∗(f ) · β∗(g). If

E
η

θ

G

ψ

F
φ

H

is a Cartesian square with
θ , ψ of finite type, then

the following commutes:

SF(E)
η∗

SF(G)

SF(F)
φ∗

θ∗

SF(H).

ψ∗

The same applies for SF(E), . . . ,SF(H) if η, φ are representable.

In [11, Proposition 3.7 and Theorem 3.8] we relate pushforwards and pullbacks of stack and
constructible functions using ιF, π stk

F
.

Theorem 2.10. Let K have characteristic zero, F, G be algebraic K-stacks with affine geometric
stabilizers, and φ :F → G be a 1-morphism. Then

(a) φ∗ ◦ ιG = ιF ◦ φ∗ : CF(G) → SF(F) if φ is of finite type;

(b) π stk
G

◦ φ∗ = CFstk(φ) ◦ π stk
F

: SF(F) → CF(G) if φ is representable; and

(c) π stk
F

◦ φ∗ = φ∗ ◦ π stk
G

: SF(G) → CF(F) if φ is of finite type.

In [11, §3] we extend all the material on SF,SF(F) to local stack functions LSF,LSF(F),
the analogues of locally constructible functions. The main differences are in which 1-morphisms
must be of finite type.

2.4. Motivic invariants of Artin stacks

In [11, §4] we extend motivic invariants of quasiprojective K-varieties to Artin stacks. We
need the following data, [11, Assumptions 4.1 and 6.1].

Assumption 2.11. Suppose Λ is a commutative Q-algebra with identity 1, and

Υ :
{
isomorphism classes [X] of quasiprojective K-varieties X

}→ Λ

a map for K an algebraically closed field, satisfying the following conditions:
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(i) If Y ⊆ X is a closed subvariety then Υ ([X]) = Υ ([X \ Y ]) + Υ ([Y ]).
(ii) If X,Y are quasiprojective K-varieties then Υ ([X × Y ]) = Υ ([X])Υ ([Y ]).

(iii) Write � = Υ ([K]) in Λ, regarding K as a K-variety, the affine line (not the point Spec K).
Then � and �k − 1 for k = 1,2, . . . are invertible in Λ.

Suppose Λ◦ is a Q-subalgebra of Λ containing the image of Υ and the elements �−1 and (�k +
�k−1 + · · · + 1)−1 for k = 1,2, . . . , but not containing (� − 1)−1. Let Ω be a commutative
Q-algebra, and π :Λ◦ → Ω a surjective Q-algebra morphism, such that π(�) = 1. Define

Θ :
{
isomorphism classes [X] of quasiprojective K-varieties X

}→ Ω

by Θ = π ◦ Υ . Then Θ([K]) = 1.

We chose the notation ‘�’ as in motivic integration [K] is called the Tate motive and written L.
We have Υ ([GL(m,K)]) = �m(m−1)/2∏m

k=1(�
k −1), so (iii) ensures Υ ([GL(m,K)]) is invertible

in Λ for all m � 1. Here [11, Examples 4.3 and 6.3] is an example of suitable Λ,Υ, . . . ; more
are given in [11, §§4.1 and 6.1].

Example 2.12. Let K be an algebraically closed field. Define Λ = Q(z), the algebra of rational
functions in z with coefficients in Q. For any quasiprojective K-variety X, let Υ ([X]) = P(X; z)
be the virtual Poincaré polynomial of X. This has a complicated definition in [11, Example 4.3]
which we do not repeat, involving Deligne’s weight filtration when charK = 0 and the action
of the Frobenius on l-adic cohomology when char K > 0. If X is smooth and projective then
P(X; z) is the ordinary Poincaré polynomial

∑2 dimX
k=0 bk(X)zk , where bk(X) is the kth Betti

number in l-adic cohomology, for l coprime to charK. Also � = P(K; z) = z2.
Let Λ◦ be the subalgebra of P(z)/Q(z) in Λ for which z ± 1 do not divide Q(z). Here are

two possibilities for Ω,π . Assumption 2.11 holds in each case.

(a) Set Ω = Q and π :f (z) 
→ f (−1). Then Θ([X]) = π ◦ Υ ([X]) is the Euler characteristic
of X.

(b) Set Ω = Q and π :f (z) 
→ f (1). Then Θ([X]) = π ◦ Υ ([X]) is the sum of the virtual Betti
numbers of X.

We need a few facts about algebraic K-groups. A good reference is Borel [2]. Following
Borel, we define a K-variety to be a K-scheme which is reduced, separated, and of finite type,
but not necessarily irreducible. An algebraic K-group is then a K-variety G with identity 1 ∈ G,
multiplication μ :G × G → G and inverse i :G → G (as morphisms of K-varieties) satisfying
the usual group axioms. We call G affine if it is an affine K-variety. Special K-groups are studied
by Serre and Grothendieck in [3, §§1 and 5].

Definition 2.13. An algebraic K-group G is called special if every principal G-bundle is Zariski
locally trivial. Properties of special K-groups can be found in [3, §§1.4, 1.5 and 5.5] and [11,
§2.1]. In [11, Lemma 4.6] we show that if Assumption 2.11 holds and G is special then Υ ([G])
is invertible in Λ.

In [11, Theorem 4.9] we extend Υ to Artin stacks, using Definition 2.13.
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Theorem 2.14. Let Assumption 2.11 hold. Then there exists a unique morphism of Q-algebras
Υ ′ : SF(Spec K) → Λ such that if G is a special algebraic K-group acting on a quasiprojective
K-variety X then Υ ′([[X/G]]) = Υ ([X])/Υ ([G]).

Thus, if R is a finite type algebraic K-stack with affine geometric stabilizers the theorem
defines Υ ′([R]) ∈ Λ. Taking Λ,Υ as in Example 2.12 yields the virtual Poincaré function
P(R; z) = Υ ′([R]) of R, a natural extension of virtual Poincaré polynomials to stacks. Clearly,
Theorem 2.14 only makes sense if Υ ([G])−1 exists for all special K-groups G. This excludes
the Euler characteristic Υ = χ , for instance, since χ([K×]) = 0 is not invertible. We overcome
this in [11, §6] by defining a finer extension of Υ to stacks that keeps track of maximal tori of
stabilizer groups, and allows Υ = χ . This can then be used with Θ,Ω in Assumption 2.11.

2.5. Stack functions over motivic invariants

In [11, §§4–6] we integrate the stack functions of Section 2.3 with the motivic invariant ideas
of Section 2.4 to define more stack function spaces.

Definition 2.15. Let Assumption 2.11 hold, and F be an algebraic K-stack with affine geometric
stabilizers. Consider pairs (R, ρ), with equivalence, as in Definition 5. Define SF(F,Υ,Λ) to be
the Λ-module generated by equivalence classes [(R, ρ)], with the following relations:

(i) Given [(R, ρ)] as above and S a closed K-substack of R we have [(R, ρ)] = [(S, ρ|S)] +
[(R \ S, ρ|R\S)], as in (5).

(ii) Let R be a finite type algebraic K-stack with affine geometric stabilizers, U a quasipro-
jective K-variety, πR :R × U → R the natural projection, and ρ :R → F a 1-morphism.
Then [(R × U,ρ ◦ πR)] = Υ ([U ])[(R, ρ)].

(iii) Given [(R, ρ)] as above and a 1-isomorphism R ∼= [X/G] for X a quasiprojective K-variety
and G a special algebraic K-group acting on X, we have [(R, ρ)] = Υ ([G])−1[(X,ρ ◦π)],
where π :X → R ∼= [X/G] is the natural projection 1-morphism.

Define a Q-linear projection Π
Υ,Λ
F

: SF(F) → SF(F,Υ,Λ) by

Π
Υ,Λ
F

:
∑
i∈I

ci
[
(Ri , ρi)

] 
→
∑
i∈I

ci
[
(Ri , ρi)

]
,

using the embedding Q ⊆ Λ to regard ci ∈ Q as an element of Λ.
We also define variants of these: spaces S̄F, S̄F(F,Υ,Λ), S̄F, S̄F(F,Υ,Λ◦) and S̄F, S̄F(F,

Θ,Ω), which are the Λ-, Λ◦- and Ω-modules respectively generated by [(R, ρ)] as above, with
ρ representable for S̄F(F,∗,∗), and with relations (i), (ii) above but (iii) replaced by a finer,
more complicated relation [11, Definition 5.17(iii)]. There are natural projections Π

Υ,Λ
F

, Π̄
Υ,Λ
F

,
Π̄

Υ,Λ◦
F

, Π̄Θ,Ω
F

between various of the spaces. We can also define local stack function spaces LSF,
¯LSF, ¯LSF(F,∗,∗).

In [11] we give analogues of Definitions 2.7 and 2.8 and Theorems 2.9 and 2.10 for these
spaces. For the analogue of π stk, suppose X :Λ◦ → Q or X :Ω → Q is an algebra morphism
F
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with X ◦ Υ ([U ]) = χ([U ]) or X ◦ Θ([U ]) = χ([U ]) for varieties U , where χ is the Euler char-
acteristic. Define π̄ stk

F
: S̄F(F,Υ,Λ◦) → CF(F) or π̄ stk

F
: S̄F(F,Θ,Ω) → CF(F) by

π̄ stk
F

(
n∑

i=1

ci
[
(Ri , ρi)

])=
n∑

i=1

X(ci)CFstk(ρi)1Ri
.

The operations ‘·’, φ∗, φ∗, ⊗ on SF(∗,Υ,Λ), . . . , S̄F(∗,Θ,Ω) are given by the same formulae.
The important point is that (6)–(9) are compatible with the relations defining SF(∗,Υ,Λ), . . . ,

S̄F(∗,Θ,Ω), or they would not be well defined.
In [11, Proposition 4.14] we identify SF(Spec K,Υ,Λ). The proof involves showing that Υ ′

in Theorem 2.14 is compatible with Definition 2.15(i)–(iii) and so descends to Υ ′ : SF(Spec K,

Υ,Λ) → Λ, which is the inverse of iΛ.

Proposition 2.16. The map iΛ :Λ → SF(Spec K,Υ,Λ) taking iΛ : c 
→ c[Spec K] is an isomor-
phism of algebras.

Here [11, Propositions 5.21 and 5.22] is a useful way of representing these spaces.

Proposition 2.17. S̄F, S̄F(F,Υ,Λ), S̄F, S̄F(F,Υ,Λ◦) and S̄F, S̄F(F,Θ,Ω) are generated over
Λ, Λ◦ and Ω respectively by elements [(U ×[Spec K/T ], ρ)], for U a quasiprojective K-variety
and T an algebraic K-group isomorphic to (K×)k × K for k � 0 and K finite abelian.

Suppose
∑

i∈I ci[(Ui × [Spec K/Ti], ρi)] = 0 in one of these spaces, where I is finite
set, ci ∈ Λ,Λ◦ or Ω , Ui is a quasiprojective K-variety and Ti an algebraic K-group iso-
morphic to (K×)ki × Ki for ki � 0 and Ki finite abelian, with Ti �∼= Tj for i �= j . Then
cj [(Uj × [Spec K/Tj ], ρj )] = 0 for all j ∈ I .

In [11, §5.2] we define operators Πμ, Πvi
n , Π̂ν

F
on SF(F), S̄F(F,∗,∗) (but not on SF(F,

Υ,Λ)). Very roughly speaking, Πvi
n projects [(R, ρ)] ∈ SF(F) to [(Rn, ρ)], where Rn is the

K-substack of points r ∈ R(K) whose stabilizer groups IsoK(r) have rank n, that is, maximal
torus (K×)n.

Unfortunately, it is more complicated than this. The right notion is not the actual rank of sta-
bilizer groups, but the virtual rank. This is a difficult idea which treats r ∈ R(K) with nonabelian
stabilizer group G = IsoK(r) as a linear combination of points with ‘virtual ranks’ in the range
rkC(G) � n � rkG. Effectively this abelianizes stabilizer groups, that is, using virtual rank we
can treat R as though its stabilizer groups were all abelian, essentially tori (K×)n. These ideas
will be key tools in Sections 5 and 6.

Here is a way to interpret the spaces of Definition 2.15, explained in [11]. In Section 2.2, push-
forwards CFstk(φ) : CF(F) → CF(G) are defined by ‘integration’ over the fibres of φ, using the
Euler characteristic χ as measure. In the same way, given Λ, Υ as in Assumption 2.11 we could
consider Λ-valued constructible functions CF(F)Λ, and define a pushforward φ∗ : CF(F)Λ →
CF(G)Λ by ‘integration’ using Υ as measure, instead of χ . But then (ψ ◦ φ)∗ = ψ∗ ◦ φ∗ may
no longer hold, as this depends on properties of χ on non-Zariski-locally-trivial fibrations which
are false for other Υ such as virtual Poincaré polynomials.

The space SF(F,Υ,Λ) is very like CF(F)Λ with pushforwards φ∗ defined using Υ , but satis-
fies (ψ ◦ φ)∗ = ψ∗ ◦ φ∗ and other useful functoriality properties. So we can use it as a substitute
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for CF(F). The spaces S̄F, S̄F(F,∗,∗) are similar but also keep track of information on the max-
imal tori of stabilizer groups.

3. Background on configurations from [12]

We recall in Section 3.1 the main definitions and results on (I,�)-configurations that we
will need later, and in Section 3.2 some important facts on moduli stacks of configurations. For
motivation and other results see [12], and for background on abelian categories, see Gelfand and
Manin [6].

3.1. Basic definitions

Here is some notation for finite posets, taken from [12, Definitions 3.2 and 4.1].

Definition 3.1. A finite partially ordered set or finite poset (I,�) is a finite set I with a partial
order I . Define J ⊆ I to be an f-set if i ∈ I and h, j ∈ J and h � i � j implies i ∈ J . Define
F(I,�) to be the set of f-sets of I . Define G(I,�) to be the subset of (J,K) ∈ F(I,�) × F(I,�)

such that J ⊆ K , and if j ∈ J and k ∈ K with k � j , then k ∈ J . Define H(I,�) to be the subset
of (J,K) ∈ F(I,�) ×F(I,�) such that K ⊆ J , and if j ∈ J and k ∈ K with k � j , then j ∈ K .

We define (I,�)-configurations, [12, Definition 4.1].

Definition 3.2. Let (I,�) be a finite poset, and use the notation of Definition 3.1. Define
an (I,�)-configuration (σ, ι,π) in an abelian category A to be maps σ :F(I,�) → Obj(A),
ι :G(I,�) → Mor(A), and π :H(I,�) → Mor(A), where

(i) σ(J ) is an object in A for J ∈ F(I,�), with σ(∅) = 0.
(ii) ι(J,K) :σ(J ) → σ(K) is injective for (J,K) ∈ G(I,�), and ι(J, J ) = idσ(J ).

(iii) π(J,K) :σ(J ) → σ(K) is surjective for (J,K) ∈ H(I,�), and π(J,J ) = idσ(J ).

These should satisfy the conditions:

(A) Let (J,K) ∈ G(I,�) and set L = K \ J . Then the following is exact in A:

0 σ(J )
ι(J,K)

σ (K)
π(K,L)

σ (L) 0.

(B) If (J,K) ∈ G(I,�) and (K,L) ∈ G(I,�) then ι(J,L) = ι(K,L) ◦ ι(J,K).
(C) If (J,K) ∈ H(I,�) and (K,L) ∈H(I,�) then π(J,L) = π(K,L) ◦ π(J,K).
(D) If (J,K) ∈ G(I,�) and (K,L) ∈H(I,�) then

π(K,L) ◦ ι(J,K) = ι(J ∩ L,L) ◦ π(J,J ∩ L).

A morphism α : (σ, ι,π) → (σ ′, ι′,π ′) of (I,�)-configurations in A is a collection of mor-
phisms α(J ) :σ(J ) → σ ′(J ) for each J ∈ F(I,�) satisfying

α(K) ◦ ι(J,K) = ι′(J,K) ◦ α(J ) for all (J,K) ∈ G(I,�), and

α(K) ◦ π(J,K) = π ′(J,K) ◦ α(J ) for all (J,K) ∈ H(I,�).

It is an isomorphism if α(J ) is an isomorphism for all J ∈ F(I,�).



646 D. Joyce / Advances in Mathematics 210 (2007) 635–706
Here [12, Definitions 5.1 and 5.2] are two ways to construct new configurations.

Definition 3.3. Let (I,�) be a finite poset and J ∈ F(I,�). Then (J,�) is also a finite poset, and
F(J,�), G(J,�), H(J,�) ⊆ F(I,�), G(I,�),H(I,�). Let (σ, ι,π) be an (I,�)-configuration in an
abelian category A. Define the (J,�)-subconfiguration (σ ′, ι′,π ′) of (σ, ι,π) by σ ′ = σ |F(J,�)

,
ι′ = ι|G(J,�)

and π ′ = π |H(J,�)
.

Let (I,�), (K,�) be finite posets, and φ : I → K be surjective with i � j implies
φ(i) � φ(j). Using φ−1 to pull subsets of K back to I maps F(K,�), G(K,�), H(K,�) →
F(I,�), G(I,�), H(I,�). Let (σ, ι,π) be an (I,�)-configuration in an abelian category A.
Define the quotient (K,�)-configuration (σ̃ , ι̃, π̃ ) by σ̃ (A) = σ(φ−1(A)) for A ∈ F(K,�),
ι̃(A,B) = ι(φ−1(A),φ−1(B)) for (A,B) ∈ G(K,�), and π̃ (A,B) = π(φ−1(A),φ−1(B)) for
(A,B) ∈ H(K,�).

3.2. Moduli stacks of configurations

Here are our initial assumptions.

Assumption 3.4. Fix an algebraically closed field K. (Throughout Section 4 we will require
K to have characteristic zero.) Let A be an abelian category with Hom(X,Y ) = Ext0(X,Y )

and Ext1(X,Y ) finite-dimensional K-vector spaces for all X,Y ∈ A, and all composition maps
Exti (Y,Z) × Extj (X,Y ) → Exti+j (X,Z) bilinear for i, j , i + j = 0 or 1. Let K(A) be the
quotient of the Grothendieck group K0(A) by some fixed subgroup. Suppose that if X ∈ Obj(A)

with [X] = 0 in K(A) then X ∼= 0.
To define moduli stacks of objects or configurations in A, we need some extra data, to tell

us about algebraic families of objects and morphisms in A, parametrized by a base scheme U .
We encode this extra data as a stack in exact categories FA on the category of K-schemes SchK,
made into a site with the étale topology. The K, A, K(A), FA must satisfy some complex
additional conditions [12, Assumptions 7.1 and 8.1], which we do not give.

We define some notation, [12, Definition 7.3].

Definition 3.5. We work in the situation of Assumption 3.4. Define

C̄(A) = {[X] ∈ K(A): X ∈ A
}⊂ K(A).

That is, C̄(A) is the collection of classes in K(A) of objects X ∈A. Note that C̄(A) is closed un-
der addition, as [X⊕Y ] = [X]+ [Y ]. In [13,14] we shall make much use of C(A) = C̄(A) \ {0}.
We think of C(A) as the ‘positive cone’ and C̄(A) as the ‘closed positive cone’ in K(A),
which explains the notation. For (I,�) a finite poset and κ : I → C̄(A), define an (I,�, κ)-
configuration to be an (I,�)-configuration (σ, ι,π) with [σ({i})] = κ(i) in K(A) for all i ∈ I .

In the situation above, we define the following K-stacks [12, Definitions 7.2 and 7.4]:

• The moduli stacks ObjA of objects in A, and ObjαA of objects in A with class α in K(A),
for each α ∈ C̄(A). They are algebraic K-stacks, locally of finite type, with ObjαA an open
and closed K-substack of ObjA. The underlying geometric spaces ObjA(K), ObjαA(K) are
the sets of isomorphism classes of objects X in A, with [X] = α for Objα (K).
A
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• The moduli stacks M(I,�)A of (I,�)-configurations and M(I,�, κ)A of (I,�, κ)-
configurations in A, for all finite posets (I,�) and κ : I → C̄(A). They are algebraic
K-stacks, locally of finite type, with M(I,�, κ)A an open and closed K-substack of
M(I,�)A. Write M(I,�)A, M(I,�, κ)A for the underlying geometric spaces
M(I,�)A(K), M(I,�, κ)A(K). Then M(I,�)A and M(I,�, κ)A are the sets of iso-
morphism classes of (I,�)- and (I,�, κ)-configurations in A, by [12, Proposition 7.6].

Each stabilizer group IsoK([X]) or IsoK([(σ, ι,π)]) in ObjA or M(I,�)A is the group of invert-
ible elements in the finite-dimensional K-algebra End(X) or End((σ, ι,π)). Thus ObjA,ObjαA,
M(I,�)A, M(I,�, κ)A have affine geometric stabilizers, which is required to use the results of
Section 2.2.

In [12, Definition 7.7 and Proposition 7.8] we define 1-morphisms of K-stacks, as follows:

• For (I,�) a finite poset, κ : I → C̄(A) and J ∈F(I,�), we define

σ (J ) :M(I,�)A → ObjA or σ (J ) :M(I,�, κ)A → Obj

∑
j∈J κ(j)

A .

The induced maps σ (J )∗ :M(I,�)A → ObjA(K) or M(I,�, κ)A → Obj

∑
j∈J κ(j)

A (K) act
by σ (J )∗ : [(σ, ι,π)] 
→ [σ(J )].

• For (I,�) a finite poset, κ : I → C̄(A) and J ∈ F(I,�), we define the (J,�)-subconfig-
uration 1-morphism

S(I,�, J ) :M(I,�)A → M(J,�)A or S(I,�, J ) :M(I,�, κ)A → M(J,�, κ|J )A.

The induced maps S(I,�, J )∗ act by S(I,�, J )∗ : [(σ, ι,π)] 
→ [(σ ′, ι′,π ′)], where (σ, ι,π)

is an (I,�)-configuration in A, and (σ ′, ι′,π ′) its (J,�)-subconfiguration.
• Let (I,�), (K,�) be finite posets, κ : I → C̄(A), and φ : I → K be surjective with i � j

implies φ(i)� φ(j) for i, j ∈ I . Define μ :K → C̄(A) by μ(k) =∑
i∈φ−1(k) κ(i). We define

the quotient (K,�)-configuration 1-morphisms

Q(I,�,K,�, φ) :M(I,�)A → M(K,�)A, (10)

Q(I,�,K,�, φ) :M(I,�, κ)A → M(K,�,μ)A. (11)

The induced maps Q(I,�,K,�, φ)∗ act by Q(I,�,K,�, φ)∗ : [(σ, ι,π)] 
→ [(σ̃ , ι̃, π̃ )],
where (σ, ι,π) is an (I,�)-configuration in A, and (σ̃ , ι̃, π̃) its quotient (K,�)-config-
uration from φ.

Here [12, Theorem 8.4] are some properties of these 1-morphisms:

Theorem 3.6. In the situation above:

(a) Q(I,�,K,�, φ) in (10) and (11) are representable, and (11) is finite type.
(b) σ (I ) :M(I,�, κ)A → Obj

κ(I )

A is representable and of finite type, and σ (I ) :M(I,�)A →
ObjA is representable.

(c)
∏

i∈I σ ({i}) :M(I,�)A →∏
i∈I ObjA is of finite type.
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In [12, §§9 and 10] we define the data A,K(A),FA in some large classes of examples, and
prove that Assumption 3.4 holds in each case.

4. Algebras of constructible functions on ObjA

We now generalize the idea of Ringel–Hall algebras to constructible functions on stacks. Let
Assumption 3.4 hold. We show how to make the Q-vector space CF(ObjA) of constructible
functions into a Q-algebra.

We begin in Section 4.1 by defining the multiplication ∗ on CF(ObjA), and showing it is asso-
ciative. Section 4.2 extends this to locally constructible functions, and Section 4.3 constructs left
or right representations of the algebras CF(ObjA), using configuration moduli stacks. Section 4.4
shows the subspace CFind(ObjA) of functions supported on indecomposables is a Lie subalge-
bra of CF(ObjA), and Section 4.5 that under extra conditions on A the subspace CFfin(ObjA)

of functions with finite support is a subalgebra of CF(ObjA).
Section 4.6 proves the Q-algebra CFfin(ObjA) is isomorphic to the universal enveloping al-

gebra U(CFind
fin (ObjA)). Section 4.7 defines a commutative comultiplication Δ on CFfin(ObjA)

making it into a bialgebra, and Section 4.8 defines multilinear operations P(I,�) on CF(ObjA)

for all finite posets (I,�), which satisfy an analogue of associativity. Finally, Section 4.9 gives
some examples from quiver representations mod-KQ.

Throughout this section we fix an algebraically closed field K of characteristic zero, so that
we can apply the constructible functions theory of Section 2.2.

4.1. An associative algebra structure on CF(ObjA)

We now extend the Ringel–Hall algebra idea to the stacks set up of Section 3.2. First we define
the identity δ[0] and multiplication ∗ on CF(ObjA).

Definition 4.1. Suppose Assumption 3.4 holds. Define δ[0] ∈ CF(ObjA) to be the characteristic
function of the point [0] ∈ ObjA(K), so that δ[0]([X]) = 1 if X ∼= 0, and δ[0]([X]) = 0 oth-
erwise. For f,g ∈ CF(ObjA) we define f ⊗ g ∈ CF(ObjA × ObjA) by (f ⊗ g)([X], [Y ]) =
f ([X])g([Y ]) for all ([X], [Y ]) ∈ (ObjA × ObjA)(K) = ObjA(K) × ObjA(K).

Using the diagrams of 1-morphisms of stacks and pullbacks, pushforwards of constructible
functions, explained in Remark 4.2:

ObjA × ObjA M({1,2},�)A
σ ({1})×σ ({2}) σ ({1,2})

ObjA,

CF(ObjA) × CF(ObjA)

(σ ({1}))∗·(σ ({2}))∗⊗

CF(ObjA × ObjA)
(σ ({1})×σ ({2}))∗

CF(M({1,2},�)A)
CFstk(σ ({1,2}))

CF(ObjA),

(12)

define a bilinear operation ∗ : CF(ObjA) × CF(ObjA) → CF(ObjA) by

f ∗ g = CFstk(σ ({1,2}))[σ ({1})∗(f ) · σ ({2})∗(g)]
= CFstk(σ ({1,2}))[(σ ({1})× σ

({2}))∗(f ⊗ g)
]
. (13)
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This is well defined as σ ({1,2}) is representable and σ ({1}) × σ ({2}) of finite type by Theo-
rem 3.6(b),(c), so CFstk(σ ({1,2})) and (σ ({1})×σ ({2}))∗ are well-defined maps of constructible
functions as in Section 2.2.

Remark 4.2. Here is what this means. In (12), ObjA is the Artin K-stack of objects X ∈ A, and
M({1,2},�)A is the Artin K-stack of short exact sequences 0 → X → Y → Z → 0 in A, except
that using the configuration notation of [12] a short exact sequence is a ({1,2},�)-configuration
(σ, ι,π), written 0 → σ({1}) → σ({1,2}) → σ({2}) → 0, where σ(· · ·) are objects in A.

The 1-morphisms σ ({1}), σ ({1,2}), σ ({2}) in (12) take the configuration (σ, ι,π) to its ob-
jects σ({1}), σ({1,2}), σ({2}). That is, they take a short exact sequence 0 → X → Y → Z → 0
to the objects X,Y,Z respectively. Hence, the 1-morphisms σ ({1}) × σ ({2}) and σ ({1,2}) take
isomorphism classes [0 → X → Y → Z → 0] to isomorphism classes ([X], [Z]) and [Y ] re-
spectively.

Thus, interpreting pushforwards CFstk(· · ·) as in [10], for fixed Y ∈ A we can regard
(f ∗g)([Y ]) as the ‘integral’ over short exact sequences 0 → X → Y → Z → 0 of f ([X])g([Z]),
or equivalently, the integral over subobjects X ⊂ Y of f ([X])g([Y/X]), with respect to a mea-
sure defined using the Euler characteristic of constructible sets. Our convention on the order
of multiplication agrees with Frenkel et al. [5] and Riedtmann [21, §2]. However, Lusztig [19,
§§3.1, 10.19 and 12.10] and Ringel use the opposite convention, with (f ∗ g)([Y ]) an integral
over subobjects X ⊂ Y of f ([Y/X])g([X]).

Here is the basic result, saying CF(ObjA) is a Q-algebra. The proof is related to Ringel [23]
and Lusztig [19, §10.19].

Theorem 4.3. In the situation above, δ[0] ∗ f = f ∗ δ[0] = f for all f in CF(ObjA), and ∗ is
associative. Thus CF(ObjA) is a Q-algebra, with identity δ[0] and multiplication ∗.

Proof. By considering the ({1,2},�)-configuration (σ, ι,π) with σ({1}) = 0 and σ({2}) = X

for X ∈A, which is unique up to isomorphism, we find from Definition 4.1 that (δ[0] ∗f )([X]) =
f ([X]), so δ[0] ∗ f = f as this holds for all X ∈A, and similarly f ∗ δ[0] = f .

Define α,β : {1,2,3} → {1,2} by α(1) = α(2) = 1, α(3) = 2, β(1) = 1, β(2) = β(3) = 2.
Consider the commutative diagram of 1-morphisms, and the corresponding diagram of pullbacks
and pushforwards:

ObjA × ObjA × ObjA ObjA × M({2,3},�)A
idObjA ×σ ({2})×σ ({3}) idObjA ×σ ({2,3})

ObjA × ObjA

M({1,2},�)A × ObjA

σ ({1})×σ ({2})×idObjA

σ ({1,2})×idObjA

M({1,2,3},�)A
S({1,2,3},�,{1,2})×σ ({3})

Q({1,2,3},�,{1,2},�,α)

Q({1,2,3},�,{1,2},�,β)

σ ({1})×S({1,2,3},�,{2,3})

M({1,2},�)A

σ ({1})×σ ({2})

σ ({1,2})

ObjA × ObjA M({1,2},�)A
σ ({1})×σ ({2}) σ ({1,2})

ObjA,

(14)
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CF(ObjA × ObjA × ObjA)

σ ({1})×σ ({2}))×idObjA )∗

(idObjA ×σ ({2})×σ ({3}))∗
CF(ObjA × M({2,3},�)A)

CFstk(idObjA ×σ ({2,3}))
(σ ({1})×S({1,2,3},�,{2,3}))∗

CF(ObjA × ObjA)

(σ ({1})×σ ({2}))∗

CF(M({1,2},�)A × ObjA)

CFstk(σ ({1,2})×idObjA )

(S({1,2,3},�,{1,2})×σ ({3}))∗
CF(M({1,2,3},�)A)

CFstk(Q({1,2,3},�,{1,2},�,α))

CFstk(Q({1,2,3},�,{1,2},�,β))

CF(M({1,2},�)A)

CFstk(σ ({1,2}))

CF(ObjA × ObjA)
(σ ({1})×σ ({2}))∗

CF(M({1,2},�)A)
CFstk(σ ({1,2}))

CF(ObjA).

(15)

Here M({1,2,3},�)A is the Artin K-stack of ({1,2,3},�)-configurations in A, which are es-
sentially chains of subobjects X ⊂ Y ⊂ Z in A, except that they are written σ({1}) ⊂ σ({1,2}) ⊂
σ({1,2,3}) in configuration notation. Also M({1,2},�)A is the Artin K-stack of subobjects
X ⊂ Y in A, as above. The four 1-morphisms from M({1,2,3},�)A in (14) act on an iso-
morphism class [X ⊂ Y ⊂ Z] as follows: ‘↑’ takes it to ([X], [Y/X ⊂ Z/X]), ‘←’ takes it to
([X ⊂ Y ], [Z/Y ]), ‘→’ takes it to ([X ⊂ Z]), and ‘↓’ takes it to ([Y ⊂ Z]).

To show the maps in (15) are well defined we use Theorem 3.6(a)–(c) to show the correspond-
ing 1-morphisms are representable or finite type, and note that S({1,2,3},�, {1,2}) × σ ({3}),
σ ({1}) × S({1,2,3},�, {2,3}) are finite type by a similar proof to Theorem 3.6(c).

The top left square in (15) commutes by (3), and the bottom right by (2). Now [12, Theo-
rem 7.10] implies that

M({1,2},�)A

σ ({1,2})

M({1,2,3},�)A
S({1,2,3},�,{1,2})

Q({1,2,3},�,{1,2},�,α)

ObjA M({1,2},�)A
σ ({1})

is a Cartesian square. Taking fibre products with σ ({2}) :M({1,2})A → ObjA then shows the
bottom left square in (14) is also Cartesian, so the bottom left square in (15) commutes by (4).
Similarly the top right square in (15) commutes. Therefore (15) commutes. Now let f,g,h ∈
CF(ObjA), so that f ⊗ g ⊗ h ∈ CF(ObjA × ObjA × ObjA). As (15) commutes, applying the
two routes round the outside of the square to f ⊗ g ⊗ h shows that (f ∗ g) ∗ h = f ∗ (g ∗ h).
Thus ∗ is associative, and CF(ObjA) is an algebra. �

Because of the use of Cartesian squares and Theorem 2.5 in the proof of Theorem 4.3, to
make ∗ associative we must use the stack pushforward CFstk in (13), and other pushforwards
such as the naïve pushforward CFna of [10, Section 4.3] will in general give nonassociative mul-
tiplications. In particular, as CFstk depends on the stabilizer groups IsoK(x), we cannot afford to
forget this information by passing to coarse moduli schemes, if they existed. This is an important
reason for working with Artin stacks, rather than some simpler class of spaces.

Define the composition algebra C ⊆ CF(ObjA) to be the Q-subalgebra generated by functions
f supported on [X] ∈ ObjA(K) with X a simple object in A. In examples, the composition
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algebra C is usually more interesting than the Ringel–Hall algebra CF(ObjA). When there are
only finitely many simple objects up to isomorphism C is finitely generated.

4.2. Extension to locally constructible functions

Next we observe that the associative multiplication ∗ in Section 4.1 extends to a large subspace
˙LCF(ObjA) of the locally constructible functions LCF(ObjA).

Definition 4.4. Suppose Assumption 3.4 holds. Define ˙LCF(ObjA) to be the Q-vector subspace
of LCF(ObjA) consisting of functions f supported on subsets

∐
α∈S ObjαA(K) in ObjA(K) for

S ⊂ C̄(A) a finite subset. Following (13), define ∗ : ˙LCF(ObjA) × ˙LCF(ObjA) → ˙LCF(ObjA)

by

f ∗ g = LCFstk(σ ({1,2}))[σ ({1})∗(f ) · σ ({2})∗(g)]. (16)

To see this is well defined, recall the disjoint union of stacks [12, Theorem 7.5]

M
({1,2},�)A =

∐
κ : {1,2}→C̄(A)

M
({1,2},�, κ

)
A.

Let f,g ∈ ˙LCF(ObjA) be supported on
∐

α∈S ObjαA(K),
∐

α∈T ObjαA(K) respectively for fi-
nite S,T ⊆ C̄(A). Then σ ({1})∗(f ) · σ ({2})∗(g) in (16) is locally constructible and sup-
ported on the finite number of M({1,2},�, κ)A for which κ(1) ∈ S and κ(2) ∈ T . By Theo-
rem 3.6(b), σ ({1,2}) :M({1,2},�, κ)A → Obj

κ({1,2})
A is representable and of finite type. Thus

LCFstk(σ ({1,2}))[· · ·] is well defined in (16), and lies in LCF(ObjA). But clearly f ∗ g is sup-
ported on

⋃
α∈S,β∈T Obj

α+β

A (K), so f ∗ g ∈ ˙LCF(ObjA).

Actually, ∗ often makes sense on even larger subspaces of LCF(ObjA). For f ∗ g to be well
defined, all we need is that for each γ ∈ C̄(A), there should exist only finitely many pairs
α,β ∈ C̄(A) with γ = α + β and f |ObjαA(K), g|

Obj
β

A(K)
both nonzero. If it happens that for

all γ ∈ C̄(A) there are only finitely many pairs α,β ∈ C̄(A) with α + β = γ then this holds
automatically, and f ∗ g is well defined for all f,g ∈ LCF(ObjA). In particular, this holds for all
the quiver examples of [12, §10], so in these examples LCF(ObjA) will be a Q-algebra.

We shall deal only with ˙LCF(ObjA), though, as it is sufficient for the applications in [13,14],
where it is useful, for instance, that δObjαA(K) lies in ˙LCF(ObjA). Here is the analogue of Theo-

rem 4.3. The proof follows that of Theorem 4.3, replacing CF(· · ·) by LCF(· · ·) and CFstk(· · ·) by
LCFstk(· · ·), and arguing as in Definition 4.4 to show the operators LCFstk(· · ·) are well defined.

Theorem 4.5. In the situation above ˙LCF(ObjA) is a Q-algebra, with identity δ[0] and associa-
tive multiplication ∗, and CF(ObjA) is a Q-subalgebra.

In the rest of the section we give many results for CF(ObjA). Mostly these have straightfor-
ward generalizations to ˙LCF(ObjA), which we leave as exercises for the reader, just making the
occasional comment. Here are two other remarks:

• The Q-subalgebra of ˙LCF(ObjA) generated by the characteristic functions δObjαA(K) of

Objα (K) for α ∈ C̄(A) may be an interesting algebra.
A
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• One can also consider infinite sums in ˙LCF(ObjA) or LCF(ObjA). We call an infinite sum∑
i∈I fi with fi ∈ LCF(ObjA) convergent if for all constructible C ⊆ ObjA(K), only fi-

nitely many fi |C are nonzero. Then
∑

i∈I fi makes sense, and lies in LCF(ObjA). In [14]
we will prove identities which are convergent infinite sums of products in ˙LCF(ObjA).

4.3. Representations of Ringel–Hall algebras

Here is a way to construct representations of the algebra CF(ObjA) of Section 4.1. Although
it is very simple, I did not find this method used explicitly or implicitly in the Ringel–Hall algebra
literature.

Definition 4.6. Let Assumption 3.4 hold. Define α,β : {1,2,3} → {1,2} by

α(1) = α(2) = 1, α(3) = 2, β(1) = 1, β(2) = β(3) = 2. (17)

Using the diagram of pullbacks, pushforwards of constructible functions

CF(ObjA) × CF(M({1,2},�)A)

(σ ({2}))∗·(Q({1,2,3},�,{1,2},�,α))∗
⊗

CF(M({1,2},�)A)

CF(ObjA × M({1,2},�)A)

(σ ({2})×Q({1,2,3},�,{1,2},�,α))∗
CF(M({1,2,3},�)A),

CFstk(Q({1,2,3},�,{1,2},�,β))

define ∗L : CF(ObjA) × CF(M({1,2},�)A) → CF(M({1,2},�)A) by

f ∗L r = CFstk(Q({1,2,3},�, {1,2},�, β
))[

σ
({2})∗(f )

· (Q({1,2,3},�, {1,2},�, α
))∗

(r)
]
. (18)

This is well defined as Q({1,2,3},�, {1,2},�, β) is representable by Theorem 3.6(a), and one
can show σ ({2}) × Q(· · · , α) is finite type. In the same way, define ∗R : CF(M({1,2},�)A) ×
CF(ObjA) → CF(M({1,2},�)A) by

r ∗R f = CFstk(Q({1,2,3},�, {1,2},�, α
))[(

Q
({1,2,3},�, {1,2},�, β

))∗
(r)

· σ ({2})∗(f )
]
.

For Z ∈ A, write V [Z] for the vector subspace of f ∈ CF(M({1,2},�)A) supported on points
[(σ, ι,π)] with σ({1,2}) ∼= Z.

Here is what this means, translated from configurations to subobjects. We are defining an
action of f ∈ CF(ObjA), which is a function on isomorphism classes [X] of objects X ∈ A,
upon r ∈ CF(M({1,2},�)A), which is a function on isomorphism classes [X ⊂ Y ] of subobjects
X ⊂ Y in A. The rule is that (f ∗L r)([X ⊂ Z]) is the ‘integral’ over chains of subobjects
X ⊂ Y ⊂ Z of f ([Y/X])r([Y ⊂ Z]), with respect to an Euler characteristic measure. In the
finite field approach of Ringel [23,24], this ‘integral’ would just be done by counting.
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Similarly, (r ∗R f )([Y ⊂ Z]) is the integral over chains X ⊂ Y ⊂ Z of r([X ⊂ Z])f ([Y/X]).
Note that both (f ∗L r) and r ∗R f at [X ⊂ Z] depend only on r([Y ⊂ Z]) for other subobjects
Y ⊂ Z with the same Z. Thus, the subspace V [Z] of functions r supported on [X ⊂ Z] for fixed
Z is closed under f ∗L and ∗Rf for all f ∈ CF(ObjA).

The proof of the next theorem is modelled on that of Theorem 4.3. Note that we do not claim
that CF(M({1,2},�)A),V [Z] are two-sided representations of CF(ObjA), only that ∗L and ∗R

separately define left and right representations. That is, we do not claim that (f ∗L r) ∗R g =
f ∗L (r ∗R g) for f,g ∈ CF(ObjA) and r ∈ CF(M({1,2},�)A), and in general this is false.

To interpret the middle part of the proof in terms of subobjects, regard M({1,2,3,4},�)A in
(19) as the Artin K-stack of chains of subobjects W ⊂ X ⊂ Y ⊂ Z in A. Then the proof consists
in showing that both (f ∗ g) ∗L r and f ∗L (g ∗L r) evaluated at [W ⊂ Z] are the ‘integral’ over
chains W ⊂ X ⊂ Y ⊂ Z of f (X/W)g(Y/X)r([Y ⊂ Z]).

Theorem 4.7. Above, if f,g ∈ CF(ObjA) and r ∈ CF(M({1,2},�)A) then δ[0] ∗L r = r ,
(f ∗ g) ∗L r = f ∗L (g ∗L r) and r ∗R δ[0] = r , r ∗R (f ∗ g) = (r ∗R g) ∗R f . Thus, ∗L, ∗R define
left and right representations of the algebra CF(ObjA) on the vector space CF(M({1,2},�)A).

Furthermore, for Z ∈A the subspace V [Z] is closed under both actions ∗L,∗R of CF(ObjA).
Hence V [Z] is a left and right representation of CF(ObjA).

Proof. The first part of Theorem 4.3 generalizes easily to show that δ[0] ∗L r = r . Define
γ, δ : {1,2,3,4} → {1,2} and ε, ζ, η : {1,2,3,4} → {1,2,3} by

γ : 1,2,3 
→ 1, γ : 4 
→ 2, δ : 1 
→ 1, δ : 2,3,4 
→ 2, ε : 1,2 
→ 1, ε : 3 
→ 2,

ε : 4 
→ 3, ζ : 1 
→ 1, ζ : 2,3 
→ 2, ζ : 4 
→ 3, η : 1 
→ 1, η : 2 
→ 2, η : 3,4 
→ 3,

and α,β as (17). Consider the diagram of 1-morphisms

ObjA×
ObjA×

M({1,2},�)A

ObjA×
M({1,2,3},�)A

idObjA ×σ ({2})×
Q({1,2,3},�,{1,2},�,α)

idObjA ×
Q({1,2,3},�,{1,2},�,β)

ObjA×
M({1,2},�)A

M({2,3},�)A×
M({1,2},�)A

(σ ({2})×σ ({3}))×idM({1,2},�)A

σ ({2,3})×idM({1,2},�)A

M({1,2,3,4},�)A
S({1,2,3,4},�,{2,3})×

Q({1,2,3,4},�,{1,2},�,γ )
Q({1,2,3,4},�,{1,2,3},�,η)

σ ({2})×Q({1,2,3,4},�,{1,2,3},�,ε)

Q({1,2,3,4},�,{1,2,3},�,ζ )

M({1,2,3},�)A

σ ({2})×Q({1,2,3},�,{1,2},�,α)

Q({1,2,3},�,{1,2},�,β)

ObjA×
M({1,2},�)A

M({1,2,3},�)A

σ ({2})×
Q({1,2,3},�,{1,2},�,α) Q({1,2,3},�,{1,2},�,β)

M({1,2},�)A,

(19)
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analogous to (14). It is not difficult to show (19) commutes, and the top right and bottom
left squares are Cartesian. Thus there is a commutative diagram of spaces CF(· · ·) and pull-
backs/pushforwards analogous to (15). Applying this to f ⊗ g ⊗ r in CF(ObjA × ObjA ×
M({1,2},�)A) gives (f ∗ g) ∗L r = f ∗L (g ∗L r), and ∗L is a left representation. The proof for
∗R is similar.

Finally, if r ∈ V [Z] then r is supported on points [(σ, ι,π)] with σ({1,2}) ∼= Z. If we have a
diagram

[
(σ, ι,π)

] [
(σ ′, ι′,π ′)

]Q({1,2,3},�,{1,2},�,α)∗ Q({1,2,3},�,{1,2},�,β)∗ [
(σ̃ , ι̃, π̃ )

]
,

then Z ∼= σ({1,2}) ∼= σ ′({1,2,3}) ∼= σ̃ ({1,2}) as α({1,2,3}) = {1,2} = β({1,2,3}). Hence
in (18), (Q({1,2,3},�, {1,2},�, α))∗(r) is supported on points [(σ ′, ι′,π ′)] with
σ ′({1,2,3}) ∼= Z, and thus f ∗L r is supported on points [(σ̃ , ι̃, π̃)] with σ̃ ({1,2}) ∼= Z. That
is, f ∗L r lies in V [Z], so V [Z] is closed under ∗L. The proof for ∗R is similar. �

This shows that the big representation CF(M({1,2},�)A) contains many smaller subrep-
resentations V [Z]. In examples, this may be a useful tool for constructing finite-dimensional
representations of interesting infinite-dimensional algebras, such as universal enveloping alge-
bras.

The ideas above extend easily to representations ∗L, ∗R of ˙LCF(ObjA) in Section 4.2 on
˙LCF(M({1,2},�)A), the subspace of f ∈ LCF(M({1,2},�)A) supported on the union of

M({1,2},�, κ)A over finitely many κ : {1,2} → C̄(A). They should also work for the other
contexts for Ringel–Hall algebras referred to in Section 1, such as the finite field approach of
Ringel [23,24], and may yield something new and interesting there.

4.4. Indecomposables and Lie algebras

We now give an analogue of ideas of Ringel [22] and Riedtmann [21], who both define a Lie
algebra structure on spaces of functions on isomorphism classes of indecomposable objects in an
abelian category.

Definition 4.8. Suppose Assumption 3.4 holds. An object 0 �∼= X ∈ A is called decomposable
if X ∼= Y ⊕ Z for 0 �∼= Y,Z ∈ A. Otherwise X is indecomposable. Write CFind(ObjA) for the
subspace of f in CF(ObjA) supported on indecomposables, that is, f ([X]) �= 0 implies 0 �∼= X

is indecomposable.
Decomposability can be characterized in terms of the finite-dimensional K-algebra End(X) =

Hom(X,X): X is decomposable if and only if there exist 0 �= e1, e2 ∈ End(X) with 1 = e1 + e2,
e2

1 = e1, e2
2 = e2 and e1e2 = e2e1 = 0. Then e1, e2 are called orthogonal idempotents. Given such

e1, e2 we can define nonzero objects Y = Im e1 and Z = Im e2 in A, and there exists an isomor-
phism X ∼= Y ⊕ Z identifying e1, e2 with idY , idZ . By choosing a set of primitive orthogonal
idempotents in End(X) one can show that each 0 �∼= X ∈ A may be written X ∼= V1 ⊕ · · · ⊕ Vn

for indecomposable V1, . . . , Vn, unique up to order and isomorphism.
Define a bilinear bracket [ , ] : CF(ObjA) × CF(ObjA) → CF(ObjA) by

[f,g] = f ∗ g − g ∗ f, (20)
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for ∗ defined in (13). Since ∗ is associative by Theorem 4.3, [ , ] satisfies the Jacobi identity, and
makes CF(ObjA) into a Lie algebra over Q.

The following result is related to Riedtmann [21, §2], and [5, Proposition 2.2.8].

Theorem 4.9. In the situation above, CFind(ObjA) is closed under the Lie bracket [ , ], and is a
Lie algebra over Q.

Proof. Let f,g ∈ CFind(ObjA) and Y ∈ A with (f ∗ g)([Y ]) �= 0. By a long but elementary
calculation involving properties of the Euler characteristic, we can show that either

(i) Y is indecomposable;
(ii) Y ∼= X ⊕ Z for X,Z ∈ A indecomposable with X �∼= Z and

(f ∗ g)
([Y ])= (

f
([X])g([Z])+ f

([Z])g([X]))
· χ(Aut(X ⊕ Z)/Aut(X) × Aut(Z)

); or (21)

(iii) Y ∼= X ⊕ X for X ∈ A indecomposable and

(f ∗ g)
([Y ])= f

([X])g([X]) · χ(Aut(X ⊕ X)/Aut(X) × Aut(X)
)
.

Here is a sketch proof. Firstly, to show (i)–(iii) are the only possibilities with (f ∗g)([Y ]) �= 0,
suppose Y has r indecomposable factors, so that rk Aut(Y ) = r , that is, Aut(Y ) has maximal
torus (K×)r . Then (f ∗ g)([Y ]) is an ‘integral’ over subobjects X ⊂ Y of f ([X])g([Y/X]),
which includes a factor χ(Aut(Y )/Aut(X ⊂ Y)). For f ([X])g([Y/X]) �= 0 we must have X,
Y/X indecomposable, and it easily follows that rk Aut(X ⊂ Y) � 2. Now if r � 3 then the action
of the maximal torus of Aut(Y ) on Aut(Y )/Aut(X ⊂ Y) fibres it by tori (K×)k for k � 1, which
forces χ(Aut(Y )/Aut(X ⊂ Y)) = 0. Hence (f ∗ g)([Y ]) = 0 if Y has r � 3 indecomposable
factors.

By the same argument, when Y has 2 indecomposable factors, the only nonzero contributions
to (f ∗ g)([Y ]) come from X ⊂ Y with rk(Aut(X ⊂ Y)) = 2, which happens only when Y ∼=
X ⊕ Y/X. Thus in (ii) the only nonzero contributions to (f ∗ g)([Y ]) are from X ⊂ X ⊕ Z

and Z ⊂ X ⊕ Z, which give the two terms in (21). For (iii) there is only one contribution, from
X ⊂ X ⊕ X. In (ii), (iii) we have (f ∗ g)([Y ]) = (g ∗ f )([Y ]), so that [f,g]([Y ]) = 0 by (20).
Hence the only possibility in which [f,g]([Y ]) �= 0 is (i), when Y is indecomposable. Thus
[f,g] ∈ CFind(ObjA), as we have to prove. �

In the same way we find ˙LCF
ind

(ObjA) is a Lie subalgebra of ˙LCF(ObjA).

4.5. Constructible functions with finite support

Here is some more notation. As functions with finite support are always constructible, we do
not generalize this to ˙LCF(ObjA).

Definition 4.10. Write CFfin(ObjA) for the subspace of f ∈ CF(ObjA) with finite support, that
is, f is nonzero on only finitely many points in ObjA(K). Define CFind

fin (ObjA) = CFind(ObjA)∩
CFfin(ObjA). For each [X] ∈ ObjA(K), write δ[X] :ObjA(K) → {0,1} for the characteristic
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function of [X]. Then the δ[X] form a basis for CFfin(ObjA), and the δ[X] for indecomposable X

form a basis for CFind
fin (ObjA).

We want CFfin(ObjA) to be a subalgebra of CF(ObjA). To prove this we need an extra as-
sumption, which holds in Example 4.23 below.

Assumption 4.11. For all X,Z ∈ A, there are only finitely isomorphism classes of Y ∈ A for
which there exists an exact sequence 0 → X → Y → Z → 0 in A.

If all constructible sets in ObjA are finite then CFfin(ObjA) = CF(ObjA) and CFind
fin (ObjA) =

CFind(ObjA), and Assumption 4.11 holds automatically.

Proposition 4.12. If Assumptions 3.4 and 4.11 hold then CFfin(ObjA) is closed under ∗, and
CFind

fin (ObjA) is closed under [ , ].
Proof. For X,Z ∈A, δ[X] ∗ δ[Z] is supported on the set of [Y ] ∈ ObjA(K) for which there exists
an exact sequence 0 → X → Y → Z → 0. By Assumption 4.11 this set is finite, so δ[X] ∗ δ[Z]
lies in CFfin(ObjA). As the δ[X] form a basis of CFfin(ObjA), it is closed under ∗. �
4.6. Universal enveloping algebras

We study the universal enveloping algebras of CFind(ObjA),CFind
fin (ObjA).

Definition 4.13. Let g be a Lie algebra over Q. The universal enveloping algebra U(g) is the
Q-algebra generated by g with the relations xy − yx = [x, y] for all x, y ∈ g. Multiplication
in U(g) will be written as juxtaposition, (x, y) 
→ xy. Each Lie algebra representation of g ex-
tends uniquely to an algebra representation of U(g), so U(g) is a powerful tool for studying the
representation theory of g. See Humphreys [8] for an introduction to these ideas.

In Theorem 4.9 the embedding of the Lie algebra CFind(ObjA) with bracket [ , ] in the algebra
CF(ObjA) with multiplication ∗ satisfying (20) implies there is a unique Q-algebra homomor-
phism

Φ :U
(
CFind(ObjA)

)→ CF(ObjA) (22)

with Φ(1) = δ[0] and Φ(f1 · · ·fn) = f1 ∗ · · · ∗ fn for f1, . . . , fn ∈ CFind(ObjA). Similarly, in
Proposition 4.12 there is a unique homomorphism

Φfin :U
(
CFind

fin (ObjA)
)→ CFfin(ObjA). (23)

The next two results are similar to Riedtmann [21, §3].

Proposition 4.14. Φ and Φfin above are injective. Hence, the Q-subalgebras of CF(ObjA),
CFfin(ObjA) generated by CFind(ObjA), CFind

fin (ObjA) are isomorphic to U(CFind(ObjA)),
U(CFind

fin (ObjA)) respectively.

Proof. We do the case of Φfin first, so suppose Assumptions 3.4 and 4.11 hold. Let V1,V2 ∈ A
be indecomposable. Applying (i)–(iii) in the proof of Theorem 4.9 to f = δ[V1], g = δ[V2] we
find that δ[V1] ∗ δ[V2] is supported on points [V1 ⊕ V2] and [Y ] for Y ∈ A indecomposable, and
(δ[V1] ∗ δ[V2])([V1 ⊕ V2]) = χ(Aut(V1 ⊕ V2)/Aut(V1) × Aut(V2)). That is, χ(Aut(V1 ⊕ V2)/
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Aut(V1)× Aut(V2)) · δ[V1⊕V2] − δ[V1] ∗ δ[V2] is supported on points [Y ] for indecomposable Y . It
is not difficult to generalize this to show that if V1, . . . , Vm ∈A are indecomposable then

χ
(
Aut(V1 ⊕ · · · ⊕ Vm)/Aut(V1) × · · · × Aut(Vm)

) · δ[V1⊕···⊕Vm] − δ[V1] ∗ δ[V2] ∗ · · · ∗ δ[Vm]
is supported on points [W1 ⊕ · · · ⊕ Wk]
for indecomposable W1, . . . ,Wk ∈ A and 1 � k <m. (24)

Let the V1, . . . , Vm have a equivalence classes under isomorphism with sizes m1, . . . ,ma , so
that m = m1 + · · · + ma . Using facts about the finite-dimensional algebras End(V1 ⊕ · · · ⊕ Vm),
End(V1), . . . ,End(Vm) and the Jacobson radical from Benson [1, §1] we find there is an isomor-
phism of K-varieties

Aut(V1 ⊕ · · · ⊕ Vm)/Aut(V1) × · · · × Aut(Vm) ∼= Kl ×
a∏

i=1

(
GL(mi,K)

/(
K×)mi

)
,

which allows us to compute the Euler characteristic

χ
(
Aut(V1 ⊕ · · · ⊕ Vm)/Aut(V1) × · · · × Aut(Vm)

)=
a∏

i=1

mi !. (25)

To show Φfin is injective, write I = {[X] ∈ ObjA(K): X is indecomposable}, and let � be
any arbitrary total order on I . Then {δ[X]: [X] ∈ I } is a basis for CFind

fin (ObjA), so the Poincaré–
Birkhoff–Witt Theorem [8, Corollary C, p. 92] shows

{1} ∪ {
δ[X1]δ[X2] · · · δ[Xn]: n � 1, [X1], . . . , [Xn] ∈ I, [X1] � · · · � [Xn]

}
(26)

is a basis for U(CFind
fin (ObjA)). Suppose u ∈ U(CFind

fin (ObjA)) is nonzero. If u = c · 1 for
c ∈ Q \ {0} then Φfin(u) = cδ[0] �= 0. Otherwise, there exists a basis element δ[X1]δ[X2] · · · δ[Xn]
from (26) with n greatest such that the coefficient u[X1]···[Xn] of δ[X1]δ[X2] · · · δ[Xn] is nonzero.

We shall evaluate the constructible function Φfin(u) at the point [X1 ⊕ · · · ⊕ Xn]. Let
δ[V1] · · · δ[Vm] be any basis element from (26) with nonzero coefficient in u. Then m � n, by
choice of n. We have

Φfin(δ[V1] · · · δ[Vm])
([X1 ⊕ · · · ⊕ Xn]

)= (δ[V1] ∗ · · · ∗ δ[Vm])
([X1 ⊕ · · · ⊕ Xn]

)
= cδ[V1⊕···⊕Vm]

([X1 ⊕ · · · ⊕ Xn]
)

=
{
c, [V1 ⊕ · · · ⊕ Vm] = [X1 ⊕ · · · ⊕ Xn],
0, [V1 ⊕ · · · ⊕ Vm] �= [X1 ⊕ · · · ⊕ Xn],

where c is the nonzero integer (25) and in the second line we use (24) and m � n to see that
cδ[V1⊕···⊕Vm] − δ[V1] ∗ · · · ∗ δ[Vm] is zero at [X1 ⊕ · · · ⊕ Xn].

As Vi , Xj are indecomposable, [V1 ⊕ · · · ⊕ Vm] = [X1 ⊕ · · · ⊕ Xn] if and only if m = n

and [V1], . . . , [Vm] and [X1], . . . , [Xn] are the same up to a permutation of 1, . . . , n. But by
assumption [V1] � · · · � [Vm] and [X1] � · · · � [Xn] in the total order � on I , so [V1 ⊕ · · ·
⊕ Vm] = [X1 ⊕ · · · ⊕ Xn] only if [Vi] = [Xi] for all i. Therefore Φfin(u)([X1 ⊕ · · · ⊕ Xn]) =
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c u[X1]···[Xn] �= 0, as δ[X1] · · · δ[Xn] is the only basis element making a nonzero contribution. Hence
Φfin(u) �= 0 for all 0 �= u ∈ U(CFind

fin (ObjA)), and Φfin is injective.
Showing Φ is injective uses essentially the same ideas, but is a little more tricky as we cannot

choose a basis for CFind(ObjA) consisting of functions with disjoint support. We leave it as an
exercise for the reader. For the last part, as Φ,Φfin are injective they are isomorphisms with their
images, which are the Q-subalgebras generated by CFind(ObjA),CFind

fin (ObjA). �
We shall show Φfin is an isomorphism. This will enable us to identify the algebra CFfin(ObjA)

in examples.

Proposition 4.15. Let Assumptions 3.4 and 4.11 hold. Then Φfin in (23) is an isomorphism.

Proof. As Φfin is injective by Proposition 4.15, we need only show it is surjective. Suppose by
induction that for some m � 1, ImΦfin contains δ[V1⊕···⊕Vn] whenever 1 � n <m and Vi ∈A are
indecomposable. This is trivial for m = 1. Let V1, . . . , Vm ∈A be indecomposable. Then by (24),
c δ[V1⊕···⊕Vm] − δ[V1] ∗ · · · ∗ δ[Vm] lies in the span of functions δ[W1⊕···⊕Wk] for indecomposable
Wi ∈ A and 1 � k <m, where c is the nonzero integer (25).

By induction δ[W1⊕···⊕Wk] ∈ ImΦfin, so cδ[V1⊕···⊕Vm] − δ[V1] ∗ · · · ∗ δ[Vm] lies in ImΦfin. But
δ[V1] ∗ · · · ∗ δ[Vm] = Φfin(δ[V1] · · · δ[Vm]) ∈ ImΦfin, so δ[V1⊕···⊕Vm] lies in ImΦfin. Thus the induc-
tive hypothesis holds for m + 1, and by induction δ[V1⊕···⊕Vn] ∈ ImΦfin whenever n � 1 and
Vi ∈A are indecomposable.

But each 0 �∼= X ∈ A may be written X ∼= V1 ⊕ · · · ⊕ Vn for Vi ∈ A indecomposable, by
Definition 4.8, so δ[X] ∈ ImΦfin from above. Also δ[0] = Φfin(1) ∈ ImΦfin, so δ[X] ∈ ImΦfin for
all X ∈ A. As the δ[X] are a basis for CFfin(ObjA), this proves ImΦfin = CFfin(ObjA), and Φfin
is surjective. �

We shall see in Section 4.7 that with extra structures on CFfin(ObjA), Φfin is actually an
isomorphism of Q-bialgebras and of Hopf algebras.

4.7. Comultiplication and bialgebras

Next we define a cocommutative comultiplication on the Q-algebra CFfin(ObjA), making it
into a bialgebra. Our treatment is based on Ringel [25], who defines a similar comultiplication on
degenerate Ringel–Hall algebras at q = 1. For an introduction to bialgebras, see Joseph [9, §1].

Definition 4.16. Let Assumptions 3.4 and 4.11 hold, so that CFfin(ObjA) is a Q-algebra by
Proposition 4.12. Let

Ψ : CFfin(ObjA) ⊗ CFfin(ObjA) → CFfin(ObjA × ObjA) (27)

be the unique linear map with Ψ (f ⊗ g) = f ⊗ g for f,g ∈ CFfin(ObjA), in the notation of
Definition 4.1. Since δ([X],[Y ]) for X,Y ∈ A form a basis for CFfin(ObjA ×ObjA) and Ψ (δ[X] ⊗
δ[Y ]) = δ[X] ⊗ δ[Y ] = δ([X],[Y ]), we see that Ψ is an isomorphism of Q-vector spaces.

For I any finite set, let • be the partial order on I with i • j if and only if i = j . Consider the
diagram of 1-morphisms

ObjA M
({1,2},•)Aσ ({1,2}) σ ({1})×σ ({2})

ObjA × ObjA.
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By [12, Proposition 7.9], σ ({1}) × σ ({2}) is a 1-isomorphism, and so is representable. Now
σ ({1,2})∗ ◦ (σ ({1})×σ ({2}))−1∗ : (ObjA×ObjA)(K) → ObjA(K) maps ([Y ], [Z]) 
→ [Y ⊕Z].
Since for any X ∈A there are only finitely many pairs Y,Z ∈ A up to isomorphism with Y ⊕Z ∼=
X, and (σ ({1}) × σ ({2}))∗ is a bijection, we see that σ ({1,2})∗ takes only finitely many points
to each point in ObjA(K). Thus the following maps are well defined:

CFfin(ObjA)
(σ ({1,2}))∗

CFfin
(
M
({1,2},•)A) CFstk(σ ({1})×σ ({2}))

CFfin(ObjA × ObjA).

As Ψ is an isomorphism Ψ −1 exists, so we may define the comultiplication

Δ : CFfin(ObjA) → CFfin(ObjA) ⊗ CFfin(ObjA) by

Δ = Ψ −1 ◦ CFstk(σ ({1})× σ
({2})) ◦ (σ ({1,2}))∗. (28)

Define the counit ε : CFfin(ObjA) → Q by ε :f 
→ f ([0]).

Theorem 4.17. Let Assumptions 3.4 and 4.11 hold. Then CFfin(ObjA) with ∗,Δ, δ[0], ε is a
cocommutative bialgebra.

Proof. For the axioms of a bialgebra, see Joseph [9, §1.1]. First we show CFfin(ObjA), Δ, ε

form a cocommutative coalgebra. As ({1,2},•) is preserved by exchanging 1, 2, Eq. (28) is
unchanged by exchanging the factors in CFfin(ObjA) ⊗ CFfin(ObjA), so Δ is cocommutative.
To show Δ is coassociative we must show the following commutes:

CFfin(ObjA)
Δ

Δ

CFfin(ObjA) ⊗ CFfin(ObjA)

Δ⊗id

CFfin(ObjA) ⊗ CFfin(ObjA)
id⊗Δ

CFfin(ObjA) ⊗ CFfin(ObjA) ⊗ CFfin(ObjA).

Using [12, Proposition 7.9] and the fact Ψ is an isomorphism, this follows provided

CFfin(ObjA)
σ ({1,2})∗

σ ({1,2})∗

CFfin(M({1,2},•)A)

Q({1,2,3},•,{1,2},•,α)∗

CFfin(M({1,2},•)A)
Q({1,2,3},•,{1,2},•,β)∗

CFfin(M({1,2,3},•)A)

commutes, where α,β are as in (17). But this follows from (3) as σ ({1,2})◦Q({1,2,3},•, {1,2},
•, α) = σ ({1,2}) ◦ Q({1,2,3},•, {1,2},•, β).

Since CFfin(ObjA) is cocommutative, to show ε is a counit we need

CFfin(ObjA)
f 
→1⊗f

Δ

CFfin(ObjA) ⊗ CFfin(ObjA)
ε⊗id

Q ⊗ CFfin(ObjA)
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to commute. This holds if (Δf )([0], [X]) = f ([X]) for all f ∈ CFfin(ObjA) and [X] ∈
ObjA(K). This is clear from (28), as there is just one point [(σ, ι,π)] ∈ M({1,2},•)A with
σ({1}) ∼= 0 and σ({2}) ∼= X, and it has σ({1,2}) ∼= X.

Next we prove Δ is multiplicative, that is, Δ is an algebra homomorphism from CFfin(ObjA)

with multiplication ∗ to CFfin(ObjA) ⊗ CFfin(ObjA) with multiplication ∗ ⊗ ∗. Define I =
{a, b, c, d} and a partial order � on I by a � b, c � d , and i � i for i ∈ I . Define maps
μ,ν : I → {1,2} by

μ(a) = μ(b) = 1, μ(c) = μ(d) = 2, ν(a) = ν(c) = 1, ν(b) = ν(d) = 2.

Then using [12, Proposition 7.9] and the fact that Ψ is an isomorphism, calculation shows Δ is
multiplicative provided the unbroken arrows ‘→’ commute in

CFfin(ObjA × ObjA)
(σ ({a,c})×σ ({b,d}))∗

(σ ({1})×σ ({2}))∗

CFfin(M({a, c},•)A × M({b, d},•)A)

(S(I,�,{a,c})×S(I,�,{b,d}))∗

CFfin(M({1,2},�)A)
Q(I,�,{1,2},�,ν)∗

π∗
2CFstk(σ ({1,2}))

CF or CFfin(M(I,�)A)

CFstk(Q(I,�,{1,2},�,μ))CF(F)

CFstk(π1)

φ∗

CFfin(ObjA)
(σ ({1,2}))∗

CF or CFfin(M({1,2},•)A).

(29)

Here we write ‘CF or CFfin(· · ·)’ as the arrows ‘→’ map to CFfin(· · ·), but the arrows ‘���’
defined below may map to CF(· · ·).

The top square commutes by (3) as the corresponding 1-morphisms do. The bottom square is
more tricky, since although in

M({1,2},�)A

σ ({1,2})

M(I,�)A

Q(I,�,{1,2},�,μ)

Q(I,�,{1,2},�,ν)
φ

F
π2

π1

ObjA M({1,2},•)Aσ ({1,2})

(30)

the square of 1-morphisms ‘→’ commutes, it is not a Cartesian square, and so Theorem 2.5 does
not apply.

To get round this, define F to be the fibre product stack of the bottom left corner of (30).
Since the outer square of (30) commutes, there exist 1-morphisms π1,π2, φ in (30) unique up to
2-isomorphism, such that (30) commutes, and the bottom left quadrilateral is a Cartesian square.
We can then add maps ‘���’ in (29). The bottom left quadrilateral of (29) commutes by (4), and
the central triangle by (3). It remains only to show the right-hand triangle commutes.

We may justify this as follows. Points of F(K) may be naturally identified with isomorphism
classes of quadruples (X,S,T ,U), where X ∈ A and S,T ,U ⊂ X are subobjects of X with
S, . . . ,X/U ∈ A, such that X = S ⊕ T . An isomorphism φ : (X,S,T ,U) → (X′, S′, T ′,U ′) is
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an isomorphism φ :X → X′ in A such that φ(S) = S′, φ(T ) = T ′, φ(U) = U ′. Then π1,π2 act
on F(K) by

(π1)∗ :
[
(X,S,T ,U)

] 
→ [
(X,S,T )

]
and (π2)∗ :

[
(X,S,T ,U)

] 
→ [
(X,U)

]
,

where we identify [(σ, ι,π)] ∈M({1,2},•)A and [(σ ′, ι′,π ′)] ∈ M({1,2},�)A with

[(
σ
({1,2}), ι({1}, {1,2}) :σ

({1})→ σ
({1,2}), ι({2}, {1,2}) :σ

({2})→ σ
({1,2}))], and[(

σ ′({1,2}), ι′({1}, {1,2}) :σ ′({1})→ σ ′({1,2}))] respectively.

There is a closed substack G of F such that φ :M(I,�)A → G is a 1-isomorphism. A point
[(X,S,T ,U)] ∈ F(K) lies in G(K) if and only if U = (S∩U)⊕ (T ∩U). Here, since X = S⊕T

we have (S ∩ U) ⊕ (T ∩ U) ⊂ U ⊂ X, but it can happen that (S ∩ U) ⊕ (T ∩ U) �= U . To
understand this, consider the case in which S,T ,U are vector subspaces of a vector space X.

Write CF(G), CF(F \ G) for the subspaces of CF(F) supported on G(K),F(K) \ G(K) re-
spectively. Then CF(F) = CF(G) ⊕ CF(F \ G), so it suffices to show the two triangles

CF(M(I,�)A)

CFstk(Q(I,�,{1,2},�,μ))

CF(M(I,�)A)

CFstk(Q(I,�,{1,2},�,μ))CF(G)

CFstk(π1)

φ∗

CF(F \ G)

CFstk(π1)

φ∗

CF(M({1,2},•)A) CF(M({1,2},•)A)

(31)

commute. As φ :M(I,�)A → G is a 1-isomorphism we have φ∗ = CFstk(φ−1) on CF(G), so
the left triangle commutes by (2).

In the right triangle, φ∗ = 0 as each f ∈ CF(F \ G) is zero on G(K) = φ∗(M(I,�)A). We
shall show CFstk(π1) = 0 too. Let [(X,S,T ,U)] ∈ F(K)\G(K), so that (π1)∗ : [(X,S,T ,U)] 
→
[(X,S,T )]. We have stabilizer groups

IsoK

([
(X,S,T ,U)

])= Aut(X,S,T ,U) and IsoK

([
(X,S,T )

])= Aut(X,S,T )

in Aut(X). Thus Definition 2.4 yields

mπ1

([
(X,S,T ,U)

])= χ
(
Aut(X,S,T )/Aut(X,S,T ,U)

)
. (32)

As X = S ⊕ T there is a subgroup {idS +α idT : α ∈ K \ {0}} ∼= K× in the centre of
Aut(X,S,T ). Since U �= (S∩U)⊕(T ∩U), it is easy to see this group intersects Aut(X,S,T ,U)

in the identity. Thus K× acts freely on the left on Aut(X,S,T )/Aut(X,S,T ,U), fibring it by K×
orbits. But χ(K×) = 0, so properties of χ show that mπ1([(X,S,T ,U)]) = 0 in (32). Defini-
tion 2.4 then shows that CFstk(π1)f = 0 for all f ∈ CF(F \ G). Hence the right triangle in (31)
commutes, and thus (29) commutes, and Δ is multiplicative.

By Proposition 4.12, to show CFfin(ObjA) is a bialgebra it remains only to verify some com-
patibilities [9, §1.1.3] between the unit δ[0] and counit ε, which follow from the easy identities
ε(δ[0]) = 1, Δδ[0] = δ[0] ⊗ δ[0] and (f ∗ g)([0]) = f ([0])g([0]) for all f,g ∈ CFfin(ObjA). This
completes the proof. �
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We can determine Δ,ε on the subspace CFind
fin (ObjA).

Lemma 4.18. If f ∈ CFind
fin (ObjA) then Δf = f ⊗ δ[0] + δ[0] ⊗ f and ε(f ) = 0.

Proof. If X ∈ A is indecomposable then σ ({1,2})∗([X]) ⊆ M({1,2},•)A is two points
[(σ, ι,π)], [(σ ′, ι′,π ′)], where σ({1}) = σ({1,2}) = X, σ({2}) = 0 and σ ′({1}) = 0, σ ′({2}) =
σ ′({1,2}) = X. Thus Δδ[X] = δ[X] ⊗ δ[0] + δ[0] ⊗ δ[X] by (28), proving the first equation as such
δ[X] form a basis for CFind

fin (ObjA). Also ε(f ) = f ([0]) = 0 as f is supported on [X] for X

indecomposable. �
Let g be a Lie algebra. Then as in Joseph [9, §1.2.6], the universal enveloping algebra U(g) has

the structure of a bialgebra with comultiplication Δ and counit ε satisfying Δx = 1 ⊗ x + x ⊗ 1,
ε(x) = 0 for all x ∈ g ⊂ U(g). Since g generates U(g) as an algebra, Δ,ε are determined on the
whole of U(g) by their values on g. So we deduce:

Corollary 4.19. In Proposition 4.15, Φfin is an isomorphism of Q-bialgebras.

When we try to make CF(ObjA) into a bialgebra in the same way, without assuming finite
support, we run into the following problem: if we use spaces CF(· · ·) rather than CFfin(· · ·)
in (27) then Ψ is injective, but generally not surjective. Thus Ψ−1 does not exist, and Δ in (28)
is not well defined.

There are two natural solutions to this. The first is to omit Ψ −1 in (28), so Δ maps
CF(ObjA) → CF(ObjA × ObjA), where we regard CF(ObjA × ObjA) as a topological com-
pletion of CF(ObjA) ⊗ CF(ObjA). Then the proof of Theorem 4.17 works with few changes,
but what we get is not strictly a bialgebra.

The second is to restrict to a subalgebra H of CF(ObjA) such that (28) yields a well-defined
comultiplication Δ :H →H⊗H. That is, as Ψ is injective, Ψ −1 is well defined on ImΨ , so (28)
makes sense if CFstk(σ ({1})× σ ({2})) ◦ (σ ({1,2}))∗ maps H → ImΨ . We take this approach in
our next theorem.

Theorem 4.20. Let Assumption 3.4 hold, L ⊆ CFind(ObjA) be a Lie subalgebra, and HL the
subalgebra of CF(ObjA) generated by L. In particular, L can be the Lie subalgebra generated
by functions supported on points [X] for X ∈ A simple, and then HL = C, the composition
algebra of Section 4.1.

Then (28) yields a well-defined comultiplication Δ :HL →HL ⊗HL, where

Ψ : CF(ObjA) ⊗ CF(ObjA) → CF(ObjA × ObjA) (33)

is injective and Ψ−1 defined on ImΨ , and ε :f 
→ f ([0]) defines a counit ε :HL → Q, which
make HL into a cocommutative bialgebra isomorphic to U(L).

Proof. First we show Δ is well defined. Changing our point of view, omit Ψ −1 from (28) so
that Δ maps CF(ObjA) → CF(ObjA × ObjA) and is well defined, and regard Ψ in (33) as an
identification, so that CF(ObjA)⊗CF(ObjA) becomes a vector subspace of CF(ObjA×ObjA).
Then we must prove that

Δ(HL) ⊆ HL ⊗HL ⊆ CF(ObjA) ⊗ CF(ObjA) ⊆ CF(ObjA × ObjA). (34)

The proof of Theorem 4.17 still shows that Δ is multiplicative with respect to the natural
product on CF(ObjA ×ObjA), which is essentially the right-hand column of (29). Furthermore,
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the subspaces HL⊗HL and CF(ObjA)⊗CF(ObjA) are closed under this product, which equals
∗ ⊗ ∗ upon them. Let f1, . . . , fn ∈ L. The proof of Lemma 4.18 shows that Δfi = fi ⊗ δ[0] +
δ[0] ⊗ fi in HL ⊗HL, so by multiplicativity of Δ we have

Δ(f1 ∗ · · · ∗ fn) = (f1 ⊗ δ[0] + δ[0] ⊗ f1)(∗ ⊗ ∗) · · · (∗ ⊗ ∗)(fn ⊗ δ[0] + δ[0] ⊗ fn).

Thus Δ(f1 ∗ · · · ∗ fn) lies in HL ⊗ HL. As HL is spanned by such f1 ∗ · · · ∗ fn and
δ[0], and Δδ[0] = δ[0] ⊗ δ[0] ∈ HL ⊗ HL as in Theorem 4.17, we have proved (34), and
Δ :HL →HL ⊗HL is well defined. The proof of Theorem 4.17 now shows HL is a cocommu-
tative bialgebra. Finally, Proposition 4.14 shows that Φ in (22) restricts to an injective morphism
U(L) → CF(ObjA), which has image HL. Hence HL ∼= U(L) as an algebra, and the isomor-
phism of bialgebras follows as in Corollary 4.19. �

As in [9, §1.1.7], a Hopf algebra is a bialgebra A equipped with an antipode S :A → A sat-
isfying certain conditions. If a bialgebra A admits an antipode S, then S is unique. Now for g a
Lie algebra, U(g) is actually a Hopf algebra [9, §1.2.6]. Therefore in the situations of Proposi-
tion 4.15 and Theorem 4.20, there must exist unique antipodes S : CFfin(ObjA) → CFfin(ObjA)

and S :HL → HL making the bialgebras into Hopf algebras.
However, there does not appear to be a simple formula for S in terms of constructible func-

tions. (The most obvious answer, that (Sf )([X]) = (−1)kf ([X]) if X ∈A has k indecomposable
factors, does not work.) So we shall not try to determine the antipodes S.

4.8. Other algebraic operations from finite posets

We define a family of multilinear operations P(I,�) on CF(ObjA).

Definition 4.21. Let Assumption 3.4 hold and (I,�) be a finite poset. Using

∏
i∈I ObjA M(I,�)A

∏
i∈I σ ({i}) σ (I )

ObjA,

define a multilinear operation P(I,�) :
∏

i∈I CF(ObjA) → CF(ObjA) by

P(I,�)(fi : i ∈ I ) = CFstk(σ (I )
)[∏

i∈I

σ
({i})∗(fi)

]
,

which exists as σ (I ) is representable and
∏

i∈I σ ({i}) is of finite type by Theorem 3.6.

This generalizes Definition 4.1, as P({1,2},�)(f1, f2) = f1 ∗ f2. In this notation, Theorem 4.3
shows ∗ is associative by proving that

P({1,2},�)

(
P({1,2},�)(f1, f2), f3

)= P({1,2,3},�)(f1, f2, f3)

= P({1,2},�)

(
f1,P({1,2},�)(f2, f3)

)
. (35)

Here is a generalization, which shows that if we substitute one operation P(J,�) into another
P(K,�), we get a third P(I,�). It is a constructible functions version of the notion [12, Defini-
tion 5.7] of substitution of configurations.
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Theorem 4.22. Let Assumption 3.4 hold, (J,�), (K,�) be nonempty finite posets with
J ∩ K = ∅, and l ∈ K . Set I = J ∪ (K \ {l}), and define � on I by

i � j for i, j ∈ I if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i � j, i, j ∈ J ,

i � j, i, j ∈ K \ {l},
l � j, i ∈ J, j ∈ K \ {l},
i � l, i ∈ K \ {l}, j ∈ J .

Let fj : j ∈ J and gk: k ∈ K \ {l} lie in CF(ObjA). Then

P(I,�)

(
fj : j ∈ J, gk: k ∈ K \ {l})

= P(K,�)

(
P(J,�)(fj : j ∈ J )l, gk: k ∈ K \ {l}). (36)

Proof. Define φ : I → K by φ(i) = l if i ∈ J , and φ(i) = i if i ∈ K \ {l}. Consider the commu-
tative diagram of 1-morphisms, and the corresponding diagram of pullbacks and pushforwards:

∏
i∈I ObjA

M(J,�)A ×∏
k∈I\J ObjA

(
∏

j∈J σ ({j}))×∏
k∈I\J idObjA

σ (J )×∏k∈I\J idObjA

M(I,�)A

∏
i∈I σ ({i})

S(I,�,J )×∏k∈I\J σ ({k})

Q(I,�,K,�,φ)
σ (I )

ObjA ×∏
k∈I\J ObjA M(K,�)A

σ ({l})×∏k∈I\J σ ({k}) σ (K)
ObjA,

(37)

CF(
∏

i∈I ObjA)

((
∏

j∈J σ ({j}))×∏
k∈I\J idObjA )∗

(
∏

i∈I σ ({i}))∗

CF(M(J,�)A ×∏
k∈I\J ObjA)

CFstk(σ (J )×∏k∈I\J idObjA )

(S(I,�,J )×∏k∈I\J σ ({k}))∗
CF(M(I,�)A)

CFstk(Q(I,�,K,�,φ))

CFstk(σ (I ))

CF(ObjA ×∏
k∈I\J ObjA)

(σ ({l})×∏k∈I\J σ ({k}))∗
CF(M(K,�)A)

CFstk(σ (K))

CF(ObjA).

(38)
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Calculation shows that (36) holds provided (38) commutes. The proof of this is similar to that
for (15) in Theorem 4.3. By [12, Theorem 7.10]

M(J,�)A

σ (J )

M(I,�)A
S(I,�,J )

Q(I,�,K,�,φ)

ObjA M(K,�)A
σ ({l})

is a Cartesian square, so the square in (37) is Cartesian, and the square in (38) commutes by (4).
We leave the details to the reader. �

Applying the theorem and induction shows that any multilinear operation on CF(ObjA) ob-
tained by combining operations P(J,�) is of the form P(I,�) for some poset (I,�). For instance,
the posets ({1,2},•), ({1,2,3},•) of Definition 4.16 and Theorem 4.22 give an analogue of (35):

P({1,2},•)
(
P({1,2},•)(f1, f2), f3

)= P({1,2,3},•)(f1, f2, f3)

= P({1,2},•)
(
f1,P({1,2},•)(f2, f3)

)
.

This shows that P({1,2},•) gives an associative, commutative multiplication on CF(ObjA), differ-
ent from ∗.

Often the operations P(I,�) map
∏

i∈I CFfin(ObjA) → CFfin(ObjA), which holds for (I,•),
for example. Now Theorem 4.22 implies that Ringel–Hall algebras H admit many extra algebraic
operations P(I,�), which generalize multiplication ∗, and satisfy many compatibilities. It is an
interesting question whether these operations may be useful tools in studying algebras which
occur as Ringel–Hall algebras, such as certain U(g). See Remark 4.24 below on this.

Combining the ideas of Definitions 4.4 and 4.21 we may also define P(I,�) :
∏

i∈I
˙LCF(ObjA)

→ ˙LCF(ObjA), satisfying the analogue of Theorem 4.22.

4.9. Examples from quivers

Let Γ be a Dynkin diagram which is a disjoint union of diagrams of type A, D or E, and
g be the corresponding a finite-dimensional semisimple Lie algebra over Q. Then we have a
decomposition g = n+ ⊕h⊕n−, where h is a Cartan subalgebra, and the nilpotent Lie subalgebra
n+ is a direct sum of one-dimensional subspaces indexed by the set Φ+ of positive roots α of g.

Gabriel showed that if Q = (Q0,Q1, b, e) is a quiver with underlying graph Γ , then isomor-
phism classes [V ] of indecomposable representations V of Q are in 1–1 correspondence with
α ∈ Φ+. Later, Ringel [23] used Ringel–Hall algebras over finite fields to recover the Lie bracket
on n+ on the vector space spanned by such [V ]. Here is a constructible functions version of this,
adapted from Riedtmann [21] and Frenkel et al. [5, §4].

Example 4.23. Let g = n+ ⊕ h ⊕ n−, Γ and Q be as above. Set A = mod-KQ, the abelian cate-
gory of representations of Q over K, and define K(A) = ZQ0,FA as in [12, Example 10.5]. Then
Assumption 3.4 holds by [12, §10]. Also Gabriel’s result implies all constructible sets in ObjA
are finite, so CF(Objmod-KQ) = CFfin(Objmod-KQ) and Assumption 4.11 holds automatically.

Now Riedtmann’s Lie algebra L(C �Q) ⊗Z Q of [21, §2] coincides exactly with the Lie al-
gebra CFind(Objmod-KQ) = CFind(Objmod-KQ) defined in Section 4.4 above when K = C. So
fin
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[21, Proposition, p. 542] gives an isomorphism of Lie algebras

CFind(Objmod-KQ) = CFind
fin (Objmod-KQ) ∼= n+.

Proposition 4.15 and Corollary 4.19 thus yield an isomorphism of bialgebras

CF(Objmod-KQ) = CFfin(Objmod-KQ) ∼= U(n+). (39)

Remark 4.24. We defined P(I,�) :
∏

i∈I CF(Objmod-KQ) → CF(Objmod-KQ) for each finite poset
(I,�) in Section 4.8, which by (39) yield operations P(I,�) on U(n+) generalizing multiplica-
tion, and satisfying various compatibilities. The author does not know if these P(I,�) on U(n+)

are good for anything.
However, we can say one thing: in general they depend on the choice of orientation on Γ used

to make Q. For example, if Γ is A2:
i•− j•, then calculation shows that the two possible choices

i• → j• and
i• ← j• for Q give different answers for P({1,2},•) on U(n+). So the P(I,�) on U(n+)

do not seem to be canonical.

We generalize Example 4.23 to affine Lie algebras and Kac–Moody Lie algebras, based on
Lusztig [19, §12] and Frenkel et al. [5, §5.6].

Example 4.25. Let Γ be a finite undirected graph with vertex set Q0 and no edge joining a vertex
with itself, and let g be the corresponding Kac–Moody algebra over Q, as in Kac [15]. Then g

is a Q-Lie algebra with generators ei , fi , hi for i ∈ Q0, which satisfy certain relations. It has
a decomposition g = n+ ⊕ h ⊕ n−, where n+, n−, h are the Lie subalgebras of g generated by
the ei , the fi and the hi respectively, and h is abelian, the Cartan subalgebra.

Let Q be a quiver with underlying graph Γ , and without oriented cycles. Take A = mod-KQ,
and define K(A) = ZQ0,FA as in [12, Example 10.5]. Then Assumption 3.4 holds by [12,
§10], but in general Assumption 4.11 does not. There is up to isomorphism one simple object
Vi ∈ mod-KQ for each i ∈ Q0. Write L for the Lie subalgebra of CF(Objmod-KQ) generated by
the isomorphism classes of simples δ[Vi ] for i ∈ Q0. Then the subalgebra of CF(Objmod-KQ) gen-
erated by L is the composition algebra C, and there is an isomorphism of bialgebras U(L) ∼= C
by Theorem 4.20.

There are now natural identifications between the algebras CF(Objmod-KQ) above and M(Ω)

in Lusztig [19, §10.19], and between their complexification and L(Q) in Frenkel et al. [5, §2.2];
and between the algebras C above and M0(Ω) in Lusztig [19, §10.19]; and between the Lie
algebras L ⊗Q C above and n∗(Q) in Frenkel et al. [5, §2.2.5]; except that Lusztig uses the
opposite order of multiplication to us, as in Remark 4.2.

From Lusztig [19, Proposition 10.20] (which he attributes to Schofield), there is a unique
algebra isomorphism C ∼= U(n+) identifying the generators δ[Vi ] of C with the generators ei of
n+ for i ∈ Q0. This implies an isomorphism of the Lie subalgebras L and n+ of C and U(n+).

When Γ is an affine Dynkin diagram, this isomorphism L ∼= n+ also follows from Frenkel
et al. [5, Corollary 5.6.27]. They also describe [5, §5.6] the isomorphism classes of inde-
composables in mod-KQ, and [5, Corollary 5.6.30] they define L explicitly as a subspace
of CFind

fin (Objmod-KQ).

We return to these examples in Section 5.4.
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5. Stack algebras

We now develop analogues of the Ringel–Hall algebras CF(ObjA) of Section 4 in which
we replace constructible functions by stack functions, as in Sections 2.3 and 2.5. We call the
corresponding algebras stack algebras. Throughout this section K is an algebraically closed field
of arbitrary characteristic, except when we specify characteristic zero for results comparing
stack and constructible functions.

5.1. Different kinds of stack algebras

Following Definition 4.1, we define a multiplication ∗ on SF(ObjA).

Definition 5.1. Suppose Assumption 3.4 holds. Using the 1-morphism diagram

ObjA × ObjA M
({1,2},�)Aσ ({1})×σ ({2}) σ ({1,2})

ObjA,

define a bilinear operation ∗ : SF(ObjA) × SF(ObjA) → SF(ObjA) by

f ∗ g = σ
({1,2})∗[(σ ({1})× σ

({2}))∗(f ⊗ g)
]
, (40)

using operations φ∗, φ∗, ⊗ from Section 2.3. Here (σ ({1})×σ ({2}))∗ is well defined as σ ({1})×
σ ({2}) is of finite type by Theorem 3.6(c). As σ ({1,2}) is representable by Theorem 3.6(b), the
restriction maps ∗ : SF(ObjA) × SF(ObjA) → SF(ObjA), that is, SF(ObjA) is closed under ∗.

If Assumption 2.11 holds, (40) defines multiplications ∗ on SF(ObjA,Υ,Λ), S̄F,
S̄F(ObjA,Υ,Λ), S̄F, S̄F(ObjA,Υ,Λ◦) and S̄F, S̄F(ObjA,Θ,Ω). Write δ̄[0] ∈ SF(ObjA), . . . ,

S̄F(ObjA,Θ,Ω) for δ̄C in Definition 2.7 with C = {[0]}. Then δ̄[0] = [(Spec K,0)], where
0 : SpecK → ObjA corresponds to 0 ∈ A.

Here is the analogue of Theorem 4.3.

Theorem 5.2. If Assumptions 2.11, 3.4 hold SF,SF(ObjA),SF(ObjA,Υ,Λ), . . . , S̄F(ObjA,

Θ,Ω) are algebras with identity δ̄[0] and multiplication ∗. Also

π stk
ObjA : SF(ObjA) → CF(ObjA), π̄ stk

ObjA : S̄F
(
ObjA,Υ,Λ◦)→ CF(ObjA), and

π̄ stk
ObjA : S̄F(ObjA,Θ,Ω) → CF(ObjA) (41)

are morphisms of Q-algebras when charK = 0 and π stk
ObjA

, π̄ stk
ObjA

are defined.

Proof. To show ∗ is associative on SF(ObjA) we follow the proof of Theorem 4.3 replacing
CF(· · ·) by SF(· · ·), using Theorem 2.9 to show the analogue of (15) commutes. To show δ̄[0] is
an identity on SF(ObjA) we can copy Theorem 4.3, or note that δ̄[0] = [(Spec K,0)] and show
directly that [(Spec K,0)] ∗ [(R, ρ)] = [(R, ρ)] by constructing an explicit 1-isomorphism

i :R → (Spec K × R)0×ρ,ObjA×ObjA,σ ({1})×σ ({2})M
({1,2},�)
A
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with σ ({1,2}) ◦ πM({1,2},�)A ◦ i 2-isomorphic to ρ. Thus SF(ObjA) is a Q-algebra. Also
SF(ObjA) is a Q-subalgebra as it is closed under ∗. The arguments for SF(ObjA,Υ,Λ), . . . ,

S̄F(ObjA,Θ,Ω) are the same.
To prove (41) are Q-algebra morphisms, note that δ̄[0] = ιObjA(δ[0]) and π stk

ObjA
◦ ιObjA is

the identity by Definition 2.7, so

π stk
ObjA(δ̄[0]) = δ[0].

For the π stk
ObjA

case,

π stk
ObjA(f ∗ g) = π stk

ObjA(f ) ∗ π stk
ObjA(g)

follows from Eqs. (13), (40) and Theorem 2.10(b),(c). The π̄ stk
ObjA

cases are the same. �
It is easy to show by example that ιObjA : CF(ObjA) → SF(ObjA) is not in general an algebra

morphism, as the ιF do not commute with pushforwards. We will need the analogues of the P(I,�)

of Section 4.8 in Section 5.2, so we define them now.

Definition 5.3. Let Assumptions 2.11 and 3.4 hold and (I,�) be a finite poset. Define a mul-
tilinear operation P(I,�) :

∏
i∈I SF(ObjA) → SF(ObjA) on SF(ObjA) (or on SF(ObjA,Υ,Λ),

S̄F(ObjA,Υ,Λ), S̄F(ObjA,Υ,Λ◦), or S̄F(ObjA,Θ,Ω)) by

P(I,�)(fi : i ∈ I ) = σ (I )∗
[(∏

i∈I

σ
({i}))∗(⊗

i∈I

fi

)]
, (42)

using 1-morphisms from M(I,�)A. Since σ (I ) is representable, SF(ObjA) and S̄F(ObjA,∗,∗)
are closed under P(I,�). Also P({1,2},�) is ∗ in Definition 5.1.

Here is the analogue of Theorem 4.22, proved as for Theorem 5.2.

Theorem 5.4. Let Assumptions 2.11 and 3.4 hold and (J,�), (K,�), l and (I,�) be as in
Theorem 4.22. Let fj : j ∈ J and gk: k ∈ K \ {l} lie in SF(ObjA) or SF, S̄F(ObjA,∗,∗). Then
(36) holds in the same space.

Now apart from SF(ObjA,Υ,Λ) these algebras are all inconveniently large for our later work,
and we will find it useful to define subalgebras SFal(ObjA), S̄Fal(ObjA,∗,∗) using the algebra
structure on stabilizer groups in ObjA.

Definition 5.5. Suppose Assumptions 2.11 and 3.4 hold, and [(R, ρ)] be a generator of
SF(ObjA). Let r ∈ R(K) with ρ∗(r) = [X] ∈ ObjA(K), for X ∈ A. Then ρ induces a mor-
phism of stabilizer K-groups ρ∗ : IsoK(r) → IsoK([X]) ∼= Aut(X). As ρ is representable this is
injective, and induces an isomorphism of IsoK(r) with a K-subgroup of Aut(X).

Now Aut(X) = End(X)× is the K-group of invertible elements in a finite-dimensional K-
algebra End(X) = Hom(X,X). We say the [(R, ρ)] has algebra stabilizers if whenever r ∈
R(K) with ρ∗(r) = [X], the K-subgroup ρ∗(IsoK(r)) in Aut(X) is the K-group A× of invert-
ible elements in a K-subalgebra A in End(X). (Here when X ∼= 0 we allow End(X) = {0} as a
K-algebra.)
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Write SFal(ObjA), S̄Fal(ObjA,Υ,Λ), S̄Fal(ObjA,Υ,Λ◦), S̄Fal(ObjA,Θ,Ω) for the sub-
spaces of SF(ObjA), S̄F(ObjA,Υ,Λ), S̄F(ObjA,Υ,Λ◦), S̄F(ObjA,Θ,Ω) respectively spanned
over Q,Λ,Λ◦ or Ω by [(R, ρ)] with algebra stabilizers.

Remark 5.6. Definition 5.5 is an approximation to a more natural definition, which uses a more
sophisticated kind of stack. For simplicity, and to be able to use [10,11], we have been working
wherever possible with stacks in groupoids. But there exist natural definitions of (Artin) K-stacks
in exact categories and in linear categories, and ObjA can be regarded as both. It would be more
natural to define SFal(ObjA) using generators [(R, ρ)] where R is an Artin K-stack in exact (or
linear) categories, and ρ :R → ObjA a morphism of such stacks. Then the ‘algebra stabilizers’
condition above would be automatic.

One of the relations [11, Definition 5.17(iii)] defining S̄F(ObjA,∗,∗) mixes [(R, ρ)] with and
without algebra stabilizers, so S̄F(ObjA,∗,∗) can contain expressions

∑
i ci[(Ri , ρi)] in which

[(Ri , ρi)] does not have algebra stabilizers. Propositions 5.8 and 5.9 below are tools for getting
round the problems this causes. Also, ιObjA in Definition 2.7 maps CF(ObjA) → SFal(ObjA),
as it involves [(R, ρ)] with ρ an inclusion of substacks, so the condition of Definition 5.5 holds
with A = End(X).

Proposition 5.7. SFal(ObjA) and S̄Fal(ObjA,∗,∗) are closed under ∗ and contain δ̄[0], and so
are subalgebras. They are also closed under the P(I,�).

Proof. When [(σ, ι,π)] ∈M({1,2},�)A the stabilizer group maps

σ
({1,2})∗ : Aut

(
(σ, ι,π)

)→ Aut
(
σ
({1,2})),(

σ
({1})× σ

({2}))∗ : Aut
(
(σ, ι,π)

)→ Aut
(
σ
({1}))× Aut

(
σ
({2}))

are the restrictions to K-groups of invertible elements of K-algebra morphisms End((σ, ι,π)) →
End(σ ({1,2})), End((σ, ι,π)) → End(σ ({1})) × End(σ ({2})). Using this and fibre products of
K-algebras, we find SFal(ObjA) is closed under ∗. Replacing ({1,2},�) by (I,�) we also see
SFal(ObjA) is closed under P(I,�). It contains δ̄[0] as δ̄[0] = ιObjA(δ[0]) and ιObjA maps to
SFal(ObjA). The arguments for S̄Fal(ObjA,∗,∗) are the same. �

Now much of [11] involves taking [(R, ρ)] with R ∼= [V/G] and then making linear combi-
nations of [([W/H ], ρ ◦ ιW,H )] for certain K-subgroups H ⊆ G and H -invariant K-subvarieties
W ⊆ V . If [(R, ρ)] has algebra stabilizers, for a general 1-isomorphism R ∼= [V/G] these
[([W/H ], ρ ◦ ιW,H )] may not have algebra stabilizers, which is why [11, Definition 5.17(iii)]
mixes [(R, ρ)] with and without algebra stabilizers, as we said above.

The next two propositions construct special 1-isomorphisms R ∼= [V/A×] such that the
[([W/H ], ρ ◦ ιW,H )] automatically have algebra stabilizers. Using these we can do the opera-
tions of [11] within SFal(ObjA) and S̄Fal(ObjA,∗,∗).

Proposition 5.8. Let S ⊂ ObjA(K) be constructible. Then there exists a finite decomposition

S =
∐

Fl (K),
l∈L
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where Fl is a finite type K-substack of ObjA, and 1-isomorphisms

Fl
∼= [

Ul/A
×
l

]
,

for Al a finite-dimensional K-algebra and Ul a quasiprojective K-variety acted on by A×
l ,

such that if u ∈ Ul(K) projects to [X] ∈ Fl(K) ⊂ ObjA(K) then there exists a subalgebra Bu

of Al with StabA×
l
(u) = B×

u and an isomorphism Bu
∼= End(X) compatible with the isomor-

phisms StabA×
l
(u) ∼= IsoK([X]) ∼= Aut(X).

Proof. A result of Kresch [17, Proposition 3.5.9] used in [10,11] shows an algebraic K-stack can
be stratified by global quotient stacks if and only if it has affine geometric stabilizers. Applied to
S ⊂ ObjA(K), this yields a finite decomposition S =∐

l∈L Fl (K) for K-substacks Fl of ObjA,
with Fl

∼= [Ul/GL(ml,K)] for Ul a quasiprojective K-variety acted on by GL(ml,K).
Here is how Kresch’s proof works. He shows that S may be decomposed as above into disjoint,

reduced K-substacks Fl , such that Fl has flat stabilizer and is a gerbe over a reduced K-sche-
me Sl , with a finite flat morphism Tl → Sl from another reduced K-scheme Tl , such that Fl ×Sl

Tl
∼= B(Gl → Tl) for some flat K-group scheme ρl :Gl → Tl . Using affine geometric stabilizers

we can take ρl to have a faithful linear representation upon a vector bundle Vl → B(Gl → Tl) ∼=
Fl ×Sl

Tl . Let the vector bundle Wl → Fl be the pushforward of Vl along the finite flat morphism
Tl → Sl , and let Wl have fibre Kml . Let Ul be the principal bundle (frame bundle) of Wl . Then
shrinking Fl if necessary, Ul is a quasiprojective K-variety acted on by GL(ml,K), and Fl

∼=
[Ul/GL(ml,K)].

In our situation we can say more than this. We generally consider ObjA just as an Artin
K-stack in groupoids, but as in Remark 5.6 this is actually the substack of isomorphisms of a
K-stack in exact categories, and so of a K-stack in linear categories, which are Artin stacks in
exact and linear categories in a well-defined sense. So the stabilizers of ObjA, which are affine
K-groups, are also the groups of invertible elements of K-algebras. In the argument above this
means we can naturally take the group scheme ρl :Gl → Tl to be the invertible elements in
an algebra scheme σl :El → Tl , in a way compatible with the inclusions Aut(X) ⊂ End(X) of
K-groups in K-algebras for [X] ∈ Fl (K).

Take the vector bundle Vl → B(Gl → Tl) above to be the restriction to Gl of a faithful rep-
resentation of the algebra scheme El → Tl , which we are entitled to do. We now claim that the
1-isomorphisms Fl

∼= [Ul/GL(ml,K)] constructed above satisfy the conditions of the proposi-
tion, with Al = End(Kml ) and A×

l = GL(ml,K). To see this, let [X] ∈ Fl (K). Write [Y ] ∈ Sl(K)

for the image of [X], and [Z1], . . . , [Zk] ∈ Tl(K) for the preimages of [Y ] under the finite flat
morphism Tl → Sl . Then Zi : Spec K → Tl are 1-morphisms, so Gl |Zi

= Gl ×ρl,Tl ,Zi
Spec K

and El |Zi
= El ×σl ,Tl ,Zi

Spec K are the fibres of Gl,El over [Zi], and Gl |Zi
is the K-group of

invertible elements in the finite-dimensional K-algebra El |Zi
.

The 1-isomorphism Fl ×Sl
Tl

∼= B(Gl → Tl) and its algebra extension induce compatible iso-
morphisms Gl |Zi

∼= Aut(X) and El |Zi
∼= End(X). We can also form the fibres Vl |Zi

, which are
finite-dimensional K-vector spaces, and by construction Gl |Zi

has a faithful K-group represen-
tation on Vl |Zi

which is the restriction of a faithful K-algebra representation of El |Zi
. The fibre

Wl |X of Wl at X is
⊕k

i=1 Vl |Zi
, which must be isomorphic to Kml .

The fibre Ul |X = Ul
∼=πl,Fl ,X Spec K of πl :Ul → Fl over [X] ∈ Fl (K) is the bundle of frames

in
⊕k

i=1 Vl |Zi
divided by Aut(X) acting on each Vl |Zi

via the isomorphism Gl |Zi
∼= Aut(X).

Thus, at each point u ∈ (Ul |X)(K), the stabilizer group StabGL(ml,K)(u) is a K-subgroup of
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GL(ml,K) isomorphic to Aut(X), determined by a choice of isomorphism Kml ∼=⊕k
i=1 Vl |Zi

.
This is exactly B×

u , where Bu ⊆ End(Kml ) is the K-subalgebra isomorphic to End(X) deter-
mined by the action of End(X) on

⊕k
i=1 Vl |Zi

via the isomorphisms El |Zi
∼= End(X), and the

choice of isomorphism Kml ∼=⊕k
i=1 Vl |Zi

. The proposition follows. �
Proposition 5.9. Let [(R, ρ)] ∈ SF(ObjA) and use the notation of Proposition 5.8 with S =
ρ∗(R(K)). Then [(R, ρ)] = ∑

l∈L[([Yl/A
×
l ], ρl)] where Yl is a quasiprojective K-variety and

ρl : [Yl/A
×
l ] → Fl ⊆ ObjA is induced by an A×

l -equivariant morphism φl :Yl → Ul , under
the 1-isomorphism Fl

∼= [Ul/A
×
l ]. Moreover [(R, ρ)] has algebra stabilizers if and only if

StabA×
l
(y) = C×

y for some subalgebra Cy ⊆ Al , for all l ∈ L and y ∈ Yl(K).

Proof. Let πl :Ul → Fl ⊂ ObjA be the natural projection from Fl
∼= [Ul/A

×
l ]. As R, Ul are

finite type and ρ is representable, Zl = R ×ρ,ObjA,πl
Ul is a finite type algebraic K-space,

with an action of A×
l . Thus there exists a finite decomposition Zl =∐

i∈Il
Zi

l for A×
l -invariant

quasiprojective K-subvarieties Zi
l . Define Yl to be the scheme-theoretic disjoint union of the Zi

l

for i ∈ Il .
By our convention in Section 2.1 that K-varieties need not be irreducible, nor connected, Yl is

a quasiprojective K-variety, acted on by A×
l . Let πZl

:Yl → Zl be the obvious morphism and
πR :Zl → R, πUl

:Zl → Ul the projections from the fibre product. Then πR and πR ◦ πZl
are

A×
l -invariant and so push down to 1-morphisms π ′

R
: [Zl/A

×
l ] → R and π ′′

R
: [Yl/A

×
l ] → R.

Define ρl = ρ ◦ π ′′
R

and φl = πUl
◦ πZl

. It is now easy to see that

[
(R, ρ)

]=
∑
l∈L

[([
Zl/A

×
l

]
, ρ ◦ π ′

R

)]=
∑
l∈L

[([
Yl/A

×
l

]
, ρl

)]
,

since π ′
R

embeds [Zl/A
×
l ] as the K-substack of R over Fl , and [Zl/A

×
l ] and [Yl/A

×
l ] split into

the same pieces [Zi
l /A

×
l ] for i ∈ Il . The first part follows.

For the second part, if r ∈ R(K) with ρ∗(r) = [X] then [X] ∈ Fl (K) for unique l ∈ L,
and r = (πR)∗(z) for z ∈ Zl(K). As (πZl

)∗ :Yl(K) → Zl(K) is a bijection z = (πZl
)∗(y) for

unique y ∈ Yl(K). Let u = (φl)∗(y) ∈ Ul(K). Then B×
u = StabA×

l
(u) ∼= Aut(X) as u projects

to [X], for some subalgebra Bu ⊆ Al with compatible isomorphism Bu
∼= End(X). Now

IsoK(r) ∼= StabA×
l
(y), and ρ∗ : IsoK(r) → IsoK([X]) is just inclusion StabA×

l
(y) ⊆ B×

u as K-sub-
groups of A×

l . Thus, [(R, ρ)] has algebra stabilizers if and only if StabA×
l
(y) = C×

y for some
subalgebra Cy ⊆ Bu, for all l, u, y. But a subalgebra of Bu is the same as a subalgebra of Al

lying in Bu, and the proof is complete. �
Corollary 5.10. SFal(ObjA) and S̄Fal(ObjA,∗,∗) are closed under the operators Πμ, Πvi

n , Π̂ν
F

of [11, §5.2].

Proof. Let [(R, ρ)] have algebra stabilizers, and use the notation of Proposition 5.9. Then

Πμ
([
(R, ρ)

])=
∑
l∈L

Πμ
([([

Yl/A
×
l

]
, ρl

)])
.

The definition [11, Definition 5.10] of Πμ([([Yl/A
×
l ], ρl)]) gives a linear combination of

[([Wl/Hl], ρl ◦ ιWl,Hl )] for certain K-subgroups Hl ⊆ A× and Hl-invariant K-subvarieties
l
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Wl ⊆ Yl . We may take Al = End(Kml ), and then [11, Example 5.7] implies the Hl appearing in
the sum are of the form B×

l for subalgebras Bl ⊆ Al . It easily follows that [([Wl/Hl], ρl ◦ ιWl,Hl )]
has algebra stabilizers, which proves what we want. The Πvi

n , Π̂ν
F

cases are the same. �
Combining Proposition 5.9 with the proof of the first part of Proposition 2.17 we find

S̄Fal(ObjA,∗,∗) are generated by [(U × [Spec K/T ], ρ)] as in Proposition 2.17 with algebra
stabilizers. But T ∼= (K×)k ×K for K finite abelian can only be of the form B× for a K-algebra
B if K is trivial, giving:

Corollary 5.11. S̄Fal(ObjA,Υ,Λ), S̄Fal(ObjA,Υ,Λ◦) and S̄Fal(ObjA,Θ,Ω) are generated
over Λ,Λ◦ and Ω respectively by elements [(U × [Spec K/T ], ρ)] with algebra stabilizers, for
U a quasiprojective K-variety and T ∼= (K×)k .

We define projections Π[I,κ] on S̄Fal(ObjA), S̄Fal(ObjA,∗,∗).

Definition 5.12. Let Assumptions 2.11 and 3.4 hold. Write C(A) = C̄(A) \ {0}, as in Defini-
tion 3.5. Consider pairs (I, κ) with I a finite set and κ : I → C(A) a map. Define an equivalence
relation ‘≈’ on such (I, κ) by (I, κ) ≈ (I ′, κ ′) if there exists a bijection i : I → I ′ with κ ′ ◦ i = κ .
Write [I, κ] for the ≈-equivalence class of (I, κ). For such an [I, κ] we will define projections

Π[I,κ] : SFal(ObjA) → SFal(ObjA),

Π[I,κ] : S̄Fal(ObjA,∗,∗) → S̄Fal(ObjA,∗,∗), (43)

for ∗,∗ = Υ,Λ or Υ , Λ◦ or Θ , Ω , using the operators Π̂ν
F

of [11, Definition 5.15]. Define

ν :
{(

T , [X], φ): T a K-group isomorphic to
(
K×)k × K, K finite abelian,

[X] ∈ ObjA(K), φ :T → IsoK

([X])= Aut(X) a K-group morphism
}→ Q

by ν(T , [X], φ) = 1 if T ∼= (K×)|I |, φ is injective, and there exists a splitting X ∼=⊕
i∈I Xi in

A with [Xi] = κ(i) for all i ∈ I , such that φ(T ) is the K-subgroup {∑i∈I λi idXi
: λi ∈ K×}

in Aut(X), and ν(T , [X], φ) = 0 otherwise. This depends only on the equivalence class [I, κ]
of (I, κ). Note too that the K-subgroup of Aut(X) above is A×, where A is the subalgebra
{∑i∈I λi idXi

: λi ∈ K} in End(X). Then ν is an ObjA-weight function in the sense of [11, Def-
inition 5.15]. Define projections Π[I,κ] on SFal(ObjA) and S̄Fal(ObjA,∗,∗) to be the operators
Π̂ν

ObjA
of [11, Definition 5.15]. Corollary 5.10 implies these map as in (43).

Here is what this means. The Π[I,κ] are refinements of the Πvi
n of [11, §5.2], which project

to components with virtual rank n. Now if [X] ∈ ObjA(K) then IsoK([X]) ∼= Aut(X). Maxi-
mal tori in Aut(X) are of the form {∑i∈I λi idXi

: λi ∈ K×}, where X =⊕
i∈I Xi with 0 �∼= Xi

indecomposable. Thus the rank of IsoK([X]) is the number of indecomposable factors of X.
Now [(R, ρ)] ∈ SFal(ObjA) also has stabilizers of the form A× for subalgebras A ⊆ End(X),

so we can treat A as like End(Y ) for some ‘object’ Y , and rk A× as the ‘number of indecompos-
ables’ in Y . As the Πvi

n project to components with ‘virtual rank’ n, and in SFal(ObjA) we equate
rank with number of indecomposables, so on SFal(ObjA) we should think of Πvi

n as projecting
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to stack functions supported on objects with n virtual indecomposable factors. That is, the idea
of ‘virtual rank’ in SF(F) translates to ‘number of virtual indecomposables’ in SFal(ObjA).

Each X ∈ A splits as X = ⊕
i∈I Xi with 0 �∼= Xi indecomposable, uniquely up to bijective

changes of indexing set I and isomorphisms of Xi . Defining κ : I → C(A) by κ(i) = [Xi], we
see that the equivalence class [I, κ] depends only on [X], and X has |I | indecomposables. In the
same way, the Π[I,κ] project to components whose virtual indecomposables are of equivalence
class [I, κ].

Proposition 5.13. In the situation above Π2[I,κ] = Π[I,κ], and Π[I,κ]Π[J,λ] = 0 if [I, κ] �= [J,λ].
Also, if f ∈ SFal(ObjA) or S̄Fal(ObjA,∗,∗) then

f =
∑

eq. classes [I,κ]
Π[I,κ](f ) and Πvi

n (f ) =
∑

eq. classes [I,κ]: |I |=n

Π[I,κ](f ), (44)

where the sums make sense as only finitely many Π[I,κ](f ) are nonzero.

Proof. The analogue of [11, Theorem 5.12(c)] for the Π̂ν
F

says that Π̂ν1
F

◦ Π̂
ν2
F

= Π̂
ν1ν2
F

. If ν1, ν2
are the ObjA-weight functions defined in Definition 5.12 using [I, κ] and [J,λ] then ν1ν2 is ν1 if
[I, κ] = [J,λ] and 0 otherwise, so the first part follows. For the second, let [(R, ρ)] have algebra
stabilizers, use the notation of Proposition 5.9, and define Π[I,κ]([([Yl/A

×
l ], ρl)]) using [11,

Definition 5.15]. This gives a finite sum over subtori P , Q, R in A×
l with (K×)|I | ∼= R ⊆ P ∩Q

of a term involving the subset (Yl)
P,R
ν,1 of y ∈ YP

l (K) such that R induces a decomposition of
type [I, κ] of the image point in ObjA(K).

Each y ∈ YP
l (K) induces such a decomposition for a unique [I, κ], and the map y 
→ [I, κ] is

constructible, and so realizes only finitely many [I, κ] on YP
l (K). Hence

Π[I,κ]
([([

Yl/A
×
l

]
, ρl

)]) �= 0

for only finitely many [I, κ], proving the last line. Summing over all [I, κ] yields a sum over P ,
Q, R of a term involving the whole of YP

l (K). Comparing with [11, Definition 5.10] and using
[11, Theorem 5.12(a)] gives

∑
[I,κ]

Π[I,κ]
([([

Yl/A
×
l

]
, ρl

)])= Π1([([Yl/A
×
l

]
, ρl

)])= [([
Yl/A

×
l

]
, ρl

)]
.

Restricting to |I | = n fixes dimR = n, and the sum reduces to Πvi
n ([([Yl/A

×
l ], ρl)]). Equa-

tion (44) follows. �
The Π[I,κ] are also defined on SF,SF(ObjA) and S̄F, S̄F(ObjA,∗,∗) with Π2[I,κ] = Π[I,κ]

and Π[I,κ]Π[J,λ] = 0 if [I, κ] �= [J,λ], but on these larger spaces (44) does not hold. Using
Proposition 2.17 and Corollary 5.11 we can show

∑
eq. classes [I,κ]

Π[I,κ] : S̄F(ObjA,∗,∗) → S̄Fal(ObjA,∗,∗)

is a surjective projection. But the same is not true for SF(ObjA),SFal(ObjA).
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5.2. The Lie algebras SFind
al (ObjA) and S̄F

ind
al (ObjA,∗,∗)

Next we study stack function analogues of the Lie algebra CFind(ObjA) of Section 4.4.

Definition 5.14. Let Assumptions 2.11 and 3.4 hold. Define SFind
al (ObjA), S̄F

ind
al (ObjA,Υ,Λ),

S̄F
ind
al (ObjA,Υ,Λ◦) and S̄F

ind
al (ObjA,Θ,Ω) to be the subspaces of f ∈ SFal(ObjA) or

S̄Fal(ObjA,∗,∗) satisfying Πvi
1 (f ) = f .

We interpreted Πvi
n above as projecting to f ‘supported on objects with n virtual indecompos-

able factors.’ So SFind
al (ObjA), S̄F

ind
al (ObjA,∗,∗) should be thought of as stack functions sup-

ported on virtual indecomposables, and are good analogues of CFind(ObjA). Our goal is to prove

that SFind
al (ObjA), S̄F

ind
al (ObjA,∗,∗) are Lie subalgebras of SFal(ObjA), S̄Fal(ObjA,∗,∗). To

do this we must study the relationship between multiplication ∗ and projections Πvi
n , that is,

express Πvi
n (f ∗ g) in terms of Πvi

l (f ) and Πvi
m (g).

Proposition 5.15. Let T ⊆ ObjA(K) × ObjA(K) be constructible. Then there exist a finite
decomposition T = ∐

m∈M Gm(K), where Gm is a finite type K-substack of ObjA × ObjA,
1-isomorphisms Gm

∼= [Vm/Gm] for Gm a special K-group and Vm a quasiprojective K-variety,
finite-dimensional representations E0

m,E1
m of Gm, and morphisms jm : (K×)2 → Gm for all

m ∈ M , satisfying:

(a) Let v ∈ Vm(K) project to ([X], [Y ]) ∈ Gm(K) ⊂ ObjA(K) × ObjA(K), so

StabGm(v)
∼= IsoK

([X], [Y ])∼= Aut(X) × Aut(Y ). (45)

Then there are isomorphisms E0
m

∼= Hom(Y,X) and E1
m

∼= Ext1(Y,X) such that (45)
identifies the action of StabGm(v) on Ei

m with the action of Aut(X) × Aut(Y ) on
Hom(Y,X),Ext1(Y,X) given by (α,β) · e = α ◦ e ◦ β−1.

(b) jm maps into the centre of Gm, and jm((K×)2) acts freely on Vm. Thus, in (a) jm maps
(K×)2 → StabGm(v). Composing this with (45) gives the map (δ, ε) 
→ (δ idX, ε idY ),
for δ, ε ∈ K×.

(c) Write im :Gm → ObjA×ObjA for the inclusion 1-morphism. Then there is a 1-isomorphism

Gm ×im,ObjA×ObjA,σ ({1})×σ ({2}) M
({1,2},�)A ∼= [

Vm × E1
m/Gm � E0

m

]
. (46)

Here multiplication on Gm �E0
m is (γ, e) · (γ ′, e′) = (γ γ ′, e + γ · e′), and E0

m acts trivially
on Vm × E1

m, and Gm acts in the given way on Vm,E1
m.

(d) Equation (46) is a substack of M({1,2},�)A, so its K-points are [(σ, ι,π)] for ({1,2},�)-
configurations (σ, ι,π). Let X, Y , v be as in (a), and (v, e) ∈ (Vm × E1

m)(K) project to
[(σ, ι,π)]. Then we can choose σ({1}) = X, σ({2}) = Y , and e ∈ Ext1(Y,X) corresponds to
the exact sequence

0 σ
({1}) ι({1},{1,2})

σ
({1,2}) π({1,2},{2})

σ
({2}) 0. (47)
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Proof. The proof of Proposition 5.8 easily generalizes to give a finite decomposition T =∐
m∈M Gm(K) and 1-isomorphisms Gm

∼= [Um/A×
m × B×

m ], for Am,Bm finite-dimensional K-
algebras, such that if u ∈ Um(K) projects to ([X], [Y ]) then

StabA×
m×B×

m
(u) = C×

u × D×
u

for subalgebras Cu ⊆ Am, Du ⊆ Bm with isomorphisms Cu
∼= End(X), Du

∼= End(Y ) inducing
the isomorphism StabA×

m×B×
m
(u) ∼= Aut(X) × Aut(Y ).

The functions ([X], [Y ]) 
→ dim Hom(Y,X) or dim Ext1(Y,X) are locally constructible on
(ObjA×ObjA)(K), and so take finitely many values on T . Refining T =∐

m∈M Gm(K), we can
make dim Hom(Y,X), dim Ext1(Y,X) constant on each Gm(K). Refining further, Hom(Y,X),
Ext1(Y,X) are the fibres over ([X], [Y ]) ∈ Gm(K) of vector bundles over Gm, in the stack sense.
These pull back under the projection Um → Gm to vector bundles E0

m, E1
m over Um, with fibres

K-vector spaces E0
m, E1

m, and the A×
m × B×

m -action on Um lifts to actions on E0
m,E1

m preserving
the vector bundle structure.

Define Vm to be the quasiprojective K-variety of triples (u,α0, α1), for u ∈ Um(K) and
αi : (E i

m)v → Ei
m vector space isomorphisms between the fibre of E i

m over v for i = 0,1 and Ei
m.

Then Vm is a principal bundle over Ṽm with structure group Aut(E0
m) × Aut(E1

m), and the
A×

m × B×
m -action lifts to Vm and commutes with the Aut(E0

m) × Aut(E1
m)-action. Define

Gm = A×
m × B×

m × Aut
(
E0

m

)× Aut
(
E1

m

)
,

which is special as it is a product of groups of the form A× for finite-dimensional algebras A. It
acts on Vm with

[Vm/Gm] ∼= [
Um/A×

m × B×
m

]∼= Gm.

Define actions of Gm on Ei
m for i = 0,1 by (a, b,β0, β1) · ei = βiei . It is now easy to see that

(a) holds for Vm, Gm.
For (b), define

jm(δ, ε) = (
δ idAm, ε idBm, δε

−1 idE0
m
, δε−1 idE1

m

)
.

This is clearly a K-group morphism to the centre of Gm. If v = (u,α0, α1) in Vm(K) then

StabA×
m×B×

m
(u) = C×

u × D×
u

as above, and δ idAm ∈ C×
u , ε idBm ∈ D×

u as Cu,Du are subalgebras, so (δ idAm, ε idBm) fixes u.
The identification of actions in (a) then shows (δ idAm, . . . , δε

−1 idE1
m
) fixes v. Thus, jm((K×)2)

fixes each v ∈ Vm(K), and acts freely on Vm. Composing with (45) gives (δ, ε) 
→ (δ idX, ε idY ),
as δ idAm = δ idCu , ε idBm = ε idDu are identified with δ idX, ε idY under Cu

∼= End(X), Du
∼=

End(Y ).
For (c) and (d), note that the fibre of σ ({1}) × σ ({2}) :M({1,2},�)A → ObjA × ObjA over

([X], [Y ]) ∈ (ObjA × ObjA)(K) is the family of [(σ, ι,π)] for (σ, ι,π) a ({1,2},�)-config-
uration with σ({1}) ∼= X and σ({2}) ∼= Y . This is equivalent to a short exact sequence (47),
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which are classified by Ext1(Y,X). But as the isomorphisms X ∼= σ({1}), Y ∼= σ({2}) are not
prescribed we divide by Aut(X) × Aut(Y ), so as sets we have

M
({1,2},�)A ⊃ (

σ
({1})× σ

({2}))−1
∗
(([X], [Y ]))∼= Ext1(Y,X)

Aut(X) × Aut(Y )
.

To describe this fibre as a stack we must take stabilizer groups into account. One can show
that if (47) corresponds to e ∈ Ext1(Y,X) then Aut((σ, ι,π)) ∼= He � Hom(Y,X), where He is
the K-subgroup of Aut(X) × Aut(Y ) fixing e. If ([X], [Y ]) is the image of v ∈ Vm(K), we have
1-isomorphisms

Spec K ×X×Y,ObjA×ObjA,σ ({1})×σ ({2}) M
({1,2},�)A

∼= [
Ext1(Y,X)/

(
Aut(X) × Aut(Y )

)
� Hom(Y,X)

]∼= [
E1

m/StabGm�E0
m
(v)

]
.

Here Hom(Y,X) acts trivially on Ext1(Y,X), but contributes to the stabilizers, and similarly E0
m

acts trivially on E1
m. Parts (c) and (d) follow by a families version of this argument. �

Corollary 5.16. Let f,g lie in SFal(ObjA) or S̄Fal(ObjA,∗,∗), choose T ⊆ ObjA(K) ×
ObjA(K) constructible with f ⊗ g supported on T , and use the notation of Proposition 5.15.
Then arguing as in Proposition 5.9, we may write

f ⊗ g =
∑

m∈M,n∈Nm

cmn

[([Wmn/Gm], τmn

)]
, (48)

where Nm is finite, cmn ∈ Q,Λ,Λ◦ or Ω , Wmn is a quasiprojective K-variety acted on
by Gm, and τmn : [Wmn/Gm] → Gm ⊆ ObjA ×ObjA is induced by a Gm-equivariant morphism
φmn :Wmn → Vm. Moreover

(
σ
({1})× σ

({2}))∗([([Wmn/Gm], τmn

)])= [([
Wmn × E1

m/Gm � E0
m

]
, ξmn

)]
(49)

in SF(M({1,2},�)A) or S̄F(M({1,2},�)A,∗,∗), where φmn induces

ξmn :
[
Wmn × E1

m/Gm � E0
m

]→ [
Vm × E1

m/Gm � E0
m

]
, (50)

using (46) to regard the right-hand side of (50) as a substack of M({1,2},�)A. Combining (40),
(48) and (49) gives

f ∗ g =
∑

m∈M,n∈Nm

cmn

[([
Wmn × E1

m/Gm � E0
m

]
,σ
({1,2}) ◦ ξmn

)]
. (51)

Here we have used a formula for the fibre product of quotient stacks from the proof of [11,
Theorem 4.12] to deduce (49). Our next theorem, which will be important in [13, §8], proves a
relationship between the operators Πvi

k and P(I,�).

Theorem 5.17. Let Assumptions 2.11 and 3.4 hold, (I,�) be a finite poset, k � 0, and fi for

i ∈ I lie in SFind(ObjA) or S̄F
ind
al (ObjA,∗,∗). Then
al
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Πvi
k

[
P(I,�)(fi : i ∈ I )

]=
∑

iso. classes of
finitesets K,
k�|K|�|I |

∑
surjective φ : I→K;

define � on I by i�j
if i�j and φ(i)=φ(j)

NI,K,φ,k · P(I,�)(fi : i ∈ I ), (52)

where NI,K,φ,k ∈ Q depends only on I , K , φ up to isomorphism and k.

Proof. It is easy to partially generalize Proposition 5.15(a),(b) from ({1,2},�) to (I,�) as fol-
lows. Choose T ⊆∏

i∈I ObjA(K) constructible with
⊗

i∈I fi supported on T . Then there exist
a finite decomposition T =∐

m∈M Gm(K), where Gm is a finite type K-substack of
∏

i∈I ObjA,
1-isomorphisms Gm

∼= [Vm/Gm] for Gm a special K-group and Vm a quasiprojective K-variety,
and morphisms jm : (K×)I → Gm for all m ∈ M , satisfying:

(a) Let v ∈ Vm(K) project to
∏

i∈I [Xi] ∈ Gm(K) ⊂∏
i∈I ObjA(K), so that

StabGm(v)
∼= IsoK

(∏
i∈I

[Xi]
)

∼=
∏
i∈I

Aut(Xi). (53)

(b) jm maps into the centre of Gm, and jm((K×)I ) acts freely on Vm. Thus, in (a) jm maps
(K×)I → StabGm(v). Composing this with (53) gives the map δ 
→ ∏

i∈I δ(i) idXi
, for

δ ∈ (K×)I .

Generalizing part (c) is more tricky. Write im :Gm → ∏
i∈I ObjA for the inclusion 1-mor-

phism. Then we can form

Gm ×im,
∏

i∈I ObjA,
∏

i∈I σ ({i}) M(I,�)A,

regarded as a K-substack of M(I,�)A. It is of finite type, as Gm is and
∏

i∈I σ ({i}) is by
Theorem 3.6(c). Also M(I,�)A has affine geometric stabilizers. So using [17, Proposition 3.5.9]
as in Proposition 5.8, we may write

(
Gm ×im,

∏
i∈I ObjA,

∏
i∈I σ ({i}) M(I,�)A

)
(K) =

∐
p∈Pm

Hmp(K),

where Pm is finite and Hmp a K-substack of M(I,�)A with a 1-isomorphism

Hmp
∼= [Ymp/Gm � Kmp], (54)

where Ymp is a quasiprojective K-variety and Kmp a nilpotent K-group acted on by Gm, such
that

∏
i∈I σ ({i}) :Hmp → Gm is induced by a morphism ψmp :Ymp → Vm equivariant w.r.t. the

natural projection Gm � Kmp → Gm.
The only nontrivial claim here is that we can take the quotient group in (54) to be Gm � Kmp

with Kmp nilpotent, rather than an arbitrary K-group with a morphism to Gm. When (I,�) =
({1,2},�) this follows from Proposition 5.15(c) with Kmp = E0

m. The general case can be proved
by the inductive argument on |I | in the proof of Theorem 6.2 below, which builds up M(I,�)A
by repeated fibre products with σ ({1})×σ ({2}) :M({1,2})A → ObjA×ObjA. The point of this
is that as Kmp is nilpotent we can use the same maximal torus for Gm and Gm � Kmp , which
will be important when we come to apply Πvi.
k
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Now we can generalize Corollary 5.16 to write

⊗
i∈I

fi =
∑

m∈M,n∈Nm

cmn

[([Wmn/Gm], τmn

)]
, (55)

where Nm is finite, cmn ∈ Q,Λ,Λ◦ or Ω , Wmn is a quasiprojective K-variety acted on
by Gm, and τmn : [Wmn/Gm] → Gm ⊆ ObjA ×ObjA is induced by a Gm-equivariant morphism
φmn :Wmn → Vm. Moreover

(∏
i∈I

σ
({i}))∗([([Wmn/Gm], τmn

)])

=
∑
p∈Pm

[([Wmn ×φmn,Vm,ψmp Ymp/Gm � Kmp], ξmnp

)]
(56)

in SF(M(I,�)A) or S̄F(M(I,�)A,∗,∗), where πYmp induces

ξmnp : [Wmn ×φmn,Vm,ψmp Ymp/Gm � Kmp] → [Ymp/Gm � Kmp], (57)

using (54) to regard the right-hand side of (57) as a substack of M(I,�)A. Combining (42), (55)
and (56) gives

P(I,�)(fi : i ∈ I ) =
∑
m∈M,

n∈Nm,p∈Pm

cmn

[([Wmn ×φmn,Vm,ψmp Ymp/Gm � Kmp],σ (I ) ◦ ξmnp

)]
. (58)

Since Πvi
1 (fi) = fi , we deduce from [11, Proposition 5.14(iv)] that

Πvi
k

[⊗
i∈I

fi

]
=
{⊗

i∈I fi, k = |I |,
0, otherwise.

(59)

Let Tm be a maximal torus in Gm, so that Tm × {0} = Tm is a maximal torus in Gm � Kmp .
Applying [11, Definitions 5.10 and 5.13] to (55) we find that

Πvi
k

[⊗
i∈I

fi

]

=
∑

m∈M,n∈Nm,P∈P(Wmn,Tm),
Q∈Q(Gm,Tm),R∈R(Wmn,Gm,Tm):

R⊆P∩Q,M
Wmn
Gm

(P,Q,R) �=0,dimR=k

cmn M
Wmn

Gm
(P,Q,R) · [([WP

mn/CGm(Q)
]
, τmn ◦ ιP∩Q

)]
. (60)

Let m′ ∈ M and R′ ⊆ Tm′ lie in R(Wm′n,Gm′ , Tm′) for at least one n ∈ Nm′ . By [11, De-
finition 5.15] we can define Π̂ν

Πi∈IObjA
on SF(Πi∈IObjA) or S̄F(Πi∈IObjA,∗,∗) with the

Πi∈IObjA-weight function ν given by ν(T ,g,φ) = 1 if φ is injective and φ∗(T ) ⊂ IsoK(g) is
identified with R′ ⊆ StabGm′ (w) for some n ∈ Nm′ and w ∈ Wm′n(K) projecting to g ∈ Gm′(K) ⊆
(Πi∈IObjA)(K) under Gm′ ∼= [Wm′n/Gm′ ], and ν(T ,g,φ) = 0 otherwise.
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Applying Π̂ν
Πi∈IObjA

to (60) projects to those components in the sum with m = m′ and R

conjugate to R′ under the Weyl group W of Gm. By (59), Eq. (60) is zero for k �= |I |. So, if
dimR′ �= |I | then the sum of components in (60) with m = m′ and R conjugate to R′ is zero.
But by symmetry in W each of the conjugates of R′ give the same answer. Hence, for any fixed
m ∈ M and R with dimR �= |I |, the sum of components in (60) with these m,R is zero.

By (b) above, jm((K×)I ) lies in the centre of Gm and acts trivially on Vm, and we can use
algebra stabilizers to show that it also acts trivially on each Wmn. Thus jm((K×)I ) ⊆ R for each
R ∈ R(Wmn,Gm,Tm). Also, as Gm is special and each fi has algebra stabilizers one can show
that each such R is a torus (rather than the product of a torus with a finite group). And as each fi

is supported over nonzero elements [Xi], as composing jm with (53) takes δ 
→ (δ(i) idXi
)i∈I , we

see jm is injective. Therefore jm((K×)I ) ∼= (K×)|I | is the minimal element of R(Wmn,Gm,Tm),
and the unique element R with dimR = |I |. By (55) and (59), the sum of terms in (60) with these
m,R is

∑
n∈Nm

cmn[([Wmn/Gm], τmn)].
As for (60), Eq. (58) yields an expression for Πvi

k [P(I,�)(fi : i ∈ I )], but it is not in the form
we want. Applying Πvi

k to [([Wmn ×Vm Ymp/Gm � Kmp],σ (I ) ◦ ξmnp)] involves summing over
the three finite sets:

P(Wmn ×Vm Ymp,Tm) ⊆ {
P ∩ Ṗ : P ∈ P(Wmn,Tm), Ṗ ∈ P(Ymp,Tm)

}
,

Q(Gm � Kmp,Tm) = {
Q ∩ Q̇: Q ∈ Q(Gm,Tm), Q̇ ∈ Q(Gm � Kmp,Tm)

}
,

R(Wmn ×Vm Ymp,Gm � Kmp,Tm)

⊆ {
R ∩ Ṙ: R ∈R(Wmn,Gm,Tm), Ṙ ∈R(Ymp,Gm � Kmp,Tm)

}
.

It follows from the proof in [11, §5] that the definition of Πvi
k is independent of choices, that

if we replace P(Wmn ×Vm Ymp,Tm) by P(Wmn,Tm) × P(Ymp,Tm), and Q(Gm � Kmp,Tm) by
Q(Gm,Tm)×Q(Gm �Kmp,Tm), and R(Wmn ×Vm Ymp,Gm �Kmp,Tm) by R(Wmn,Gm,Tm)×
R(Ymp,Gm�Kmp,Tm) throughout the definition, taking (P, Ṗ ) to act as P ∩Ṗ on Wmn×Vm Ymp

and so on, we get the same answer. But defined using these sets we easily find that

M
Wmn×VmYmp

Gm�Kmp

(
(P, Ṗ ), (Q, Q̇), (R, Ṙ)

)= M
Wmn

Gm
(P,Q,R) · MYmp

Gm�Kmp
(Ṗ , Q̇, Ṙ).

This yields:

Πvi
k

[
P(I,�)(fi : i ∈ I )

]
=

∑
m∈M, p∈Pm, Ṗ∈P(Ymp,Tm),

Q̇∈Q(Gm�Kmp,Tm), Ṙ∈R(Ymp,Gm�Kmp,Tm):

Ṙ⊆Ṗ∩Q̇,M
Ymp
Gm�Kmp

(Ṗ ,Q̇,Ṙ) �=0

M
Ymp

Gm�Kmp
(Ṗ , Q̇, Ṙ)

·
[ ∑

n∈Nnm,P∈P(Wmn,Tm),
Q∈Q(Gm,Tm),R∈R(Wmn,Gm,Tm):

R⊆P∩Q,M
Wmn
Gm

(P,Q,R) �=0,dimR∩Ṙ=k

cmnM
Wmn

Gm
(P,Q,R)

· [([WP
mn ×Vm Y Ṗ

mp/CGm(Q) � (Kmp)
Q̇
]
,σ (I ) ◦ ξmnp ◦ ιP∩Q,Ṗ∩Q̇

)]]
. (61)
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Actually, according to the argument we gave the last term should be

[([
WP∩Ṗ

mn ×Vm YP∩Ṗ
mp /CGm(Q ∩ Q̇) � (Kmp)

Q∩Q̇
]
,σ (I ) ◦ ξmnp ◦ ιP∩Ṗ∩Q∩Q̇

)]
.

However, using [11, Lemma 5.9] we can show that for fixed P, Ṗ ,Q, Q̇ in (61), unless
P, Ṗ are the smallest elements of P(Wmn,Tm), P(Ymp,Tm) containing P ∩ Ṗ , and Q,Q̇ are
the smallest elements of Q(Gm,Tm),Q(Gm � Kmp,Tm) containing Q ∩ Q̇, then the sum of

M
Ymp

Gm�Kmp
(Ṗ , Q̇, Ṙ) ·MWmn

Gm
(P,Q,R) over all R, Ṙ with fixed R ∩ Ṙ is zero. But if P, Ṗ ,Q, Q̇

are the smallest elements containing P ∩ Ṗ ,Q ∩ Q̇ then

WP
mn = WP∩Ṗ

mn , Y Ṗ
mp = YP∩Ṗ

mp , CGm(Q) = CGm(Q ∩ Q̇) and (Kmp)
Q̇ = (Kmp)

Q∩Q̇,

by [11, Lemmas 5.4(iii) and 5.6(iii)]. So (61) is correct.
The important point about the way we have written (61) is that the last lines [· · ·] is a sum

over certain R of a linear operation applied to the terms in (60) with fixed m,R. But we have
already shown that the sum of terms in (60) with fixed m,R is

∑
n∈Nm

cmn[([Wmn/Gm], τmn)] if
R = jm((K×)I ), and 0 otherwise. This proves that

Πvi
k

[
P(I,�)(fi : i ∈ I )

]=
∑

m∈M,n∈Nnm,p∈Pm,

Ṗ∈P(Ymp,Tm), Q̇∈Q(Gm�Kmp,Tm),

Ṙ∈R(Ymp,Gm�Kmp,Tm): Ṙ⊆Ṗ∩Q̇,

M
Ymp
Gm�Kmp

(Ṗ ,Q̇,Ṙ) �=0,dim jm((K×)I )∩Ṙ=k

M
Ymp

Gm�Kmp
(Ṗ , Q̇, Ṙ) · cmn

· [([Wmn ×Vm Y Ṗ
mp/Gm � (Kmp)

Q̇
]
,σ (I ) ◦ ξmnp

)]
. (62)

Now using the argument of [11, Lemma 5.9] again, we find that unless Ṗ , Q̇ ⊆ jm((K×)I ),
the sum of over Ṙ of terms with these Ṗ , Q̇ in (62) is zero. So we may restrict to Ṗ , Q̇, Ṙ ⊆
jm((K×)I ), and then as jm((K×)I ) lies in the centre of Gm we may replace Gm,Tm by

jm((K×)I ) in the definitions of Ṗ , Q̇, Ṙ and M
Ymp

Gm�Kmp
(Ṗ , Q̇, Ṙ), yielding:

Πvi
k

[
P(I,�)(fi : i ∈ I )

]=
∑

m∈M,n∈Nnm,p∈Pm,

Ṗ∈P(Ymp, jm((K×)I )),

Q̇∈Q(jm((K×)I )�Kmp, jm((K×)I )),

Ṙ∈R(Ymp,jm((K×)I )�Kmp,jm((K×)I )):

Ṙ⊆Ṗ∩Q̇,M
Ymp

jm((K×)I )�Kmp
(Ṗ ,Q̇,Ṙ) �=0,dim Ṙ=k

M
Ymp

jm((K×)I )�Kmp
(Ṗ , Q̇, Ṙ) · cmn

· [([Wmn ×Vm Y Ṗ
mp/Gm � (Kmp)

Q̇
]
,σ (I ) ◦ ξmnp

)]
. (63)

Suppose that m ∈ M , p ∈ Pm, Ṗ ⊆ jm((K×)I ) is a K-subgroup, and y ∈ Ymp(K) is fixed
by Ṗ . Then y projects to [(σ, ι,π)] ∈ M(I,�)A with a commutative diagram of K-groups

Ṗ

⊆

Aut(σ, ι,π)

∏
i∈I σ ({i})∗

jm((K×)I )
j−1
m

(K×)I
δ 
→∏

i∈I δ(i) idXi ∏
i∈I Aut(σ ({i})).

(64)
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Now the bottom right corner extends naturally to algebra morphisms between the algebras KI ,∏
i∈I End(σ ({i})) and End(σ, ι,π). Let A ⊆ KI be the subalgebra of KI generated by K-sub-

group j−1
m (Ṗ ), and A× ⊆ (K×)I the K-subgroup of invertible elements in A. Then jm(A×) is

a K-subgroup of jm((K×)I ) with Ṗ ⊆ jm(A×) ⊆ jm((K×)I ), and it is easy to see that we can
extend (64) to replace Ṗ by jm(A×). Hence y ∈ Ymp(K) is fixed by jm(A×).

From [11, Definition 5.3] we now see that each Ṗ ∈ P(Ymp, jm((K×)I )) is of the form
jm(A×) for some subalgebra A ⊆ KI . A related proof shows the same holds for each Q̇ ∈
Q(jm((K×)I ) � Kmp, jm((K×)I )). Let K be a finite set and φ : I → K a surjective map, and
define

AI,K,φ = {
δ ∈ KI : φ(i) = φ(j) implies δ(i) = δ(j), i, j ∈ I

}
.

Then AI,K,φ is a K-subalgebra of KI , and every subalgebra is of this form. Thus

P
(
Ymp, jm

((
K×)I )),Q(jm((K×)I )� Kmp, jm

((
K×)I ))

⊆ {
A×

I,K,φ : K finite, φ : I → K surjective
}
.

It is a consequence of the proof in [11, §5] that the definition of Πvi
k is independent of

choices, that if in (63) we replace P(Ymp, jm((K×)I )), Q(jm((K×)I ) � Kmp, jm((K×)I )),
R(Ymp, jm((K×)I ) � Kmp, jm((K×)I )) by larger finite sets closed under intersection, and com-

pute M
Ymp

jm((K×)I )�Kmp
(Ṗ , Q̇, Ṙ) using these larger sets, then we get the same answer for Πvi

k [· · ·].
Replacing all three sets by {A×

I,K,φ : K finite, φ : I → K surjective}, Eq. (63) becomes:

Πvi
k

[
P(I,�)(fi : i ∈ I )

]=
∑

m∈M,n∈Nnm,p∈Pm,

Ṗ ,Ṙ∈{A×
I,K,φ : K finite,

φ : I→K surjective},
Ṙ⊆Ṗ ,MI (Ṗ ,Ṗ ,Ṙ) �=0,dim Ṙ=k

MI (Ṗ , Ṗ , Ṙ) · cmn

· [([Wmn ×Vm Y Ṗ
mp/Gm � (Kmp)

Ṗ
]
,σ (I ) ◦ ξmnp

)]
. (65)

Here MI(Ṗ , Ṗ , Ṙ) is M
Ymp

jm((K×)I )�Kmp
(Ṗ , Ṗ , Ṙ) computed using {A×

I,K,φ : K finite, φ : I → K

surjective} in place of P,Q,R(· · ·), and may be written explicitly as in (76) below. We have also
used the fact [11, Lemma 5.9] that MI(Ṗ , Q̇, Ṙ) = 0 unless Ṗ , Q̇ are the smallest elements con-
taining Ṗ ∩ Q̇, which forces Ṗ = Q̇ as Ṗ , Q̇ take values in the same set. We may rewrite (65) as

Πvi
k

[
P(I,�)(fi : i ∈ I )

]
=

∑
iso. classes of finite
sets K,k�|K|�|I |

∑
φ : I→K
surjective

NI,K,φ,k

·
[ ∑
m∈M,n∈Nnm,p∈Pm,

cmn

[([
Wmn ×Vm Y

A×
I,K,φ

mp /Gm � (Kmp)
A×

I,K,φ
]
,σ (I ) ◦ ξmnp

)]]
, (66)

where
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NI,K,φ,k = 1

|K|! ·
∑

Ṙ∈{A×
I,L,ψ : L finite,ψ : I→L surjective}:

Ṙ⊆A×
I,K,φ,MI (A

×
I,K,φ,A

×
I,K,φ,Ṙ) �=0,dim Ṙ=k

MI

(
A×

I,K,φ,A
×
I,K,φ, Ṙ

)
, (67)

setting Ṗ = A×
I,K,φ and replacing the sum over Ṗ in (65) with sums over K , φ. The factor 1/|K|!

in (67) compensates for the fact that if ı :K → K is a bijection then

A×
I,K,ı◦φ = A×

I,K,φ,

and there are |K|! such bijections ı, so each A×
I,K,φ is represented by |K|! choices of K,φ in

(66). Note that NI,K,φ,k in (67) lies in Q and depends only on I , K , φ up to isomorphism and k,
as we want.

Now let I , K , φ be as in (66) and define a partial order � on I as in (52). Then � dominates
� and we have a 1-morphism Q(I,�,�) :M(I,�)A → M(I,�)A. In a similar way to (54),
we claim there is a natural 1-isomorphism

Hmp ×ιmp,M(I,�)A,Q(I,�,�) M(I,�)A ∼= [
Y

A×
I,K,φ

mp /Gm � (Kmp)
A×

I,K,φ
]
, (68)

where ιmp :Hmp → M(I,�)A is the inclusion. To see this, observe that a point of the r.h.s.
of (68) is equivalent to a point [(σ, ι,π)] in Hmp(K) ⊆ M(I,�)A together with a choice of
commutative diagram (64) in which Ṗ = j−1

m (A×
I,K,φ).

That is, the (I,�)-configuration (σ, ι,π) is equipped with a choice of K-group morphism
ρ :A×

I,K,φ → Aut(σ, ι,π) such that
∏

i∈I σ ({i})∗ ◦ ρ :A×
I,K,φ → ∏

i∈I Aut(σ ({i})) maps δ 
→
(δ(i) idσ({i}))i∈I . It is not difficult to show that choosing such a ρ is equivalent, up to canonical
isomorphism, to choosing an (I,�)-improvement of (σ, ι,π), in the sense of [12, §6], and (68)
follows. Using (55), (56) and (68) we see that the last line [· · ·] of (66) is

σ (I )∗ ◦ Q(I,�,�)∗ ◦
(∏

i∈I

σ
({i}))∗(⊗

i∈I

fi

)
= P(I,�)(fi : i ∈ I ),

and so (66) implies (52), completing the proof of Theorem 5.17. �
Write [f,g] = f ∗g−g ∗f for f,g ∈ SFal(ObjA) or S̄Fal(ObjA,∗,∗). Then [ , ] satisfies the

Jacobi identity and is a Lie bracket by Theorem 5.2. We shall prove an analogue of Theorem 4.9:

Theorem 5.18. Let Assumptions 2.11 and 3.4 hold. Then SFind
al (ObjA) and S̄F

ind
al (ObjA,∗,∗)

are closed under [ , ], and are Lie algebras, and (41) restricts to Lie algebra morphisms

SFind
al (ObjA), S̄F

ind
al (ObjA,∗,∗) → CFind(ObjA) when K has characteristic zero.

Proof. If f,g ∈ SFind
al (ObjA) or S̄F

ind
al (ObjA,∗,∗) then as ∗ = P({1,2},�) we have

Πvi
1

([f,g])= Πvi
1

(
P({1,2},�)(f, g)

)− Πvi
1

(
P({1,2},�)(g, f )

)
= (

P({1,2},�)(f, g) − P({1,2},•)(f, g)
)− (

P({1,2},�)(g, f ) − P({1,2},•)(g, f )
)

= P({1,2},�)(f, g) − P({1,2},�)(g, f ) = [f,g]
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by Theorem 5.17, where • is the partial order on {1,2} with i • j if i = j , so that by symmetry

P({1,2},•)(f, g) = P({1,2},•)(g, f ). Therefore [f,g] also lies in SFind
al (ObjA) or S̄F

ind
al (ObjA,∗,∗),

proving the first part.
For the second part, combining Corollary 5.11 with the fact that Πvi

k is the identity on

[(U × [Spec K/(K×)l], ρ)] if k = l and 0 otherwise, we see that S̄F
ind
al (ObjA,∗,∗) is gener-

ated over Λ,Λ◦ or Ω by elements [(U × [Spec K/K×], ρ)] for U a quasiprojective K-variety.
If u ∈ U(K) with ρ∗(u) = [X] ∈ ObjA(K) then ρ∗ : K× → Aut(X) is injective and u contributes
χ(Aut(X)/ρ∗(K×)) to π̄ stk

ObjA
([(U × [Spec K/K×], ρ)]) at [X]. Since K× ∼= ρ(K×) ⊆ Aut(X)

we see that rk Aut(X) � 1, and if rk Aut(X) > 1 then the action of a maximal torus of Aut(X)

fibres Aut(X)/ρ∗(K×) by tori, forcing χ(Aut(X)/ρ∗(K×)) = 0.
Thus u makes a nonzero contribution at [X] only if rk Aut(X) = 1, that is, if X is indecom-

posable. Hence π̄ stk
ObjA

([(U × [Spec K/K×], ρ)]) is supported on indecomposables, and as such

[(U × [Spec K/K×], ρ)] generate S̄F
ind
al (ObjA,∗,∗) we see that π̄ stk

ObjA
maps to CFind(ObjA),

and is a Lie algebra morphism by Theorem 5.2. The result for π stk
ObjA

follows as π stk
ObjA

=
π̄ stk

ObjA
◦ Π̄

∗,∗
ObjA

. �
5.3. Relations between ∗ and Π[I,κ] in S̄Fal(ObjA,∗,∗)

Theorem 5.18 gives a compatibility between multiplication ∗ and the projections Πvi
n , Π[I,κ],

in that subspaces SFind
al (ObjA), S̄F

ind
al (ObjA,∗,∗) defined using the Πvi

n are closed under
(f, g) 
→ f ∗ g − g ∗ f . This is one consequence of a deeper relationship, in which we can
write Π[K,μ](f ∗ g) explicitly in terms of the components Π[I,κ](f ), Π[J,λ](g). This deeper
relationship is very complicated to write down, so for simplicity we do so only for f,g ∈
S̄Fal(ObjA,∗,∗), when we can modify Proposition 2.17 to represent f,g and f ⊗ g in a special
way.

Theorem 5.19. Suppose Assumptions 2.11 and 3.4 hold, [I, κ], [J,λ], [K,μ] are as in Defi-
nition 5.12, and f , g lie in S̄Fal(ObjA,Υ,Λ), S̄Fal(ObjA,Υ,Λ◦) or S̄Fal(ObjA,Θ,Ω) with
Π[I,κ](f ) = f and Π[J,λ](g) = g. Choose constructible T ⊆ ObjA(K) × ObjA(K) with f ⊗ g

supported on T , and use the notation of Proposition 5.15. Write (K×)I , . . . for the K-groups of
functions I, . . . → K×.

Then we may represent f ⊗ g ∈ S̄F(ObjA × ObjA,∗,∗) as

f ⊗ g =
∑

m∈M,n∈Nm

cmn

[(
Wmn × [

Spec K/
(
K×)I × (

K×)J ], τmn

)]
, (69)

where Nm is finite, cmn ∈ Λ,Λ◦ or Ω , Wmn is a quasiprojective K-variety, and

τmn :Wmn × [
Spec K/

(
K×)I × (

K×)J ]→ Gm ⊆ ObjA × ObjA

is induced, using the 1-isomorphism Gm
∼= [Vm/Gm], by an injective K-group morphism

ρmn : (K×)I × (K×)J → Gm and a morphism σmn :Wmn → V
ρmn((K

×)I×(K×)J )
m ⊆ Vm.

These have the property that if w ∈ Wmn(K) projects to v ∈ Vm(K) and ([X], [Y ]) ∈
ObjA(K) × ObjA(K) then ρmn maps to StabGm(v) ⊆ Gm, and there exist splittings

X ∼=
⊕

Xi and Y ∼=
⊕

Yj
i∈I j∈J
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in A with [Xi] = κ(i) and [Yj ] = λ(j) in C(A) for all i, j, such that composing ρmn with (45)
yields the K-group morphism (K×)I × (K×)J → Aut(X) × Aut(Y ) given by

(γ, δ) 
→
(∑

i∈I

γ (i) idXi
,
∑
j∈J

δ(j) idYj

)
.

In this representation we have

f ∗ g =
∑

m∈M,n∈Nm

cmn

[(
Wmn × [

E1
m/
((

K×)I × (
K×)J )� E0

m

]
,σ
({1,2}) ◦ ξmn

)]
, (70)

where (K×)I ×(K×)J acts on E0
m, E1

m via ρmn and the Gm-actions, and E0
m acts trivially on E1

m,
and σmn, ρmn induce

ξmn :Wmn × [
E1

m

/((
K×)I × (

K×)J )� E0
m

]→ [
Vm × E1

m/Gm � E0
m

]
, (71)

using (46) to regard the r.h.s. of (71) as a substack of M({1,2},�)A.
If L is a finite set and φ : I → L, ψ :J → L maps with φ � ψ : I � J → L surjective, define

TL,φ,ψ ⊆ (K×)I × (K×)J to be the subtorus of (γ, δ) ∈ (K×)I × (K×)J for which there exists
ε :L → K× with γ (i) = ε ◦ φ(i) and δ(j) = (ε ◦ ψ(j))−1 for all i ∈ I and j ∈ J . Then ε

determines γ, δ uniquely, so that TL,φ,ψ
∼= (K×)L. For each m ∈ M , n ∈ Nm and i = 0,1 write

(Ei
m)TL,φ,ψ for the vector subspace of Ei

m fixed by ρmn(TL,φ,ψ ). Write Aut(K,μ) for the finite
group of bijections ι :K → K with μ = μ ◦ ι. Then

Π[K,μ](f ∗ g)

= 1

|Aut(K,μ)|
∑

iso. classes
of finite sets L

(−1)|L|−|K|

|L|!
∑

φ : I→L,ψ : J→L and
θ : L→K: φ�ψ surjective,
μ(k)=κ((θ◦φ)−1(k))+
λ((θ◦ψ)−1(k)), k∈K

∏
k∈K

(∣∣θ−1(k)
∣∣− 1

)!

∑
m∈M,n∈Nm

cmn

[(
Wmn × [(

E1
m

)TL,φ,ψ
/((

K×)I × (
K×)J )�

(
E0

m

)TL,φ,ψ
]
,σ
({1,2}) ◦ ξmn

)]
.

(72)

Proof. By Corollary 5.16 we can write f ⊗ g in the form (48). The proofs of the first part of
Proposition 2.17 in [11, §5.3] and Corollary 5.11 then show we can write f ⊗g as a sum of terms
cmn[(Wmn ×[Spec K/T ], τmn)], where T ∼= (K×)k and τmn maps to Gm ⊆ ObjA ×ObjA and is
induced by a K-group morphism ρmn :T → Gm and a morphism σmn :Wmn → V ρmn(T )

m ⊆ Vm.
As Π[I,κ](f ) = f and Π[J,λ](g) = g we can show using Definition 5.12 that the sum can

be chosen such that when w ∈ Wmn(K) projects to v ∈ Vm(K) and ([X], [Y ]) ∈ ObjA(K) ×
ObjA(K), there is an isomorphism T ∼= (K×)I × (K×)J for which the second and third para-
graphs hold. This isomorphism may depend on w, but it does so constructibly, so refining the sum
we can take the isomorphism to be constant on Wmn(K), and identify T with (K×)I × (K×)J .
This gives the first three paragraphs of the theorem.

Equation (70) now follows from (69) as for (51). To prove (72) we apply Π[K,μ] to (70) and
use Definition 5.12 and [11, §5.2]. Deleting terms with Wmn(K) = ∅, let m ∈ M and n ∈ Nm and
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pick w ∈ Wmn(K), projecting to v ∈ Vm(K) and ([X], [Y ]) ∈ ObjA(K) × ObjA(K). Then the
first part of the theorem gives splittings X ∼=⊕

i∈I Xi and Y ∼=⊕
j∈J Yj . By Proposition 5.15(a)

we have isomorphisms

E0
m

∼= Hom(Y,X) ∼=
⊕

i∈I, j∈J

Hom(Yj ,Xi),

E1
m

∼= Ext1(Y,X) ∼=
⊕

i∈I, j∈J

Ext1(Yj ,Xi).

Under these isomorphisms, (γ, δ) ∈ (K×)I × (K×)J acts on E0
m,E1

m via ρmn by multiplying by
γ (i)δ(j) in Hom(Yj ,Xi), Ext1(Yj ,Xi). It follows that for L, φ, ψ and TL,φ,ψ as in the theorem
we have

(
E0

m

)TL,φ,ψ ∼=
⊕

i∈I, j∈J :
φ(i)=ψ(j)

Hom(Yj ,Xi),
(
E1

m

)TL,φ,ψ ∼=
⊕

i∈I, j∈J :
φ(i)=ψ(j)

Ext1(Yj ,Xi). (73)

In applying Π[K,μ] to (70) we can take the Wmn factor outside, as ((K×)I × (K×)J )�E0
m acts

trivially upon it. If Hom(Yj ,Xi) �∼= 0 �∼= Ext1(Yj ,Xi) for all i, j then using (73) and the notation
of [11, §5.2] we find that

P
(
E1

m,
(
K×)I × (

K×)J )
= Q

(((
K×)I × (

K×)J )� E0
m,
(
K×)I × (

K×)J )
= R

(
E1

m,
((

K×)I × (
K×)J )� E0

m,
(
K×)I × (

K×)J )
= {TL,φ,ψ : L a finite set, φ : I → L, ψ :J → L, φ � ψ surjective}. (74)

If some Hom(Yj ,Xi),Ext1(Yj ,Xi) are zero then P,Q,R(· · ·) may be subsets of the values
in (74). However, since the formulae in [11, §5.2] give the same answers if we replace P(X,T G),
Q(G,T G), R(X,G,T G) by larger finite sets of K-subgroups of T G closed under intersections,
the values (74) give the correct answer for computing Π[K,μ](· · ·), so we shall still use them.

Now let P ∈ P(· · ·) and R ∈ R(· · ·) with R ⊆ P and 0 �= c ∈ Q, and ν be the ObjA-weight
function of Definition 5.12 defining Π[K,μ]. Then [11, Definition 5.15] defines a constructible
set (Wmn × E1

m)
P,R
ν,c in (Wmn × E1

m)(K), which we will evaluate. Let (w, e) ∈ (Wmn × E1
m)(K)

project to ([X], [Y ]) ∈ ObjA(K) × ObjA(K) under (σ ({1}) × σ ({2}))∗ and to [Z] ∈ ObjA(K)

under σ ({1,2})∗. Let R = TL,φ,ψ for some L,φ,ψ . Then there is an exact sequence 0 → X →
Z → Y → 0 invariant under R. The splittings X ∼= ⊕

i∈I Xi , Y ∼= ⊕
j∈J Yj correspond to a

splitting Z ∼=⊕
l∈L Zl with Zl in an exact sequence

0 →
⊕

i∈I : φ(i)=l

Xi → Zl →
⊕

j∈J : ψ(j)=l

Yj → 0.

It follows that [Zl] = κ(φ−1(l)) + λ(ψ−1(l)) in C(A).
Under the natural isomorphism R ∼= (K×)L, ε ∈ (K×)L acts on Z as

∑
l∈L ε(l) idZl

. From
Definition 5.12 we find ν(R, [Z], (σ ({1,2}) ◦ ξmn)∗) is 1 if there is a bijection θ :L → K with
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μ(k) = κ(φ̄−1(k)) + λ(ψ̄−1(k)) for k ∈ K , where φ̄ = θ ◦ φ and ψ̄ = θ ◦ ψ , and 0 otherwise.
Then R = TK,φ̄,ψ̄ . So [11, Definition 5.15] gives

(
Wmn × E1

m

)P,R

ν,c
= Wmn(K) × (

E1
m

)P
(K)

if c = 1 and R = TK,φ̄,ψ̄ as above, and

(
Wmn × E1

m

)P,R

ν,c
= ∅

otherwise for c �= 0. The definitions now yield:

Π[K,μ]
([(

Wmn × [
E1

m/
((

K×)I × (
K×)J )� E0

m

]
,σ
({1,2}) ◦ ξmn

)])
=

∑
P,R∈P(E1

m,(K×)I×(K×)J ): R⊆P,

R=TK,φ̄,ψ̄ , φ̄ : I→K, ψ̄ : J→K,

μ(k)=κ(φ̄−1(k))+λ(ψ̄−1(k)), k∈K,

M
E1
m

((K×)I ×(K×)J )�E0
m
(P,P,R) �=0,

M
E1

m

((K×)I×(K×)J )�E0
m
(P,P,R)

· [(Wmn × [(
E1

m

)P/((
K×)I × (

K×)J )�
(
E0

m

)P ]
,σ
({1,2}) ◦ ξmn

)]
. (75)

Here [11, §5.2] actually defines Πν
F
(· · ·) as a sum over triples P ∈ P(X,T G), Q ∈Q(G,T G)

and R ∈ R(X,G,T G) with R ⊆ P ∩ Q and MX
G(P,Q,R) �= 0. But P , Q are the smallest el-

ements of P(X,T G), Q(G,T G) containing P ∩ Q by [11, Lemma 5.9], so (74) implies that
P = Q, which we have included in (75).

To get from (75) to (72) we set P = TL,φ,ψ and R = TK,φ̄,ψ̄ in (72). Then R ⊆ P if and only

if there exists a surjective θ :L → K with φ̄ = θ ◦φ and ψ̄ = θ ◦ψ , which is then unique. So we
replace the sums over P , R in (75) with sums over isomorphism classes of L and maps φ, ψ , θ ,
as in (72). The combinatorial factors in the second line of (72) are then the product of

M
E1

m

((K×)I×(K×)J )�E0
m
(P,P,R) = (−1)|L|−|K| ∏

k∈K

(∣∣θ−1(k)
∣∣− 1

)! (76)

in (75), which can be computed explicitly using (74) and [11, Definition 5.8], and fac-
tors 1/|Aut(K,μ)|, 1/|L|! to compensate for the fact that each pair (P,R) in (75) is
(TL,φ,ψ , TK,θ◦φ,θ◦ψ) for exactly |Aut(K,μ)| · |L|! quadruples (L,φ,ψ, θ) in (72). This com-
pletes the proof. �

This theorem will be very useful in Section 6 when we impose extra assumptions on A im-
plying formulae for dimE0

m − dimE1
m and dim(E0

m)TL,φ,ψ − dim(E1
m)TL,φ,ψ , as then (72) will

enable us to construct algebra morphisms from S̄Fal(ObjA,∗,∗) to certain explicit algebras
B(A,Λ,χ), B(A,Λ◦, χ) and C(A,Ω,χ).

Theorems 5.17–5.19 are an important reason for introducing virtual rank in [11, §5] and the
operators Πvi

n , Π[I,κ]. They show these operators have a useful compatibility with P(I,�) and ∗,
although this is difficult to state. For comparison, the simpler idea of real rank and operators Π re

n

in [11, §5.1] have no such compatibility with ∗, as far as the author knows.
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5.4. Generalization of other parts of Section 4

So far we have generalized the material of Sections 4.1 and 4.8 to stack algebras. We can also
generalize much of the rest of Section 4, using the techniques of Sections 5.1 and 5.2. This is
straightforward, so we just sketch the main ideas.

For Section 4.2, we can use the idea of local stack functions LSF,LSF(F) in [11, §4] to

define spaces ˙LSF, ˙LSF(ObjA) and ˙LSF, ˙̄LSF, ˙̄LSF(ObjA,∗,∗) of stack functions f in LSF,
LSF(ObjA) and LSF, ¯LSF, ¯LSF(ObjA,∗,∗) supported on

∐
α∈S ObjαA for finite S ⊆ C̄(A), and

subspaces ˙LSFal(ObjA), ˙̄LSFal(ObjA,∗,∗) analogous to SFal(ObjA), S̄Fal(ObjA,∗,∗). Multi-
plication ∗ is well defined on all of these, making them into associative algebras.

For Section 4.3, define ∗L : SF(ObjA) × SF(M({1,2},�)A) → SF(M({1,2},�)A) by

f ∗L r = Q
({1,2,3},�, {1,2},�, β

)
∗
[(

σ
({2})

× Q
({1,2,3},�, {1,2},�, α

))∗
(f ⊗ r)

]
,

by analogy with (18), and define ∗R in a similar way. Then the analogue of Theorem 4.7 holds and
shows ∗L,∗R are left and right representations of the algebra SF(ObjA) on SF(M({1,2},�)A).
The same result holds if we work with any of the spaces SF,SF, S̄F, S̄F(∗) or their local stack
function versions. If K has characteristic zero, the linear maps π stk

ObjA
, π stk

M({1,2},�)A
intertwine

the representations ∗L, ∗R of SF(ObjA) on SF(M({1,2},�)A) with the representations ∗L, ∗R

of CF(ObjA) on CF(M({1,2},�)A) of Section 4.3.
The generalization of Section 4.5 is immediate, with Assumption 4.11 implying that the

subspaces SFfin,SFfin(ObjA) and SFfin, S̄Ffin, S̄Ffin(ObjA,∗,∗) of stack functions with finite
support are closed under ∗. Each stack function in one of these subspaces is a sum of stack
functions supported over single points [X] ∈ ObjA(K). So using the relations in SFfin, S̄Ffin,

S̄Ffin(ObjA,∗,∗) we can write down simple representations of these subspaces. For instance:

Lemma 5.20. The subspace SFfin(ObjA,Υ,Λ) of f in SF(ObjA,Υ,Λ) with finite sup-
port has Λ-basis [(Spec K,X)] for [X] ∈ ObjA(K). Thus, ιObjA : CFfin(ObjA) ⊗Q Λ →
SFfin(ObjA,Υ,Λ) is an isomorphism of Λ-modules.

If Assumption 4.11 holds then CFfin(ObjA) ⊗Q Λ and SFfin(ObjA,Υ,Λ) are both Λ-
algebras, but in general ιObjA is not an isomorphism of Λ-algebras. Rather, SFfin(ObjA,Υ,Λ)

may be thought of as a ‘quantized’ version of the ‘classical’ algebra CFfin(ObjA) ⊗Q Λ.
To generalize Section 4.6, let Assumptions 2.11, 3.4 and 4.11 hold, and consider the Λ-univer-

sal enveloping algebra UΛ(S̄F
ind
al,fin(ObjA,Υ,Λ)) of the Λ-Lie subalgebra S̄F

ind
al,fin(ObjA,Υ,Λ)

of stack functions with finite support in S̄F
ind
al (ObjA,Υ,Λ). Then

Φfin :UΛ
(
S̄Find

al,fin(ObjA,Υ,Λ)
)→ S̄Fal,fin(ObjA,Υ,Λ)

is an isomorphism. The same holds for UΛ◦
(S̄F

ind
al,fin(ObjA,Υ,Λ◦)) and UΩ(S̄F

ind
al,fin(ObjA,

Θ,Ω)). The author is not sure whether Φ is injective in the non-finite-support case.
We do not generalize Section 4.7, as there are problems with the analogue of the proof that

Δ is multiplicative in Theorem 4.17. We have already discussed the analogue of Section 4.8 in
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Section 5.1. In the quiver examples of Section 4.9, we can use the algebra SFfin(ObjA,Υ,Λ) to
construct examples of quantum groups.

Example 5.21. Suppose Assumption 2.11 holds for K, Υ , Λ, and let g = n+ ⊕ h ⊕ n−,
Γ and Q = (Q0,Q1, b, e) be as in Example 4.23 or 4.25. Then Assumption 3.4 holds for
A = mod-KQ, and there are simple elements Vi ∈ A for i ∈ Q0. Write δ̄[Vi ] for the stack func-
tion in SF(ObjA,Υ,Λ) associated to the constructible set {[Vi]} ⊆ ObjA(K), and let C̄ be the
Λ-subalgebra of SF(ObjA,Υ,Λ) generated by the δ̄[Vi ] for i ∈ Q0. This is a stack function
version of the composition algebra C of Section 4.1. Define eij for i, j ∈ Q0 by eii = 1 and
−eij is the number of edges

i• → j• in Q. Then dim Ext1(Vi,Vj ) = −eij for i �= j in Q0. De-
fine aij = eij + eji .

Now the isomorphism C ∼= U(n+) in Example 4.25 identifies δ[Vi ] with ei ∈ U(n+), and holds
because the δ[Vi ] satisfy the identity

(
ad(δ[Vi ])

)1−aij δ[Vj ] in CF(ObjA) if i �= j ∈ Q0, (77)

known as the Serre relations. We will explain the corresponding relations for the δ̄[Vi ] in
SF(ObjA,Υ,Λ). For 0 � k � n define the Gauss polynomial

(
n

k

)
�

= (�n − 1)(�n−1 − 1) · · · (�n−k+1 − 1)

(�k − 1)(�k−1 − 1) · · · (� − 1)
.

With this notation, for i �= j ∈ Q0 we claim that

1−aij∑
k=0

(−1)k
(

1 − aij

k

)
�

�−k(1−aij−k)/2δ̄∗k

[Vi ] ∗ δ̄[Vj ] ∗ δ̄∗1−aij −k

[Vi ] = 0. (78)

Here f ∗k
means f ∗f ∗· · ·∗f , with f occurring k times. Equation (78) is known as the quantum

Serre relations, and with q in place of � and X+
i in place of δ̄[Vi ] it was introduced by Drinfeld

[4, Example 6.2] as the defining relations of the quantum group Uq(n+). We recover (77) from
(78) by replacing δ̄[Vi ] by δ[Vi ] and taking the limit � → 1.

To prove (78) we can adapt the proof in Ringel [24, §2]. Ringel works over finite fields with q

elements, so that to define his Ringel–Hall multiplication he simply counts numbers of filtrations
satisfying some conditions, giving answers which are polynomials in q . In our case, using the
ideas of Sections 5.1 and 5.2 we translate Ringel’s manipulation of finite counts qk into addition
and subtraction of constructible sets of the form Kk , which become factors �k by the relations in
SF(ObjA,Υ,Λ). We leave the details to the reader.

Let the ‘quantum group’ U�(n+) be defined by the usual quantum Serre relations over the
algebra Λ. Then from (78) we obtain a unique, surjective algebra morphism U�(n+) → C̄. In
the case of Example 4.23, when SFfin(ObjA,Υ,Λ) = SF(ObjA,Υ,Λ), we can use Lemma 5.20
and U(n+) ∼= C to show this is an isomorphism. This is a Ringel–Hall-type realization of U�(n+)

using stack functions, parallel to those of Ringel [24] using finite fields, and Lusztig [19, Theo-
rem 10.17] using perverse sheaves. We state this in the following theorem:

Theorem 5.22. Let g = n+ ⊕ h ⊕ n− be a Kac–Moody algebra constructed from an undirected
graph Γ , and Q be a quiver with underlying graph Γ and no oriented cycles. Set A = mod-KQ
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and construct the stack composition algebra C̄ in SF(ObjA,Υ,Λ) as above. Then there is a
natural surjective algebra morphism U�(n+) → C̄ from the quantum group U�(n+) over Λ of the
positive part of g. If Γ is of type A, D or E, so that g is finite-dimensional, this is an isomorphism.

Remark 5.23. This suggests that stack algebras such as SF(ObjA,Υ,Λ) can be regarded as
quantized versions of CF(ObjA), with quantum parameter � = Υ ([K]). However, the theorem
is less satisfactory than it first appears. In it we have defined the ‘quantum group’ U�(n+) by
the quantum Serre relations over the algebra Λ of Assumption 2.11. Now by definition � − 1 is
invertible in Λ, so we cannot take Λ = C[[� − 1]], the algebra of formal power series in � − 1,
conventionally used to define quantum groups as in Drinfeld [4]. Thus U�(n+)/(� − 1)U�(n+)

is 0, rather than U(n+) as in the usual definition. Also, we would have liked to recover the
classical case of Section 4.9 by an algebra morphism SF(ObjA,Υ,Λ) → CF(ObjA), but there
is no such morphism.

The obvious resolution to both these objections is to work instead in the space S̄F(ObjA,

Υ,Λ◦), over the algebra Λ◦ in which � − 1 is not invertible, which does have an algebra mor-
phism π̄ stk

ObjA
: S̄F(ObjA,Υ,Λ◦) → CF(ObjA). Then we could define U�(n+) over Λ◦ rather

than Λ, which would in fact allow Λ◦ = C[[� − 1]]. Unfortunately, though, the quantum Serre
relations (78) do not hold in S̄F(ObjA,Υ,Λ◦), because its proof mixes terms with stabilizer
groups of different ranks, which are separated in S̄F(ObjA,Υ,Λ◦).

One way out may be to define a new space SF(ObjA,Υ,Λ◦) to be the Λ◦-submodule
of SF(ObjA,Υ,Λ) generated by equivalence classes [(R, ρ)] with ρ representable. It is a
Λ◦-subalgebra of SF(ObjA,Υ,Λ), so (78) holds in it. Define C̄◦ to be the Λ◦-subalgebra of
SF(ObjA,Υ,Λ◦) generated by the δ̄[Vi ], and U�(n+)◦ to be the quantum group defined over Λ◦.
Then there is a surjective morphism U�(n+)◦ → C̄◦. There should also be an algebra morphism
SF(ObjA,Υ,Λ◦) → CF(ObjA) defined in the same way as π̄ stk

ObjA
, which projects C̄◦ → C

commuting with the natural projection U�(n+)◦ → U(n+). If we knew that C̄◦ was a free
Λ◦-submodule we could use this and the isomorphism C ∼= U(n+) of Example 4.25 to show
that C̄◦ ∼= U�(n+)◦.

6. Morphisms from stack (Lie) algebras

If A = mod-KQ for a quiver Q, or A = coh(P ) for a smooth projective curve P , there is a
biadditive χ :K(A) × K(A) → Z called the Euler form with

dimK Hom(X,Y ) − dimK Ext1(X,Y ) = χ
([X], [Y ]) for all X,Y ∈ A.

Assuming this, Sections 6.1–6.5 construct algebra morphisms ΦΛ, ΨΛ, ΨΛ◦
, ΨΩ from

SF(ObjA), S̄Fal(ObjA,∗,∗) to explicit algebras A(A,Λ,χ), B(A,Λ or Λ◦, χ) and C(A,Ω,χ)

depending only on C(A), χ , Λ, Λ◦, Ω , which restrict to Lie algebra morphisms from

S̄F
ind
al (ObjA,∗,∗) to B ind(A,Λ or Λ◦, χ), Cind(A,Ω,χ).
In a similar way, if A = coh(P ) for P a Calabi–Yau 3-fold then

(
dimK Hom(X,Y ) − dimK Ext1(X,Y )

)− (
dimK Hom(Y,X) − dimK Ext1(Y,X)

)
= χ̄

([X], [Y ]) for all X,Y ∈ A,
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for an antisymmetric bilinear χ̄ :K(A) × K(A) → Z. Assuming this, Section 6.6 constructs a

Lie algebra morphism ΨΩ : S̄F
ind
al (ObjA,Θ,Ω) → Cind(A,Ω, 1

2 χ̄).
These (Lie) algebra morphisms will be essential tools in the sequels [13,14] on stability

conditions. Given a permissible weak stability condition (τ, T ,�) on A, in [13] we will con-
struct interesting subalgebras H̄pa(τ ), H̄to(τ ) of SFal(ObjA) and Lie subalgebras L̄pa(τ ), L̄to(τ )

of SFind
al (ObjA). Under mild conditions, [14] shows these (Lie) subalgebras are independent

of the choice of (τ, T ,�), and gives combinatorial basis change formulae relating bases of
H̄pa(τ ), . . . , L̄to(τ ) associated to (τ, T ,�) and (τ̃ , T̃ ,�).

Thus ΦΛ, ΨΛ, ΨΛ◦
, ΨΩ induce morphisms H̄pa(τ ), H̄to(τ ) → A,B,C(A,∗, χ) and

L̄pa(τ ), L̄to(τ ) → B ind,Cind(A,∗, χ). We shall regard these as encoding interesting families
of invariants of A, (τ, T ,�), which ‘count’ τ -(semi)stable objects and configurations of objects
in A with fixed classes in C(A). The fact that ΦΛ, . . . ,Ψ Ω are (Lie) algebra morphisms imply
multiplicative identities on the invariants, and the basis change formulae imply transformation
laws for the invariants from (τ, T ,�) to (τ̃ , T̃ ,�).

6.1. Identities relating iΛ and ∗,P(I,�)

Recall that a K-linear abelian category A is called of finite type if Exti (X,Y ) is a finite-
dimensional K-vector space for all X,Y ∈ A and i � 0, and Exti (X,Y ) = 0 for i � 0. Then
there is a unique biadditive map χ :K0(A) × K0(A) → Z on the Grothendieck group K0(A)

known as the Euler form, satisfying

χ
([X], [Y ])=

∑
i�0

(−1)i dimK Exti (X,Y ) for all X,Y ∈A. (79)

We shall suppose K(A) in Assumption 3.4 is chosen such that χ factors through the projection
K0(A) → K(A), and so descends to χ :K(A) × K(A) → Z. All this holds for the examples
A = coh(P ) in [12, Example 9.1] with P a smooth projective K-scheme, for the quiver examples
A = mod-KQ in [12, Example 10.5], and for many of the other examples of [12, §10].

Now assume Exti (X,Y ) = 0 for all X,Y ∈A and i > 1. Then (79) becomes

dimK Hom(X,Y ) − dimK Ext1(X,Y ) = χ
([X], [Y ]) for all X,Y ∈A. (80)

This happens for A = coh(P ) in [12, Example 9.1] with P a smooth projective curve, and for
A = mod-KQ in [12, Example 10.5]. We shall prove that multiplication ∗ on SF(ObjA,Υ,Λ)

and iΛ in Proposition 2.16 satisfy an important identity.

Theorem 6.1. Let Assumptions 2.11 and 3.4 hold, and iΛ be as in Proposition 2.16. Suppose
χ :K(A)×K(A) → Z is biadditive and satisfies (80). Let f,g ∈ SF(ObjA,Υ,Λ) be supported
on ObjαA, Obj

β

A respectively, for α,β ∈ C̄(A). Write Π :ObjA → Spec K for the projection.
Then

i−1
Λ ◦ Π∗(f ∗ g) = �−χ(β,α)

(
i−1
Λ ◦ Π∗(f )

)(
i−1
Λ ◦ Π∗(g)

)
in Λ. (81)

Proof. Choose a constructible set T ⊆ ObjαA(K) × Obj
β

A(K) with f ⊗ g supported on T , and
use the notation of Proposition 5.15. Since SF(ObjA,Υ,Λ) is generated by [(U,ρ)] with U
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a variety and ρ representable, arguing as in Proposition 5.9 and Corollary 5.16 we may write
f ⊗ g and f ∗ g in the forms (48) and (51), for Nm finite and cmn ∈ Λ.

As iΛ is an algebra isomorphism we have

(
i−1
Λ ◦ Π∗(f )

)(
i−1
Λ ◦ Π∗(g)

)= i−1
Λ

(
Π∗(f ) · Π∗(g)

)= i−1
Λ ◦ (Π × Π)∗(f ⊗ g). (82)

Equations (48) and (51) and relations in SF(Spec K,Υ,Λ) imply that

i−1
Λ ◦ (Π × Π)∗(f ⊗ g) =

∑
m∈M,n∈Nm

cmnΥ
([Wmn]

)
Υ
([Gm])−1

, (83)

i−1
Λ ◦ Π∗(f ∗ g) =

∑
m∈M,n∈Nm

cmnΥ
([Wmn]

)
Υ
([
E1

m

])
Υ
([Gm])−1

Υ
([
E0

m

])−1
, (84)

using Assumption 2.11(ii) and that Gm � E0
m

∼= Gm × E0
m as K-varieties. But

Υ
([
E1

m

])
Υ
([
E0

m

])−1 = �dimE1
m�−dimE0

m = �−χ(β,α), (85)

by Assumption 2.11, Proposition 5.15(a), (80) and the fact that T ⊆ ObjαA(K)×Obj
β

A(K). Equa-
tion (81) now follows from (82)–(85). �

We generalize this to the operations P(I,�) of Definition 5.3. Theorem 6.1 is the case (I,�) =
({1,2},�) of Theorem 6.2.

Theorem 6.2. Suppose Assumptions 2.11 and 3.4 hold, and χ :K(A) × K(A) → Z is biaddi-
tive and satisfies (80). Let (I,�) be a finite poset, κ : I → C̄(A) and fi ∈ SF(ObjA,Υ,Λ) be
supported on Obj

κ(i)

A for all i ∈ I . Then

i−1
Λ ◦ Π∗

(
P(I,�)(fi : i ∈ I )

)=
[ ∏

i �=j∈I : i�j

�−χ(κ(j),κ(i))

]
·
[∏

i∈I

i−1
Λ ◦ Π∗(fi)

]
. (86)

Proof. When |I | = 0 or 1, Eq. (86) is obvious. Suppose by induction that (86) holds for |I | � n,
and let I , �, κ be as above with |I | = n + 1. Choose k ∈ I to be �-maximal, and define J =
I \ {k}, K = {i ∈ I : i � k}, L = J ∩ K , and φ :K → {1,2} by φ(i) = 1 for i ∈ L and φ(k) = 2.
Then a similar proof to [12, Theorem 7.10] shows the following is a Cartesian square:

M(I,�)A
Q(L,�,{1,2},�,φ)◦S(I,�,K)

S(I,�,J )×σ({k})

M({1,2},�)A

σ ({1})×σ ({2})

M(J,�, κ)A × ObjA
σ (L)×idObjA

ObjA × ObjA.

(87)

If fi ∈ SF(ObjA,Υ,Λ) for i ∈ I are as in the theorem we have
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i−1
Λ ◦ Π∗

(
P(I,�)(fi : i ∈ I )

)
= i−1

Λ ◦ Π∗ ◦ σ (I )∗
[(∏

i∈I

σ
({i}))∗(⊗

i∈I

fi

)]

= i−1
Λ ◦ Π∗ ◦ σ

({1,2})∗ ◦ (Q(L,�, {1,2},�, φ
) ◦ S(I,�,K)

)
∗

◦ (S(I,�, J ) × σ
({k}))∗[(∏

j∈J

σ
({j}))∗(⊗

j∈J

fj

)
⊗ fk

]

= i−1
Λ ◦ Π∗ ◦ σ

({1,2})∗ ◦ (σ ({1})× σ
({2}))∗

◦ (σ (L) × idObjA
)
∗

[(∏
j∈J

σ
({j}))∗(⊗

j∈J

fj

)
⊗ fk

]

= i−1
Λ ◦ Π∗

{(
σ (L)∗

[(∏
j∈J

σ
({j}))∗(⊗

j∈J

fj

)])
∗ fk

}

= �−χ(κ(k),κ(L))

(
i−1
Λ ◦ Π∗ ◦ σ (L)∗

[(∏
j∈J

σ
({j}))∗(⊗

j∈J

fj

)])(
i−1
Λ ◦ Π∗(fk)

)

=
[∏

i∈L

�−χ(κ(k),κ(i))

](
i−1
Λ ◦ Π∗ ◦ P(J,�)(fj : j ∈ J )

)(
i−1
Λ ◦ Π∗(fk)

)
. (88)

Here we have used (42) in the first step, 2-isomorphisms

Π ◦ σ (I ) ∼= Π ◦ σ
({1,2}) ◦ Q

(
L,�, {1,2},�, φ

) ◦ S(I,�,K) and∏
i∈I

σ
({i})∼=

((∏
j∈J

σ
({j}))× idObjA

)
◦ (S(I,�, J ) × σ

({k}))

in the second, Theorem 2.9 and (87) Cartesian in the third, (40) in the fourth, Theorem 6.1 and
σ (L)∗[(∏j∈J σ ({j}))∗(⊗j∈J fj )] supported on Obj

κ(L)

A in the fifth, and Π ◦ σ (L) ∼= Π ◦ σ (J )

and (42) in the sixth. Since |J | = n we can expand i−1
Λ ◦ Π∗ ◦ P(J,�)(fj : j ∈ J ) in the last

line of (88) using (86) with J in place of I , and this proves (86) for I . The theorem follows by
induction. �
6.2. Algebras A(A,Λ,χ) and morphisms to them

If the factor �−χ(β,α) were not there, Eq. (81) would say i−1
Λ ◦Π∗ is a morphism of Q-algebras.

We can make an algebra morphism ΦΛ : SF(ObjA,Υ,Λ) → A(A,Λ,χ) by introducing gener-
ators aα in A(A,Λ,χ) for α ∈ C̄(A), and twisting multiplication aα ! aβ in A(A,Λ,χ) by
�−χ(β,α).

Definition 6.3. Let Assumptions 2.11 and 3.4 hold. Then K(A) is an abelian group, C̄(A) ⊆
K(A) closed under addition, Λ a commutative Q-algebra, and � ∈ Λ is invertible. Suppose
χ :K(A) × K(A) → Z is a biadditive map. Using only this data K(A), C̄(A),Λ, �,χ we will
define a Q-algebra A(A,Λ,χ).
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Let aα for α ∈ C̄(A) be formal symbols, and A(A,Λ,χ) the Λ-module with basis {aα: α ∈
C̄(A)}. That is, A(A,Λ,χ) is the set of sums

∑
α∈C̄(A) λ

αaα with λα ∈ Λ nonzero for only
finitely many α. Addition, and multiplication by Q, are defined in the obvious way. Define a
multiplication ! on A(A,Λ,χ) by

(∑
i∈I

λia
αi

)
!

(∑
j∈J

μja
βj

)
=
∑
i∈I

∑
j∈J

λiμj�
−χ(βj ,αi )aαi+βj , (89)

where I , J are finite indexing sets, λi,μj ∈ Λ and αi,βj ∈ C̄(A). Using the biadditivity of χ it
is easy to verify ! is associative, and makes A(A,Λ,χ) into a Q-algebra (in fact, a Λ-algebra),
with identity a0.

For (I,�) a finite poset, define P(I,�) :
∏

i∈I A(A,Λ,χ) → A(A,Λ,χ) by

P(I,�)

[ ∑
ci∈Ci

μ
ci
i aα

ci
i : i ∈ I

]
=

∑
choices of
ci∈Ci for

all i∈I

[∏
i∈I

μ
ci
i

]
·
[ ∏

i �=j∈I : i�j

�
−χ(α

cj
j ,α

ci
i )

]
a
∑

i∈I α
ci
i , (90)

for Ci finite indexing sets, μci
i ∈ Λ and α

ci
i ∈ C̄(A). These P(I,�) satisfy (36).

Now for each α ∈ C̄(A) write iα :ObjαA → ObjA for the inclusion and Πα :ObjαA → Spec K

for the projection 1-morphisms, and let iΛ be as in Proposition 2.16. Define ΦΛ : SF(ObjA,Υ,Λ)

→ A(A,Λ,χ) by

ΦΛ(f ) =
∑

α∈C̄(A)

[
i−1
Λ ◦ Πα∗ ◦ i∗α(f )

]
aα for f ∈ SF(ObjA,Υ,Λ). (91)

This is well defined as f is supported on the disjoint union of ObjαA over finitely many α ∈ C̄(A),
so [i−1

Λ ◦ Πα∗ ◦ i∗α(f )] �= 0 in Λ for only finitely many α.

We can think of ΦΛ(f ) as encoding the ‘integral’ of f over ObjαA for all α.

Theorem 6.4. Let Assumptions 2.11 and 3.4 hold and χ :K(A) × K(A) → Z be biaddi-
tive and satisfy (80). Then ΦΛ : SF(ObjA,Υ,Λ) → A(A,Λ,χ) is a Λ-algebra morphism.
If (I,�) is a finite poset and fi ∈ SF(ObjA,Υ,Λ) for i ∈ I then ΦΛ(P(I,�)[fi : i ∈ I ]) =
P(I,�)[ΦΛ(fi): i ∈ I ].

Proof. Suppose f α,gβ ∈ SF(ObjA,Υ,Λ) are supported on ObjαA, Obj
β

A respectively, for
α,β ∈ C̄(A). Then for γ ∈ C̄(A) we have

Π
γ∗ ◦ i∗γ

(
f α
)=

{
Π∗(f α), α = γ ,

0, α �= γ ,
so ΦΛ

(
f α
)= [

i−1
Λ ◦ Π∗

(
f α
)]
aα by (91).

Similarly

ΦΛ
(
gβ
)= [

i−1
Λ ◦ Π∗(gβ)

]
aβ and ΦΛ

(
f α ∗ gβ

)= [
i−1
Λ ◦ Π∗

(
f α ∗ gβ

)]
aα+β,
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as f α ∗ gβ is supported on Obj
α+β

A . Thus

ΦΛ
(
f α ∗ gβ

)= ΦΛ
(
f α
)
! ΦΛ

(
gβ
)

follows from Eqs. (81) and (89). For the general case, any f,g ∈ SF(ObjA,Υ,Λ) may be written
as

f =
∑
α∈S

f α, g =
∑
β∈T

gβ

with S,T ⊂ C̄(A) finite and f α , gβ supported on ObjαA, Obj
β

A, so

ΦΛ(f ∗ g) = ΦΛ(f ) ! ΦΛ(g)

follows by linearity. Clearly ΦΛ is Λ-linear and ΦΛ(δ̄[0]) = a0, so ΦΛ is an algebra morphism.
The P(I,�) equation is proved in the same way, using (86) rather than (81). �
Remark 6.5. (a) Since

Π
Υ,Λ
ObjA

: SF(ObjA) → SF(ObjA,Υ,Λ)

is an algebra morphism,

ΦΛ ◦ Π
Υ,Λ
ObjA

: SF(ObjA) → A(A,Λ,χ)

is also an algebra morphism, which commutes with the P(I,�). The same applies to morphisms
ΦΛ ◦ Π

Υ,Λ
ObjA

from S̄F(ObjA,Υ,Λ) and S̄F(ObjA,Υ,Λ◦), and all the subalgebras SF(ObjA),

SFal(ObjA), . . . . We defined ΦΛ on SF(ObjA,Υ,Λ) as it is the coarsest choice.
(b) Suppose � admits a square root ℘ in Λ, that is, ℘2 = �. In Example 2.12 we can take

℘ = z. Define elements ãα = ℘−χ(α,α)aα in A(A,Λ,χ) for α ∈ C̄(A). Then the ãα are an
alternative basis for A(A,Λ,χ) over Λ, and

ãα ! ãβ = ℘χ(α,β)−χ(β,α)ãα+β,

by (89). This depends only on the antisymmetrization of χ . (This is not true for the P(I,�) in the
ãα basis, though.) If χ is symmetric, with χ(α,β) ≡ χ(β,α), then A(A,Λ,χ) is commutative
with ãα ! ãβ = ãα+β .

6.3. Algebras B(A,Λ,χ) and morphisms to them

Theorem 5.19 gave a compatibility between multiplication ∗ in S̄Fal(ObjA,Υ,Λ) and the
projections Π[I,κ]. We now exploit this to construct a larger algebra B(A,Λ,χ), with an algebra
morphism ΨΛ : S̄Fal(ObjA,Υ,Λ) → B(A,Λ,χ).

Definition 6.6. Let Assumptions 2.11 and 3.4 hold, and χ :K(A) × K(A) → Z be a biaddi-
tive map. Using only the data K(A),C(A),Λ, �,χ we will define a Q-algebra B(A,Λ,χ).
Consider pairs (I, κ) for κ : I → C(A) and ≈-equivalence classes [I, κ] as in Definition 5.12.
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Introduce formal symbols b[I,κ] for all such equivalence classes [I, κ]. Let B(A,Λ,χ) be the
Λ-module with basis the b[I,κ]. That is, B(A,Λ,χ) is the set of sums

∑
classes [I,κ] β[I,κ]b[I,κ]

with β[I,κ] ∈ Λ nonzero for only finitely many [I, κ]. Addition, and multiplication by Q, are
defined in the obvious way. Define a multiplication ! on B(A,Λ,χ) by

b[I,κ] ! b[J,λ]

=
∑

eq. classes [K,μ]
b[K,μ] · (� − 1)|K|−|I |−|J |

|Aut(K,μ)|

·
[ ∑

iso.
classes
of finite
sets L

(−1)|L|−|K|

|L|!
∑

φ : I→L,ψ : J→L and
θ : L→K: φ�ψ surjective,
μ(k)=κ((θ◦φ)−1(k))+
λ((θ◦ψ)−1(k)), k∈K

∏
k∈K

(∣∣θ−1(k)
∣∣− 1

)! ∏
i∈I, j∈J :
φ(i)=ψ(j)

�−χ(λ(j),κ(i))

]
,

(92)

extended Λ-bilinearly. An elementary but lengthy combinatorial calculation shows ! is associa-
tive, and makes B(A,Λ,χ) into a Q-algebra (in fact, a Λ-algebra), with identity b[∅,∅], writing ∅
for the trivial map ∅ → C(A). Define B ind(A,Λ,χ) to be the subspace of

∑
[I,κ] β[I,κ]b[I,κ] in

B(A,Λ,χ) with β[I,κ] = 0 unless |I | = 1. Equation (92) implies B ind(A,Λ,χ) is closed under
the Lie bracket [b, c] = b ! c − c ! b, and so is a Q- or Λ-Lie algebra.

Let f ∈ S̄Fal(ObjA,Υ,Λ), so that Π[I,κ](f ) ∈ S̄Fal(ObjA,Υ,Λ) and Π∗ ◦ Π[I,κ](f ) ∈
S̄F(Spec K,Υ,Λ). Using the explicit form [11, Proposition 5.23] for S̄F(Spec K,Υ,Λ) and prop-
erties of the Π[I,κ] we find that

Π∗ ◦ Π[I,κ](f ) = β[I,κ]
[
Spec K/

(
K×)|I |]

, (93)

for some unique β[I,κ] ∈ Λ. Now define ΨΛ : S̄Fal(ObjA,Υ,Λ) → B(A,Λ,χ) by

ΨΛ(f ) =
∑

eq. classes [I,κ]
β[I,κ]b[I,κ]. (94)

Definition 5.14 implies that ΨΛ maps S̄F
ind
al (ObjA,Υ,Λ) to B ind(A,Λ,χ).

Theorem 6.7. Let Assumptions 2.11 and 3.4 hold and χ :K(A) × K(A) → Z be biadditive

and satisfy (80). Then ΨΛ : S̄Fal(ObjA,Υ,Λ) → B(A,Λ,χ) and ΨΛ : S̄F
ind
al (ObjA,Υ,Λ) →

B ind(A,Λ,χ) are (Lie) algebra morphisms.

Proof. Clearly ΨΛ is bilinear and ΨΛ(δ̄[0]) = b[∅,∅], so that ΨΛ takes the identity to the identity.
Thus the theorem follows from ΨΛ(f ∗ g) = ΨΛ(f ) ! ΨΛ(g) for all f,g ∈ S̄Fal(ObjA,Υ,Λ).
By Proposition 5.13 and bilinearity it is enough to show that ΨΛ(f ∗g) = ΨΛ(f )!ΨΛ(g) when
Π[I,κ](f ) = f and Π[J,λ](g) = g for some [I, κ] and [J,λ]. Thus we can apply Theorem 5.19
to get representations (69) and (72) for f ⊗ g and Π[K,μ](f ∗ g).

We have

ΨΛ(f ) = β[I,κ]b[I,κ] and ΨΛ(g) = γ[J,λ]b[J,λ]



696 D. Joyce / Advances in Mathematics 210 (2007) 635–706
for some β[I,κ], γ[J,λ] ∈ Λ. Then Π∗(f ⊗ g) = β[I,κ]γ[J,λ][Spec K/(K×)I × (K×)J ] in
S̄F(Spec K,Υ,Λ). Projecting (69) to S̄F(Spec K,Υ,Λ), we deduce that

β[I,κ]γ[J,λ] =
∑

m∈M,n∈Nm

cmnΥ
([Wmn]

)
. (95)

Now write ΨΛ(f ∗ g) = ∑
[K,μ] δ[K,μ]b[K,μ] for δ[K,μ] ∈ Λ. Then Π∗ ◦ Π[K,μ](f ∗ g) =

δ[K,μ][Spec K/(K×)K ] in S̄F(Spec K,Υ,Λ). Applying Π
Υ,Λ
Spec K

to map to SF(Spec K,Υ,Λ) and

i−1
Λ to map to Λ gives

i−1
Λ ◦ Π

Υ,Λ
Spec K

◦ Π∗ ◦ Π[K,μ](f ∗ g) = δ[K,μ](� − 1)−|K|.

So applying i−1
Λ ◦ Π

Υ,Λ
Spec K

◦ Π∗ to (72) and using relations in SF(Spec K,Υ,Λ) gives

δ[K,μ] = (� − 1)|K|−|I |−|J |

|Aut(K,μ)|
∑

iso. classes
of finite sets L

(−1)|L|−|K|

|L|!
∑

φ : I→L,ψ : J→L and
θ : L→K: φ�ψ surjective,
μ(k)=κ((θ◦φ)−1(k))+
λ((θ◦ψ)−1(k)), k∈K∏

k∈K

(∣∣θ−1(k)
∣∣− 1

)! ∑
m∈M,n∈Nm

cmnΥ
([Wmn]

)
Υ
([(

E1
m

)TL,φ,ψ
])
Υ
([(

E0
m

)TL,φ,ψ
])−1

.

(96)

Let m, n, L, φ, ψ be as in (96), and pick w ∈ Wmn(K) projecting to v ∈ Vm(K) and
([X], [Y ]) ∈ ObjA(K) × ObjA(K). Then Theorem 5.19 gives splittings X ∼= ⊕

i∈I Xi and
Y ∼=⊕

j∈J Yj in A with [Xi] = κ(i) and [Yj ] = λ(j) in C(A) for all i, j , and isomorphisms (73).
Combining these with (80) yields

Υ
([(

E1
m

)TL,φ,ψ
])
Υ
([(

E0
m

)TL,φ,ψ
])−1 =

∏
i∈I, j∈J : φ(i)=ψ(j)

�−χ(λ(j),κ(i)). (97)

We now see that ΨΛ(f ∗ g) = ΨΛ(f ) ! ΨΛ(g) by comparing (92) and (95)–(97). �
Remark 6.8. (a) We can also generalize (90) to P(I,�) :

∏
i∈I B(A,Λ,χ) → B(A,Λ,χ) satis-

fying (36) and ΨΛ(P(I,�)[fi : i ∈ I ]) = P(I,�)[ΨΛ(fi): i ∈ I ] for fi ∈ S̄Fal(ObjA,Υ,Λ), as in
Theorem 6.4. But since the definition and proof are rather complicated, we omit them.

(b) As Π̄
Υ,Λ
ObjA

: SFal(ObjA) → S̄Fal(ObjA,Υ,Λ) is an algebra morphism taking

SFind
al (ObjA) → S̄F

ind
al (ObjA,Υ,Λ),

ΨΛ ◦ Π̄
Υ,Λ
ObjA

: SFal(ObjA) → B(A,Λ,χ) is too, and restricts to a Lie algebra morphism

SFind
al (ObjA) → B ind(A,Λ,χ).
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The same holds for Π̄
Υ,Λ
ObjA

: S̄Fal(ObjA,Υ,Λ◦) → S̄Fal(ObjA,Υ,Λ). We defined ΨΛ on

S̄Fal(ObjA,Υ,Λ) as it is the coarsest choice.
(c) Here is an alternative description of B(A,Λ,χ), B ind(A,Λ,χ). Define bα ∈

B ind(A,Λ,χ) for α ∈ C(A) by bα = b[{1},α′], where α′(1) = α. Then B ind(A,Λ,χ) is the
Λ-module with basis bα for α ∈ C(A), and (92) yields

[
bα, bβ

]= �−χ(β,α) − �−χ(α,β)

� − 1
bα+β. (98)

Given κ : {1, . . . , n} → C(A), we can use (92) to show that

bκ(1) ! bκ(2) ! · · · ! bκ(n) = 1

|Aut({1, . . . , n}, κ)| · b[{1,...,n},κ] + (
terms in b[J,λ] for |J | < n

)
.

By induction on n we find the bα generate B(A,Λ,χ) over Λ, and (98) are the only relations on
the bα over Λ. Also (98) satisfies the Jacobi identity.

Thus, B(A,Λ,χ) is the Λ-algebra generated by the bα for α ∈ C(A), with relations (98).
Equivalently, B ind(A,Λ,χ) is the Λ-Lie algebra with basis bα for α ∈ C(A) and relations (98),
and B(A,Λ,χ) is the universal enveloping Λ-algebra of B ind(A,Λ,χ). Note this does not
mean B(A,Λ,χ) is the universal enveloping Q-algebra of B ind(A,Λ,χ) as a Q-Lie algebra.

(d) Suppose as in Remark 6.5(b) that � admits a square root ℘ in Λ. Define elements b̃α =
℘ 1−χ(α,α)bα in B ind(A,Λ,χ) for α ∈ C(A). These are another Λ-basis for B ind(A,Λ,χ), and

[
b̃α, b̃β

]= ℘χ(α,β)−χ(β,α) − ℘χ(β,α)−χ(α,β)

℘ − ℘−1
b̃α+β

by (98), which depends only on the antisymmetrization of χ , and is also unchanged by replacing
℘ by ℘−1.

(e) Define a Λ-algebra morphism Δ :B(A,Λ,χ) → A(A,Λ,χ) by

Δ(b[I,κ]) = (� − 1)−|I |aκ(I).

Then

ΦΛ ◦ Π
Υ,Λ
ObjA

= Δ ◦ ΨΛ : S̄Fal(ObjA,Υ,Λ) → A(A,Λ,χ).

6.4. Multiplication in B(A,Λ,χ) as a sum over graphs

We now rewrite the multiplication law (92) in B(A,Λ,χ) as a sum over directed graphs Γ ,
with vertex set I � J . In (99), ‘no multiples’ means there are no multiple edges, that is, at most
one edge joins any two vertices in Γ . By the connected components of Γ we mean the sets
of vertices of connected components, which are subsets of I � J . And b1(Γ ) is the first Betti
number of Γ .

We find graphs helpful as we can use topological ideas like connected, simply-connected and
b1(Γ ). The transformation laws for Calabi–Yau 3-fold invariants in [14] will also be written
in terms of sums over graphs, and the author believes these may have something to do with
Feynman diagrams in physics. Since b1(Γ ) � 0, the rational functions of � appearing in (99) are
continuous at � = 1, and lie in Λ◦. This will be important in Section 6.5.
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Theorem 6.9. Equation (92) is equivalent to

b[I,κ] ! b[J,λ] =
∑

eq. classes [K,μ]
b[K,μ] · 1

|Aut(K,μ)|
∑

η : I→K,ζ : J→K:
μ(k)=κ(η−1(k))+λ(ζ−1(k))[ ∑

directed graphs Γ : vertices I�J,

edges
i•→j•, i∈I, j∈J, no multiples,

conn. components η−1(k)�ζ−1(k), k∈K

(� − 1)b1(Γ )
∏

edges
i•→j•

in Γ

�−χ(λ(j),κ(i)) − 1

� − 1

]
. (99)

Proof. First we rewrite (92) as far as possible as a product over k ∈ K . To do this, for L, φ,
ψ , θ as in (92) write η = θ ◦ φ and ζ = θ ◦ ψ , and for all k ∈ K set Lk = θ−1({k}) and
φk :η−1({k}) → Lk , ψk : ζ−1({k}) → Lk to be the restrictions of φ, ψ to η−1({k}), ζ−1({k}).
Then L =∐

k∈K Lk . The number of surjective maps θ :L → K such that |θ−1({k})| = |Lk| for
k ∈ K is |L|!/∏k∈K |Lk|!. Thus, replacing the choice of L,θ in (92) by the choice of sets Lk

for k ∈ K , we replace the factor 1/|L|! in (92) by 1/
∏

k∈K |Lk|!. Writing other terms in (92) as
products over k ∈ K , we deduce:

b[I,κ] ! b[J,λ] =
∑

eq. classes [K,μ]
b[K,μ] · 1

|Aut(K,μ)|
∑

η : I→K,ζ : J→K:
μ(k)=κ(η−1(k))+λ(ζ−1(k))

(100)

∏
k∈K

[
(� − 1)1−|η−1(k)|−|ζ−1(k)| ∑

iso. classes
of finite
sets Lk

(−1)|Lk |−1

|Lk|
∑

φk : η−1(k)→Lk,

ψk : ζ−1(k)→Lk :
φk�ψk surjective

∏
i∈η−1(k),

j∈ζ−1(k):
φk(i)=ψk(j)

�−χ(λ(j),κ(i))

]
.

Next we prove the bottom lines of (100) and (99) are equal. We can rewrite the bottom line
of (99) as a product over k ∈ K of sums of weighted, connected digraphs Γk with vertices
η−1({k}) � ζ−1({k}), so it is enough to show the terms in each product over k ∈ K are equal.
This is equivalent to proving the case |K| = 1, so that K = {k}. Dropping subscripts k, we have
to prove that

(� − 1)1−|I |−|J | ·
∑

iso. classes of
finite sets L

(−1)|L|−1

|L|
∑

φ : I→L,ψ : J→L:
φ�ψ surjective

∏
i∈I, j∈J :
φ(i)=ψ(j)

�−χ(λ(j),κ(i))

=
∑

connected directed graphs Γ :

vertices I�J, edges
i•→j•,

i∈I, j∈J, no multiples

(� − 1)b1(Γ )
∏

edges
i•→j•

in Γ

�−χ(λ(j),κ(i)) − 1

� − 1
. (101)

Rewrite the top line of (101) as a sum over Γ as follows. Replace �−χ(λ(j),κ(i)) by
(�−χ(λ(j),κ(i)) − 1) + 1 and multiply out the product in i, j to get a sum of products of
�−χ(λ(j),κ(i)) − 1 or 1. Associate a digraph Γ to each of these by putting in an edge

i• → j• for a
factor �−χ(λ(j),κ(i)) − 1, and no edge for a factor 1. Then edges only join i, j with φ(i) = ψ(j),
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so each connected component of Γ lies in φ−1({l}) � ψ−1({l}) for some l ∈ L. Thus, reversing
the sums over Γ and L,φ,ψ , the top line of (101) becomes

(� − 1)1−|I |−|J | ∑
directed graphs Γ :

vertices I�J, edges
i•→j•,

i∈I, j∈J, no multiples

∏
edges

i•→j•
in Γ

(
�−χ(λ(j),κ(i)) − 1

)

·
[ ∑

iso. classes of
finite sets L

(−1)|L|−1

|L|
∑

φ : I→L,ψ : J→L: φ�ψ surjective, conn.
components of Γ lie in φ−1(l)�ψ−1(l), l∈L

1

]
. (102)

We shall show the bottom line [· · ·] of (102) is 1 if Γ is connected, and 0 otherwise. If Γ

is connected then I � J must lie in some φ−1({l}) � ψ−1({l}), so as φ � ψ is surjective the
only possibility is L = {l} and |L| = 1, and the sum reduces to 1. If Γ is not connected, fix one
connected component I0 � J0 of Γ , I0 ⊆ I , J0 ⊆ J . If a triple (L,φ,ψ) appears in the bottom
line of (102) then for some l ∈ L we have φ|I0 ≡ l, ψ |J0 ≡ l. Divide such (L,φ,ψ) into two
cases: (a) φ−1({l}) = I0 and ψ−1({l}) = J0, and (b) otherwise.

If (L,φ,ψ) satisfy (b) then define (L′, φ′,ψ ′) satisfying (a) by L′ = L�{l′} for some l′ /∈ L,
and φ′(i) = l′ for i ∈ I0 and φ′(i) = φ(i) for i /∈ I0, and ψ ′(j) = l′ for j ∈ J0 and ψ ′(j) = ψ(j)

for j /∈ J0. Conversely, if (L′, φ′,ψ ′) satisfy (a) with φ′|I0 ≡ ψ ′|J0 ≡ l′, then define (L,φ,ψ)

satisfying (b) by L = L′ \ {l′}, and choosing some l ∈ L define φ(i) = l for i ∈ I0 and φ(i) =
φ′(i) for i /∈ I0, and ψ(j) = l for j ∈ J0 and ψ(j) = ψ ′(j) for j /∈ J0.

This establishes a 1–1 correspondence between (L,φ,ψ) satisfying (b), and quadruples L′,
φ′, ψ ′, l with special element l′ ∈ L′, such that (L′, φ′,ψ ′) satisfies (a) with φ′|I0 ≡ ψ ′|J0 ≡
l′ ∈ L′, and l ∈ L′ \ {l′}. We also have |L′| = |L| + 1. Thus, the terms in the bottom line of (102)
corresponding to (L,φ,ψ) and (L′, φ′,ψ ′) differ by a factor −|L|/|L′|.

Now the equation φ′|I0 ≡ ψ ′|J0 ≡ l′ ∈ L constrains the choice of φ′,ψ ′, fixing l′ out of |L′|
choices of points in L′, and this accounts for the factor 1/|L′|. And given L′, φ′, ψ ′ there are
|L| possible choices for l ∈ L′ \ {l′}, which accounts for the factor |L|. Because of these, for
disconnected Γ the contributions of L, φ, ψ of types (a) and (b) in the bottom line of (102)
cancel, giving zero.

Thus (102) reduces to the bottom line of (101), except for the powers of � − 1, which are
b1(Γ ) − n in the bottom line of (101), where n is the number of edges in Γ , and 1 − |I | − |J |
in (102). But Γ is connected with |I | + |J | vertices and n edges, so b1(Γ ) − n = 1 − |I | − |J |.
This proves (101), and hence (99). �
6.5. Algebras B(A,Λ◦, χ),C(A,Ω,χ) and morphisms to them

We define algebras B(A,Λ◦, χ), C(A,Ω,χ) and a morphism Π between them.

Definition 6.10. Let Assumptions 2.11 and 3.4 hold, χ :K(A) × K(A) → Z or Q be bi-
additive, and use the notation of Definition 6.6. Define B(A,Λ◦, χ) to be the subspace of∑

[I,κ] β[I,κ]b[I,κ] in B(A,Λ,χ) with all β[I,κ] ∈ Λ◦. Since the bottom line of (99) lies in Λ◦
we see that B(A,Λ◦, χ) is closed under !, and so is a Λ◦-subalgebra of B(A,Λ,χ), with Λ◦-
basis the b[I,κ]. Define B ind(A,Λ◦, χ) = B ind(A,Λ,χ)∩B(A,Λ◦, χ). Then B ind(A,Λ◦, χ) is
a Λ◦-Lie subalgebra of B(A,Λ◦, χ), since B ind(A,Λ,χ) is a Λ-Lie subalgebra in B(A,Λ,χ).

As in Definition 6.6, introduce symbols c[I,κ] for all equivalence classes [I, κ], and let
C(A,Ω,χ) be the Ω-module with basis the c[I,κ]. That is, C(A,Ω,χ) is the set of sums
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∑
classes [I,κ] γ[I,κ]c[I,κ] with γ[I,κ] ∈ Ω nonzero for only finitely many [I, κ]. Define a multi-

plication ! on C(A,Ω,χ) by

c[I,κ] ! c[J,λ] =
∑

eq. classes [K,μ]
c[K,μ] · 1

|Aut(K,μ)|
∑

η : I→K,ζ : J→K:
μ(k)=κ(η−1(k))+λ(ζ−1(k))[ ∑

simply-connected directed graphs Γ :

vertices I�J, edges
i•→j•, i∈I, j∈J,

conn. components η−1(k)�ζ−1(k), k∈K

∏
edges

i•→j•
in Γ

(−χ
(
λ(j), κ(i)

))]
, (103)

extended Ω-bilinearly in the usual way. This is still well defined if χ takes values in Q rather
than Z, and in Section 6.6 we allow χ = 1

2 χ̄ to take values in 1
2Z.

Define a Q-linear map Π :B(A,Λ◦, χ) → C(A,Ω,χ) by

Π :
∑

eq. classes [I,κ]
β[I,κ]b[I,κ] 
→

∑
eq. classes [I,κ]

π(β[I,κ])c[I,κ], (104)

for π :Λ◦ → Ω as in Assumption 2.11. Then Π(b[I,κ]) = c[I,κ], and Π is surjective as π is.
Comparing (99) and (103) shows that

Π(b[I,κ]) ! Π(b[J,λ]) = c[I,κ] ! c[J,λ] = Π(b[I,κ] ! b[J,λ]). (105)

Here we effectively take the limit � → 1 in the bottom line [· · ·] of (99) to get the bottom line [· · ·]
of (103), since π(�) = 1 in Ω . The factor (�− 1)b1(Γ ) in (99) shows that only Γ with b1(Γ ) = 0
contribute in the limit, that is, only simply-connected Γ . We drop the condition ‘no multiples’
from (99), as this is implied by Γ simply-connected.

Using (105), the associativity of ! in B(A,Λ◦, χ), and π an algebra morphism, we see that
! in C(A,Ω,χ) is associative, so C(A,Ω,χ) is an Ω-algebra, with identity c[∅,∅], and Π in
(104) is a Q-algebra morphism. Define Cind(A,Ω,χ) to be the subspace of

∑
[I,κ] γ[I,κ]c[I,κ] in

C(A,Ω,χ) with γ[I,κ] = 0 unless |I | = 1. From (103) we see Cind(A,Ω,χ) is an Ω-Lie sub-
algebra of C(A,Ω,χ). Also, Π restricts to a Q-Lie algebra morphism Π :B ind(A,Λ◦, χ) →
Cind(A,Ω,χ).

Now let f ∈ S̄Fal(ObjA,Υ,Λ◦). As in Definition 6.6, Eq. (93) holds, but this time for
β[I,κ] ∈ Λ◦. Define ΨΛ◦

: S̄Fal(ObjA,Υ,Λ◦) → B(A,Λ◦, χ) by

ΨΛ◦
(f ) =

∑
[I,κ]

β[I,κ]b[I,κ],

as in (94). In the same way, if f ∈ S̄Fal(ObjA,Θ,Ω) then (93) holds for β[I,κ] ∈ Ω . Define
ΨΩ : S̄Fal(ObjA,Θ,Ω) → C(A,Ω,χ) by

ΨΩ(f ) =
∑
[I,κ]

β[I,κ]c[I,κ].

These restrict to ΨΛ◦
: S̄F

ind
al (ObjA,Υ,Λ◦) → B ind(A,Λ◦, χ) and ΨΩ : S̄F

ind
al (ObjA,Θ,Ω) →

Cind(A,Ω,χ).
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Here is the analogue of Theorem 6.7.

Theorem 6.11. Let Assumptions 2.11 and 3.4 hold and χ :K(A)×K(A) → Z be biadditive and
satisfy (80). Then

ΨΛ◦
: S̄Fal

(
ObjA,Υ,Λ◦)→ B(A,Λ◦, χ) and ΨΩ : S̄Fal(ObjA,Θ,Ω) → C(A,Ω,χ)

are Λ◦, Ω-algebra morphisms, and

ΨΛ◦
: S̄F

ind
al

(
ObjA,Υ,Λ◦)→B ind(A,Λ◦, χ) and

ΨΩ : S̄F
ind
al (ObjA,Θ,Ω) → Cind(A,Ω,χ)

are Λ◦, Ω-Lie algebra morphisms.

Proof. ΨΛ◦
is the restriction of ΨΛ to S̄Fal(ObjA,Υ,Λ◦) ⊂ S̄Fal(ObjA,Υ,Λ), so ΨΛ◦

is a
(Lie) algebra morphism by Theorem 6.7. For ΨΩ , note that

Π ◦ ΨΛ◦ = ΨΩ ◦ Π̄
Θ,Ω
ObjA

: S̄Fal
(
ObjA,Υ,Λ◦)→ C(A,Ω,χ). (106)

Let f,g ∈ S̄Fal(ObjA,Θ,Ω). Since Π̄
Θ,Ω
ObjA

is surjective we can lift them to f ′, g′ ∈ S̄Fal(ObjA,

Υ,Λ◦) with f,g = Π̄
Θ,Ω
ObjA

(f ′, g′). Then

ΨΩ(f ∗ g) = ΨΩ
(
Π̄

Θ,Ω
ObjA

(f ′) ∗ Π̄
Θ,Ω
ObjA

(g′)
)= ΨΩ ◦ Π̄

Θ,Ω
ObjA

(f ′ ∗ g′)

= Π ◦ ΨΛ◦
(f ′ ∗ g′) = (

Π ◦ ΨΛ◦
(f ′)

)
!
(
Π ◦ ΨΛ◦

(g′)
)

= (
ΨΩ ◦ Π̄

Θ,Ω
ObjA

(f ′)
)
!
(
ΨΩ ◦ Π̄

Θ,Ω
ObjA

(g′)
)= ΨΩ(f ) ! ΨΩ(g),

using (106) and that Π , ΨΛ◦
and Π̄

Θ,Ω
ObjA

are algebra morphisms. Also ΨΩ(δ̄[0]) = c[∅,∅], so ΨΩ

is a (Lie) algebra morphism. �
The analogue of Remark 6.8 holds. In particular, ΨΛ◦ ◦ Π̄

Υ,Λ◦
ObjA

, ΨΩ ◦ Π̄
Θ,Ω
ObjA

are algebra

morphisms from SFal(ObjA) → B(A,Λ◦, χ),C(A,Ω,χ). Define cα ∈ Cind(A,Ω,χ) for α ∈
C(A) by cα = c[{1},α′], where α′(1) = α. Then Cind(A,Ω,χ) is the Ω-module with basis cα for
α ∈ C(A), and (103) yields

[
cα, cβ

]= (
χ(α,β) − χ(β,α)

)
cα+β. (107)

It will be important in Section 6.6 that this depends only on the antisymmetrization of χ . The ar-
gument of Remark 6.8(c) shows that B(A,Λ◦, χ) and C(A,Ω,χ) are the Λ◦- and Ω-enveloping
algebras of B ind(A,Λ◦, χ) and Cind(A,Ω,χ).
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6.6. Calabi–Yau 3-folds and Lie algebra morphisms

Let P be a smooth projective K-scheme of dimension m, and A = coh(P ) and FA,K(A) be
as in [12, Example 9.1]. Then as in Section 6.1 there is a bilinear map χ̄ :K(A) × K(A) → Z

called the Euler form satisfying

χ̄
([X], [Y ])=

m∑
i=0

(−1)i dimK Exti (X,Y ) for all X,Y ∈A. (108)

We denote it χ̄ to distinguish it from χ in Sections 6.1–6.5. By Serre duality we have natural
isomorphisms

Exti (X,Y )∗ ∼= Extm−i (Y,X ⊗ KP ) for all X,Y ∈ A and i = 0, . . . ,m, (109)

where KP is the canonical line bundle of P . We call P a Calabi–Yau m-fold if KP is trivial, so
that (109) reduces to Exti (X,Y )∗ ∼= Extm−i (Y,X).

In particular, if P is a Calabi–Yau 3-fold then (108) and (109) imply that

(
dimK Hom(X,Y ) − dimK Ext1(X,Y )

)− (
dimK Hom(Y,X) − dimK Ext1(Y,X)

)
= χ̄

([X], [Y ]) for all X,Y ∈ A, (110)

where χ̄ is antisymmetric. This is similar to Eq. (80), which we used to construct the al-
gebra morphisms ΦΛ,ΨΛ,ΨΛ◦

,ΨΩ in Sections 6.2–6.5. In fact, (80) implies (110) with
χ̄ (α,β) = χ(α,β) − χ(β,α), so (110) is a weakening of (80), which holds when A = coh(P )

for P a smooth projective curve and when A = mod-KQ, as in Section 6.1, and also when
A = coh(P ) for P a Calabi–Yau 3-fold.

We shall show that (110) implies ΨΩ : S̄F
ind
al (ObjA,Θ,Ω) → Cind(A,Ω, 1

2 χ̄ ) is a Lie al-
gebra morphism, generalizing Theorem 6.11. First we explain why this only works for the

restriction of ΨΩ to S̄F
ind
al (ObjA,Θ,Ω). That is, (110) is too weak an assumption to make

ΨΩ an algebra morphism on S̄Fal(ObjA,Θ,Ω), nor to make ΦΛ, ΨΛ or ΨΛ◦
into (Lie) algebra

morphisms.
Consider whether (110) could imply ΦΛ : SF(ObjA,Υ,Λ) → A(A,Λ, 1

2 χ̄ ) is an algebra
morphism. Let χ :K(A) × K(A) → Z be bilinear with χ̄ (α,β) = χ(α,β) − χ(β,α); note that
for fixed χ̄ there will be many such χ , differing by symmetric bilinear forms. As a Λ-module
A(A,Λ,χ) depends only on A,Λ, so that A(A,Λ,χ) = A(A,Λ, 1

2 χ̄ ), and ΦΛ also depends
only on A,Λ. It is only the multiplication ! in A(A,Λ,χ) which depends on the choice
of χ .

Now (80) for χ implies (110) for χ̄ , as above. If (80) holds then

ΦΛ : SF(ObjA,Υ,Λ) → A(A,Λ,χ)

is an algebra morphism by Theorem 6.4. Therefore

ΦΛ : SF(ObjA,Υ,Λ) → A
(
A,Λ, 1 χ̄

)

2
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cannot be an algebra morphism in general, since the multiplications (89) on A(A,Λ,χ) =
A(A,Λ, 1

2 χ̄ ) associated to χ and 1
2 χ̄ are different. The many choices of χ giving the same

χ̄ mean there is no one choice of ! for which ΦΛ is an algebra morphism whenever (110) holds.
Similarly ΨΛ, ΨΛ◦

, ΨΩ cannot be algebra morphisms on S̄Fal(ObjA,∗,∗), nor ΨΛ,ΨΛ◦
Lie

algebra morphisms on S̄F
ind
al (ObjA,∗,∗), as in each case ! or [ , ] in the image varies nontrivially

with χ giving the same χ̄ . But ΨΩ : S̄F
ind
al (ObjA,Θ,Ω) → Cind(A,Ω, 1

2 χ̄ ) is different, since
by (107) the Lie bracket [ , ] on Cind(A,Ω,χ) depends only on χ̄ (α,β) = χ(α,β)−χ(β,α), as
we want.

Theorem 6.12. Let Assumptions 2.11 and 3.4 hold and χ̄ :K(A)×K(A) → Z be biadditive and

satisfy (110). Then ΨΩ : S̄F
ind
al (ObjA,Θ,Ω) → Cind(A,Ω, 1

2 χ̄ ) in Definition 6.10 is an Ω-Lie
algebra morphism.

Proof. We must show

ΨΩ
([f,g])= [

ΨΩ(f ),ΨΩ(g)
]

for f,g ∈ S̄F
ind
al (ObjA,Θ,Ω).

It is enough to prove this for f,g supported on ObjαA(K), Obj
β

A(K) respectively for α,β ∈ C(A).

Lift f , g to f ′, g′ ∈ S̄F
ind
al (ObjA,Υ,Λ◦) with Π̄

Θ,Ω
ObjA

(f ′, g′) = f,g, which is possible as Π̄Θ,Ω
ObjA

is surjective.
Choose constructible T ⊆ ObjαA(K) × Obj

β

A(K) with f ⊗ g and f ′ ⊗ g′ supported
on T . Generalizing Proposition 5.15, we can find a finite decomposition T = ∐

m∈M Gm(K),
1-isomorphisms Gm

∼= [Vm/Gm], and finite-dimensional Gm-representations E0
m, E1

m, Ẽ0
m, Ẽ1

m

for m ∈ M , satisfying analogues of Proposition 5.15(a)–(d), where in (a) we have isomorphisms:

Hom(Y,X) ∼= E0
m, Ext1(Y,X) ∼= E1

m,

Hom(X,Y ) ∼= Ẽ0
m, Ext1(X,Y ) ∼= Ẽ1

m. (111)

The proof of Eqs. (69) and (70) in Theorem 5.19 now shows we may write

f ′ ⊗ g′ =
∑

m∈M,n∈Nm

cmn

[(
Wmn × [

Spec K/
(
K×)2]

, τmn

)]
, (112)

[f ′, g′] =
∑

m∈M,n∈Nm

cmn

{[(
Wmn × [

E1
m/
(
K×)2

� E0
m

]
,σ
({1,2}) ◦ ξmn

)]

− [(
Wmn × [

Ẽ1
m/
(
K×)2

� Ẽ0
m

]
,σ
({1,2}) ◦ ξ̃mn

)]}
, (113)

for Nm finite, cmn ∈ Λ◦, and Wmn quasiprojective K-varieties.

Since f ′, g′, [f ′, g′] lie in S̄F
ind
al (ObjA,Υ,Λ◦) and are supported on ObjαA(K), Obj

β

A(K) and

Obj
α+β

A (K) respectively, we have

ΨΛ◦
(f ′) = δ′bα, ΨΛ◦

(g′) = ε′bβ, ΨΛ◦([f ′, g′])= ζ ′bα+β, (114)
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for some δ′, ε′, ζ ′ ∈ Λ◦, and bα , bβ , bα+β as in Remark 6.8(c). Projecting (112) and (113) to
S̄F(Spec K,Υ,Λ) as in the proofs of (95) and (96) then shows that

δ′ε′ =
∑

m∈M, n∈Nm

cmnΥ
([Wmn]

)
, (115)

ζ ′ =
∑

m∈M,n∈Nm

cmnΥ
([Wmn]

)Υ ([E1
m])Υ ([E0

m])−1 − Υ ([Ẽ1
m])Υ ([Ẽ0

m])−1

� − 1
. (116)

For m ∈ M we can find [X] ∈ ObjαA(K) and [Y ] ∈ Obj
β

A(K) such that (111) holds, and then
in (116) we have

Υ ([E1
m])Υ ([E0

m])−1 − Υ ([Ẽ1
m])Υ ([Ẽ0

m])−1

� − 1
= �dim Ext1(X,Y )−dim Hom(X,Y )

· �
dim Ext1(Y,X)−dim Hom(Y,X)−dim Ext1(X,Y )+dim Hom(X,Y ) − 1

� − 1
.

Composing with π :Λ◦ → Ω and using (110) and π(�) = 1 then gives

π

(
Υ ([E1

m])Υ ([E0
m])−1 − Υ ([Ẽ1

m])Υ ([Ẽ0
m])−1

� − 1

)
= χ̄ (α,β) ∈ Z ⊂ Ω. (117)

Applying Π in (104) to (114) and using (106), that Π̄
Θ,Ω
ObjA

is an algebra morphism, and

Π̄
Θ,Ω
ObjA

(f ′) = f , Π̄Θ,Ω
ObjA

(g′) = g, we find that

ΨΩ(f ) = δcα, ΨΩ(g) = εcβ, ΨΩ
([f,g])= ζcα+β, (118)

where π(δ′) = δ, π(ε′) = ε, π(ζ ′) = ζ and cα , cβ , cα+β are as in (107). Applying π to
(115), (116) and using (117) then shows that ζ = δεχ̄(α,β). Combining this with (107) and
(118) now shows that

ΨΩ
([f,g])= [

ΨΩ(f ),ΨΩ(g)
]
,

where the bracket [ , ] in Cind(A,Ω, 1
2 χ̄) is defined using the form χ = 1

2 χ̄ , so that χ(α,β) −
χ(β,α) in (107) is χ̄ (α,β) as χ̄ is antisymmetric. �

As in the previous cases, ΨΩ ◦ Π̄
Θ,Ω
ObjA

: SFind
al (ObjA) or S̄F

ind
al (ObjA,Υ,Λ◦) → Cind(A,

Ω, 1
2 χ̄ ) are also Lie algebra morphisms. We explain Theorem 6.12 using the following exam-

ple. For simplicity, let X,Y ∈ A be indecomposable, with [X] = α and [Y ] = β in C(A), and

form δ̄[X], δ̄[Y ] in S̄F
ind
al (ObjA,Θ,Ω). Then ΨΩ(δ̄[X]) = cα and ΨΩ(δ̄[Y ]) = cβ . Consider the

commutator [δ̄[X], δ̄[Y ]].
We find ΨΩ(δ̄[X] ∗ δ̄[Y ]) = (dim Ext1(Y,X) − dim Hom(Y,X))cα+β + c[{1,2},κ], where

κ(1) = α and κ(2) = β . This is because δ̄[X] ∗ δ̄[Y ] is essentially the characteristic function
of all Z in short exact sequences 0 → X → Z → Y → 0. The effect of applying ΨΩ is
to ‘count’ such sequences in a special way. The nontrivial extensions are parametrized by
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P(Ext1(Y,X)) and contribute dim Ext1(Y,X) to the ‘number’ of such Z, and the trivial ex-
tension 0 → X → X ⊕ Y → Y → 0 has stabilizer group (Aut(X) × Aut(Y )) � Hom(Y,X) and
contributes dim Hom(Y,X) to the number of ‘virtual indecomposables’ multiplying cα+β , and 1
to the number of ‘virtual decomposables’ multiplying c[{1,2},κ].

Exchanging X,Y and using (110) gives

ΨΩ
([δ̄[X], δ̄[Y ]]

)= χ̄
([X], [Y ])cα+β.

By (107), this is [cα, cβ ] in the Lie algebra Cind(A,Ω, 1
2 χ̄), so

ΨΩ
([δ̄[X], δ̄[Y ]]

)= [
ΨΩ(δ̄[X]),ΨΩ(δ̄[Y ])

]
,

as we want. Thus we see that Theorem 6.12 relies on (110) and a very particular way of ‘counting’
stack functions on ObjA, such that the ‘number’ of extensions of Y by X is dim Ext1(Y,X) −
dim Hom(Y,X).
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