WEIGHT ENUMERATORS OF SELF-ORTHOGONAL CODES

C.L. MALLOWS and N.J.A. SLOANE
Bell Laboratories, Murray Hill. N.J. 07974, USA

Received 26 November 1973*

Abstract

Canonical forms are given for (i) the weight enumerator of an $\left|n, \frac{1}{2}(n-1)\right|$ self-orthogonat code, and (ii) the split weight enumerator (which elassifies the codewords according to the weight of the left-and tight-half words) of an $\left\{n, \left.\frac{\ln }{2} \right\rvert\,\right.$ self-dual code.

1. Results

All codes in this parer ate Dinary. An [$n, k]$ code \mathcal{E} is self-orthogonal if $C \subset C^{1}=$ dual code, self-dual if $e=e^{1}$. The weigh enumerator of e is the homogeneous polynomial of degree n :
where A_{i} is the number of codewords of weight i. See $\{2,19,30]$ for definitions of coding theory terms, and $[1,3,6 \cdots, 10-13,16,19,20$ $22,26-281$ for properties and applications of self-dual codes.

C senotes the complex numbers, and $\mathbf{C}\{\alpha, \beta, \ldots]$ the ring of polynomials in c, β, \ldots with complex coefficients.

Theorem 1. (A) For nodd. let e be an $\left\{n, \frac{1}{2}(n-1)\right]$ selforthogonal code. Thus $e^{1}=e \cup(1+e)$. Then
(i) $W_{i}(x, y)$ is an element of the direct sum, $\mathrm{C}\left[f_{2}, g_{8}\right] \oplus \varphi_{7} \mathrm{C}\left[f_{2}, g_{8}\right]$, where $\varphi_{7}=x^{7}+7 x^{3} y^{4}, f_{2}=x^{2}+y^{2}, g_{8}=x^{8}+14 x^{4} y^{4}+y^{8}$. In words: $w_{e}(x, y)$ can be written in a unique way as x tintes a polynominal in f_{2} and g_{8}, plus φ_{7} times another such polynomial.
(B) Suppose in addition that all weights in C are multiples of 4 . Then

[^0](ii) n must be of the form $8 m \pm 1$.
(iii) If $n=8 m-1$. then $W_{1}(x, y)$ is an element of $\rho_{7} \mathrm{C}\left|g_{8} . h_{24}\right|$ $\boldsymbol{\gamma}_{23} \mathrm{C}\left[\mathrm{g}_{8}, h_{24}\right]$, where $\gamma_{23}=x^{23}+506 x^{15} y^{8}+1288 x^{11} y^{12}+$ $753 x^{7} y^{16}, h_{24}=x^{4} y^{4}\left(x^{4}-y^{4}\right)^{4}$.
(iv) If $n=8 m+1$, then $W_{n}(x, y)$ is an clement of $x \mathrm{Clg}_{8}, h_{34} \mid$ $\oplus \psi_{17} \mathrm{C}\left[g_{\mathrm{g}} . h_{24}\right]$, where $\psi_{17}=x^{17}+17 x^{13} y^{4}+187 x^{9} y^{8}+51 x^{5} y^{12}$.

The leff and right iexight of a vectu: $v=\left(v_{1}, \ldots, v_{m}, v_{m+} ; \ldots, v_{2 m}\right)$ are respectively

$$
w_{L}=w r\left(v_{1}, \ldots, v_{m}\right), \quad w_{R}: w /\left(v_{m+1}, \ldots, v_{2 m}\right)
$$

The spitt weight enumerator of a!am. $k!$ code e is

Theoren 2. ket e be a $\{2 m$, mi selfalual code satisfying:
(B1) e cortains the vectors $\left.0^{m p}\right|^{m}=0 \ldots 01 \ldots 1$ and 1:
(B2) the nigaber of codewords wifile $\left(w_{R}, w_{R}\right)=(j, k)$ is equal to the number with $\left(w_{L}, w_{R}\right)=(k, j)$. Then
(i) $\mathscr{H}_{e}(x, y, X, Y)$ is an element of $\left.\mathrm{Cl}_{4}, \eta_{8}, \theta_{16}\right]$, where

$$
\begin{aligned}
& \rho_{4}=\left(x^{2}+y^{2}\right)\left(X^{2}+Y^{2}\right) \\
& \eta_{\mathrm{g}}=x^{4} X^{4}+x^{4} Y^{4}+y^{4} X^{4}+y^{4} Y^{4}+12 x^{2} y^{2} X^{2} Y^{2} \\
& \theta_{16}=\left(x^{2} X^{2}-y^{2} Y^{2}\right)^{2}\left(x^{2} Y^{2}-y^{2} X^{2}\right)^{2}
\end{aligned}
$$

(ii) Furthermore, if all weights in e are multiples of 4 , then we x. $y . X, Y$ is an element of $\left.\mathrm{C}_{1}^{\prime} \eta_{8}, \theta_{16}, \gamma_{24}\right]$, where

$$
\gamma_{24}=x^{2} y^{2} x^{2} i^{2}\left(x^{4}-y^{4}\right)^{2}\left(X^{4}-Y^{4}\right)^{2}
$$

A code satisfying ($B 1$), ($B 2$) is "balanced" about its midpoint, and the division into two halves is a natural one.

In urinciple, Theorem 2 could be generalized to consider codewords divided into any number of parts. We shall give one example, applicable tosodes which, like the Golay code, can be divided into three parts with compleis symmetry between the parts.

For a vecior $v=\left(v_{1}, \ldots, v_{3 m}\right)$, let $w_{1}=w t\left(v_{1}, \ldots, v_{m}\right), w_{2}=$
wf $\left(v_{m+1}, \ldots . v_{2 m}\right), n_{3}=w t\left(v_{2 m+1}, \ldots . v_{i m}\right)$. The 3 -split weight enumerator of a $(3 \mathrm{~m}, k)$ code C is

$$
\begin{equation*}
\sum_{v \in c} y_{1}^{n_{1}(b)} y_{2}^{w_{2}(v)} y_{3}^{w_{3}(v)} \tag{1}
\end{equation*}
$$

Theorem 3. For m divisible by 8. let e be a $\left[3 \mathrm{~m}, \frac{3}{2} m\right]$ self-dual code in which all weights are divisibte by 4. which contains $1^{m} 0^{2 m}, 0^{m} 1^{m} 0^{m}$. and $0^{2 m} 1^{m}$, and in which the number of code words with $\left(w_{1}, w_{2}, w_{3}\right)$ $=\left(j, k, h\right.$ is equal to the number with $\left(w_{1}, w_{2}, w_{3}\right)=$ anv permutation of $i . k .1$ Then the 3 -split enumerator of e is an element of

$$
\underset{i=0}{3} y_{i} \mathrm{C}\left[p^{2} \cdot q^{2} \cdot r s \cdot r^{6}+s^{6}\right]
$$

where

$$
\begin{aligned}
& A=\left(y_{1}^{4}+1\right)\left(y_{2}^{4}+1\right)\left(y_{3}^{4}+1\right), \\
& B=y_{1}^{2}\left(y_{2}^{4}+1\right)\left(v_{3}^{4}+1\right)+y_{2}^{2}\left(y_{1}^{4}+1\right)\left(y_{3}^{4}+1\right)+y_{3}^{2}\left(y_{1}^{4}+1\right)\left(y_{2}^{4}+1\right), \\
& C=y_{1}^{2} y_{2}^{2}\left(y_{3}^{4}+1\right)+y_{1}^{2} y_{3}^{2}\left(y_{2}^{4}+1\right)+y_{2}^{2} y_{3}^{2}\left(y_{1}^{4}+1\right) . \\
& D=y_{1}^{2} y_{2}^{2} y_{3}^{2} . \\
& p=B-12 D \cdot q=A-12 C . \\
& r s=(B+36 D) \pm \frac{1}{3} i(A+4 C), \\
& \gamma_{0}=1, \gamma_{1}=p\left(r^{3}+s^{3}\right) \cdot \gamma_{2}=i q\left(r^{3}-s^{3}\right) \cdot \gamma_{3}=\gamma_{1} \gamma_{2} .
\end{aligned}
$$

Corollary. The 3 -split weight emumerator is a polynomial in p.q. r, s (but not necessarily in a unique way).

Remark. Gleason [10] has characterized the weight enumerators of $\left[n . \frac{1}{2} n\right]$ self-dual codes … see $[3.19]$ for proofs and generalizations. Theorems 1-3 are of a similar type. However, the proofs differ in several interesting ways from those given in [19], namely in the use of a group whose order becomes arbitrarily large, and (in Theorem I) in the introduction of new indeterminates and the use of relative rather than absolute invariants.

2. Examples

Examples of Theorem 1. The code $0: w=x$. The [7, 3,4] Hamming code: $w=\varphi_{7}$. Aside: the $[15,7,6]$ Nordstrom-Robinson nonlinear code
[25], to which Theorem 1 does not apply, nevertheless has $W=$ 1: $7 x\left(f_{2}^{7}-f_{2}^{3} g_{8}\right)+\varphi_{7}\left(7 f_{!}^{4}-3 g_{8}\right)$. $)$ The $\left[17,8.4 \mid\right.$ code $\bar{I}_{17}^{(3)}$ of [26]: $\boldsymbol{w}=\psi_{17}$. The $[23,11,8]$ Golay code: $\boldsymbol{W}=\gamma_{23}$. The $[31,15,8]$ quadratic reaidue or QR code: $W=-14 \varphi_{7} h_{24}+\gamma_{23} g_{8}$. The $[47,23,12]$ QR code: $W=\left\{\left(\cdots 25 \varphi_{7}, \mu_{8}^{2} h_{24}+\gamma_{21}\left(7 g_{8}^{3}+41 h_{24}\right)\right)\right.$. See [26] for other examples.

It is not presently known if a projective plane of order 10 exists. If it doss exist. then from [al] the rows of its incidence matrix generate a $[111,55,12]$ code with

$$
\begin{aligned}
W=4 & \left(\nu_{7}\left(-253 g_{8}^{10} h_{24}+24123 g_{8}^{7} i_{24}^{2}-430551 g_{8}^{4} h_{24}^{3}+c_{1} g_{8} h_{24}^{4}\right)\right. \\
& \left.+\gamma_{23}\left(7 g_{8}^{11}-825 g_{8}^{8} h_{2}+20.27 x_{8}^{5} h_{24}^{2}+c_{2} g_{8}^{2} h_{24}^{3}\right)\right\},
\end{aligned}
$$

where $c_{:}, c_{2}$ are constants, at present anknown.
Examples of Theorem 2. If $u=\left(u_{1}, \ldots, u_{i}\right)$ and $v=\left(v_{1}, \ldots, v_{k}\right)$ let $u ; v=$ $\left(u_{i}, \ldots, v_{n}, u_{1}, \ldots, v_{n}\right)$. For $=1,2, l_{t} e_{j}$ be a code of length n with we ght enurnorator $W_{j}(x, y)$ and sph: weight enumerator $W_{j}(x, y, X, Y)$. The code $e_{1} ; e_{2}=\left\{u, u \in e_{1}, v \in e_{2}\right\}$ ha ordinary and split weight enumerators $w_{1}^{\prime}(x, y) W_{2}\left(x\right.$, and $W_{1}(x, y) W_{2}(X, Y)$. The equivalent code $e_{1} \| \mathbb{R}_{2}=\left\{u^{\prime} w^{\prime}\left|u^{\prime \prime}\right| u^{\prime \prime}: u=u^{\prime}\left|u^{\prime \prime} \in \mathcal{e}_{1}, v=v^{\prime}\right| w^{\prime \prime} \in \mathcal{e}_{2}\right\}$. where u and v are broken in half, has ordinary and split weight enumerators $W_{1}(x, y) W_{2}(x, y)$ and $\mathcal{W}_{1}(x, y, X, Y) W_{2}(x, y, X, Y)$. Also let $e_{1} * e_{3}=\left\{u,(u+v): u \in e_{1}, v \in e_{2}\right\}$ (c.f. [29]).

The MacWilliams identity for split weight enumerators is (c.f. 117,181)

$$
\begin{equation*}
w_{e}(x, y, X, Y)=\frac{1}{1 e} w_{e}(x+y, x-y, X+Y, X-Y) . \tag{1}
\end{equation*}
$$

We use a detached-coefficient notation for w, and instead of the terms

$$
a\left(\cup^{a} y^{b} X^{c} Y^{d}+x^{a} y^{b} X^{d} Y^{c}+x^{b} y^{d} X^{c} Y^{d}+x^{b} y^{a} X^{d} Y^{c}\right)
$$

we write a row of a table:

$c i 1$	x	y	X	Y	$\#$
c	a	b	c	a	4

giving resprectively the coefficient the exponents, and the number of

Table 1
Split weight enumerators

Code	76	c10	x	y	\boldsymbol{X}	\boldsymbol{r}	\#
8ks	78	1	4	0	4	0	4
		12	2	2	2	2	1
	016	1	8	0	4	4	4
		- 2	6	2	6	2	4
		4	4	4	4	4	1
	$\boldsymbol{\gamma} 24$	1	10	2	10	2	4
		2	10	2	6	6	4
		4	6	6	6	6	1
g_{24}	i	1	12	0	12	0	4
		132	10	2	6	6	4
		495	8	4	8	4	4
		1584	6	6	6	6	1
Q_{48}		1	3 A	0	24	0	4
		276	22	2	14	10	8
		3864	20	4	16	8	8
		13524	20	4	12	12	4
		9016	18	6	18	6	4
		125580	18	t	14	10	\%
		256335	16	8	16	8	4
		950544	16	8	12	12	4
	\cdots	1835400	14	10	14	10	4
		3480176	12	12	12	12	1

terms of this type. The sum of the products of the first and last columns is the total number of codewords.

A QR of length $8 l=q+1$, where q is a prime, with generator matrix in the canonical form of $[15$, Figs. 1,7], satisfies the hypotheses of Theorem 2(ii). Table I gives 3 such examples, the $\{8,4,4]$ Hamming code \mathcal{X}_{8}, the $\{24,12,8\}$ Golay code g_{24} for which $w=\eta_{8}^{3}-3 \eta_{8} \theta_{16}-42 \gamma_{24}$, and the $\{48,24,12\}$ code Q_{48}. Also if $\delta_{2}=\{00,11\} . \delta_{2}!\delta_{2}$ has $w^{\prime}=f_{4} \cdot \mathcal{X}_{8} \mid g_{8}$ has $w^{\prime}=\eta_{8}^{2}+12 \theta_{16}$. Let $\mathcal{R}(r, m)$ denote an r th order Reed - Muller (RM) code of length 2^{m}. Then RM codes can be constructed recursively from $\mathcal{R}(r+1, m) \neq \mathcal{R}(r, m)=\mathcal{R}(r+1, m+1)$ (see [29]). The first order RM code of length n obtained in this way has

$$
w=\left(x^{n / 2}+y^{n / 2}\right)\left(X^{n / 2}+Y^{n / 2}\right)+(2 n-4)(x y X Y)^{n / 4}
$$

We have also found \boldsymbol{w} for $\mathbb{R}(2, m)$.

Examples of Theorem 3. The 3-split enumerator of $\mathscr{X}_{8}\left|\mathscr{X}_{8}\right| X_{8}$ is $12 j^{2}+q^{\prime}$: of $\left(u^{\prime}\left|v^{\prime}\right| u^{\prime \prime}: w^{\prime}\left|v^{\prime \prime}\right| w^{\prime \prime}:\right.$ where $u=u^{\prime}\left|u^{\prime \prime}, v=v^{\prime}\right| v^{\prime \prime}, u^{\prime}=$ $w^{*} ; w^{*} \in \Phi_{d f}$: is $\frac{1}{2} r s-3 p^{2}-1 q^{2}$; of the $\{24,12,8]$ Golay code in a form satisfying Theorem 3 is 3 fs $-18 p^{2}+1 q^{2}=\left(1+y_{1}^{8}\right)\left(1 \div y_{2}^{8}\right)\left(1+y_{3}^{8}\right)$ $+38\left|y_{3}^{4} b_{2}^{4}+\ldots\right|+274\left|y_{1}^{2} y_{2}^{2} y_{3}^{4}+\ldots\right|+1232\left(y_{1} y_{2} y_{3}\right)^{4}$.

3. The promots

Proof of Thworetn 1. For an $n \times n$ matriz $A=\left(a_{i j}\right)$ and a polynomial $f(0)=f\left(x_{1}, \ldots x_{n}\right)$. the result of trantirming the variables of f by A is denoted $A \circ f(x)=f\left(\Sigma a_{1}, x_{i}, \ldots\right.$, Sa $_{n_{n}}$, x_{i} : Note that $B \circ(A \circ f(x))=$ (AB) $f(x)$.

Let \odot the a code of length $4 m-1$ suistying the hypotheses (A) and 1B' of Thectem 1. with weight enumerator $W^{\prime}(x)=W(x, y)$. Let

$$
M=3\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad J=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \quad R=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=M J^{2} M .
$$

By the Mar Williars.s identity (18;30. p. 120),

$$
\left.M^{\prime} \circ n \in s\right)=2^{-1 / 2}\left(W^{\prime}(x)+\pi \circ W^{\prime}(x)\right)
$$

Al:o $f \circ h(x)=n(x)$. Let x^{\prime} be the set of all polynomials satisfying these wo equations. If is cusily verified that ont contains $\pi=$ $\rho_{7} \mathrm{Cl}_{8}, h_{24}\left|\oplus \gamma_{23} \mathrm{Clg}_{8}, h_{24}\right|$. To show $\mathcal{M}=\boldsymbol{X}$, let $a_{d}\left(b_{d}\right)$ be the number of linearly independent polynomials of degree d in $\mathcal{M}(\Re)$. Cieaty

$$
\sum_{4}^{5} b_{d} \lambda^{d}=\left(\lambda^{7}+\lambda^{23}\right)\left(1-\lambda^{8}\right)\left(1-\lambda^{24}\right) .
$$

We show $T=x$ by showing $c_{d}=b_{d}$ for all d.
Let \Leftrightarrow be a group of $n \times n$ complex matrices and let $x:(y \rightarrow C$ be a 1 -dimensional representation of (s). Then $f(x)$ is called a relative invariant or (1 with zespect to X if $A \cdot f(x)=\boldsymbol{x}(A) f(x)$ for all $A \in \mathbb{O}$. If x is identically a, $f(x)$ is calied an (absolute) invariant of (\Leftrightarrow). The number n_{d} of linearly independent relative invariants of degree d is given by the Molien senes [24; 5 p. 301; 23, p. 259:19, Theorem 427]

$$
\begin{equation*}
\sum_{0}^{\infty} n_{d} \lambda^{d}=\frac{1}{|(9)|} \sum_{A \in(B)} \frac{\bar{x}(A)}{|I-\lambda A|} . \tag{2}
\end{equation*}
$$

The key device is to consider not $W(x, y)$ but $f(u, v, x, y)=u W(x, y)$ $+v W(y, x)$. Then $f(u, v, x, y)$ is invariant under

$$
M^{+}=\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right) \text { and } J^{+}=\left(\begin{array}{ll}
J & 0 \\
0 & J
\end{array}\right) \text { acting on }\left[\begin{array}{c}
u \\
v \\
x \\
y
\end{array}\right] .
$$

Let ω be a primitive complex p th root of unity. where p is a prime greater than deg $W=$ lengtn of e. Then $f(u, v, x, y)$ is a relative invariant under $P=\operatorname{diag}(\kappa, \omega, 1,1)$ with respect to $\chi(P)=\omega$.

Now M, J generate a group $\$_{192}$ of order 192, consisting of the matrices

$$
r^{\nu}\left(\begin{array}{ll}
1 & 0 \\
0 & \alpha
\end{array}\right), \quad r^{\nu}\left(\begin{array}{ll}
0 & 1 \\
\alpha & 0
\end{array}\right), \quad r^{\nu} 2^{1 / 2}\left(\begin{array}{cc}
1 & \beta \\
\alpha & -\alpha \beta
\end{array}\right),
$$

where $r=2^{-1 / 2}(1+\mathrm{i}), 0 \leq \nu \leq i, \alpha, \beta \in\{1, i, \cdots 1, \cdots i\}($ see $[19])$. So M^{+}. f^{+}. p generate a group (\% of order $192 p$ consisting of the matrices
 of 0, with respect to $\chi\left(M^{+}\right)=\mathbf{x}\left(J^{+}\right)=1, \mathbf{x}(P)=\omega$ is in $1-1$ correspoindence with \mathcal{M} up to degree $p-1$. Therefore from (2), for all $p>d a_{d}$ is the coefficient of λ^{d+1} in

$$
\begin{aligned}
\frac{1}{192 p} \sum_{B \in \omega} \frac{\overline{\mathrm{x}}(B)}{I-\lambda B \mid} & =\frac{1}{192} \sum_{A \in()_{192}} \frac{1}{p} \sum_{\nu=0}^{p-1} \frac{\omega^{-\nu}}{|I-\lambda A| I I-\lambda \omega^{\nu} A \mid} \\
! & \rightarrow \frac{1}{192} \sum_{A \in\left(C_{192}\right.} \frac{1}{|I-\lambda A|} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\mathrm{e}^{-\mathrm{i} \theta} \mathrm{~d} \theta}{\left|I-\lambda \mathrm{e}^{\mathrm{i} \theta} A\right|} \\
& =\frac{\lambda}{192} \sum_{A \in\left(H_{192}\right.} \frac{\operatorname{trace}(A)}{I-\lambda A \mid}=\lambda \frac{\lambda^{7}+\lambda^{23}}{\left(1-\lambda^{8}\right)\left(1-\lambda^{24}\right)} \text { from (3)} .
\end{aligned}
$$

This proves (iii) and half of pari (ii). The case $n=4 m+1$ is treated similarly, taking $M^{+}=\left(\begin{array}{cc}\bar{M} & 0 \\ 0 & M\end{array}\right), J^{+}=\left(\begin{array}{ll}J & 0 \\ 0 & J\end{array}\right)$. For part (i) we take $J=\left(\begin{array}{ll}1 & -1\end{array}\right)$, obtaining a group of order $16 p$.

Proof of Theorem 2(ii). (Part (i) and Theorem 3 are similar.) Let e satisfy the hypotheses of Theorem 2(ii) and have split weight enumer-
ator $\mathcal{W}=w^{\prime}(x, y, X, Y)$. We use the same notation as in the proof of Tirorem 1. From the hypotheses. eq. (1). and the fact that in each term: $x^{\prime} y^{k} X^{\prime} Y^{m}$ of $w^{\prime} . j+k=1+m$. it follows that $w^{\prime \prime}$ is invariant under M^{+}. J^{\prime}. and
$\boldsymbol{I}^{*}, \boldsymbol{J}^{*} . T_{1}$ generatu a group of ordei $16!9:$ consisting of the matrices

 where A_{1}, \ldots, A_{6} are

$$
\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & i
\end{array}\right) \cdot 2^{-1 / 2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot 2^{-1 / 2}\left(\begin{array}{ll}
1 & 1 \\
j & \cdots
\end{array}\right) \cdot 2^{-1 / 2}\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right) \cdot 2^{-1 / 2}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right) \cdot
$$

and $A_{6+j}=r A_{j},: \leq i \leq 6$. Then $M^{+}, J^{*}, r_{1}, T_{2}, T_{3}$ generate a group (\$ of order $6144 p$ consisting of the imatrices

$$
\begin{aligned}
& \left(\begin{array}{lll}
\omega^{\omega} A & & \\
& \omega^{\nu} B A
\end{array}\right), \quad\left(\omega^{-r B A} \begin{array}{ll}
\omega^{\nu} A
\end{array}\right), \quad 0 \leq \nu \leq p-1 . \\
& A \in \mathscr{H}_{192} . \quad B \in \tilde{H}_{16} .
\end{aligned}
$$

Now is invariant under $(\mathbb{H}$. Let be the set of all invarinats of $(\%$.
 $a_{d} \cdot b_{d}$ us before and will show $a_{d}=b_{d}$ for all d. We have

$$
\left.\sum_{0}^{\infty} b_{d} \lambda^{d}=1 / 11-\lambda^{3}\right)\left(1-\lambda^{16}\right)\left(1-\lambda^{24}\right)
$$

From (2), for all $p>d . a_{d}$ is the coefficient of λ^{d} in

$$
\left.\frac{1}{6144 p} \sum_{v, 4, B} \left\lvert\, \frac{1}{\left|1-\lambda \omega^{2} A\right|\left|1-\lambda \omega^{2} B A\right|}+\frac{1}{\left|1-\lambda^{2} A B A\right|}\right.\right\}=\Sigma_{1}+\Sigma_{11} \text { say. }
$$

In Σ_{1} we pu: $A_{1}=A_{k} B^{\prime}$.

$$
\Sigma_{1}=\frac{1}{24 p} \sum_{k=1}^{12} \sum_{k=0}^{-1} f\left(A_{k} ; \lambda \omega^{\nu}\right) f\left(A_{k} ; \lambda \omega^{-\nu}\right)
$$

where

$$
f\left(A_{k} ; \lambda\right)=f_{k}=\frac{1}{16} \sum_{B \in \dot{y}_{16}} \frac{1}{\left|I \cdots \lambda A_{k} B\right|}
$$

In fact. $f_{1}=\left(1-\lambda^{4}\right)^{-2}, f_{7}=\left(1+\lambda^{4}\right)^{-2}, f_{4}=f_{5}=\left(1-\lambda^{4}+\lambda^{8}\right)^{-1}, f_{10}=$ $f_{11}=\left(1+\lambda^{4}+\lambda^{8}\right)^{-1} . f_{j}=\left(1-\lambda^{8}\right)^{-1}$ for $j=2,3,6,8,9,12$.

$$
\begin{aligned}
\Sigma_{1} & =\frac{1}{24} \sum_{k=1}^{12}\left(\operatorname{coefft} \text { of } \omega^{0} \text { in } f\left(A_{k} ; \lambda \omega\right) f\left(A_{k} ; \lambda \omega^{-1}\right)\right\}+O\left(\lambda^{p}\right) \\
& =\frac{1}{24}\left\{\frac{2\left(1+\lambda^{8}\right)}{\left(1-\lambda^{8}\right)^{3}}+\frac{6}{1-\lambda^{16}}+\frac{4\left(1+\lambda^{8}\right)}{1-\lambda^{24}}\right\}+O\left(\lambda^{p}\right)
\end{aligned}
$$

Similarly.

$$
\begin{aligned}
\Sigma_{11} & =\frac{1}{24} \sum_{k=1}^{12} f\left(A_{k}^{2} ; \lambda^{2}\right)+O\left(\lambda^{p}\right) \\
& =\frac{1}{24}\left\{\frac{8}{\left(1-\lambda^{8}\right)^{2}}+\frac{4}{1+\lambda^{8}+\lambda^{16}}\right\}+O\left(\lambda^{p}\right), \\
\Sigma_{1}+\Sigma_{11} & =\frac{1}{\left(1-\lambda^{8}\right)\left(1-\lambda^{16}\right)\left(1-\lambda^{24}\right)}+O\left(\lambda^{p}\right)
\end{aligned}
$$

hence $a_{d}=b_{d}$. This completes the proof.

Acknowledgments

We thank Mrs. F.S. MacWilliams for several helpful discussions. Some of the calculations were verified with the help of the ALTRAN system for rational function manipulation $[4,14]$, and the GKAPPA group theory analysis program [9].

References

[1] E E. Assmus, Jr., isnd H.F. Mattson, Jr., New 5-designs, J. Combin. Theory 6 (1969) 122151.

12| E.R. Benlekamp, Algebraic Coding. Theory (McGraw-Hill, New York, 1968).
[3] E.R. Beriekamp, F.J. MacWilliams and N.J.A. Slome, Gleason's thec rem on self-dual codes, IEEE Trans. Informatión Theory 18 (1972) 409-414.

 $11: 4691: \% 18$

 2! 5
 ikn
 .oblis. for atpkat
 6

 23.19711:14 7t

 Tob4 sits
 Math 3492t15: 16:

 ©ntrol titici3biks tiv.
 (lowert. Neu Yurk. 196i).

 114!56;1613 316.
 シ147244.

 46n.
124| N.I.A. Seans and D.S. Whithead, New family of singlequrus corfecteng codes. IfIt Tass. Infurntatan Theory 1t.119701717. 719.

[^0]: * Original version received 14 May 1973.

