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Study  region:  Europe.
Study focus:  A  semi-distributed  continuous  hydrological  model,  HYPE,  was  applied  to model
daily stream  flows  in  more  than 35,000  subcatchments  across  Europe.  A stepwise  regional-
ization  approach  was  implemented  to estimate  different  groups  of model  parameters.  HRU
based  parameters  were  estimated  first  for  each  soil and  landuse  class,  respectively.  Lake
and reservoir  parameters  were  estimated  separately.  Catchments  were  grouped  based  on
similarity  of  their  characteristics  and  model  parameters  defined  at a catchment  scale  were
then  regionalized  for each  group  as  functions  of  the  catchment  characteristics  by simul-
taneously  calibrating  the  model  for a number  of catchments  to  concurrently  optimize  the
overall model  performance  and  the  functional  relationships  between  the  parameters  and
the catchment  characteristics.  Calibration  was  performed  at 115  discharge  stations  and  the
approach  was  validated  at 538  independent  stations.
New  hydrological  insights  for  the  region:  Parameters  could  be  linked  to catchment  descriptors
with  good  transferability,  with  median  NSE of 0.54  and  0.53,  and  median  volume  error  of
−1.6% and  1.3%  in  the  calibration  and  validation  stations,  respectively.  Although  regionaliz-
ing  parameters  for  different  groups  of  catchments  separately  yielded  a better  performance
in some  groups,  the overall  gain  in performance  against  regionalization  using  a  single  set
of regional  relationships  across  the  entire  domain  was  marginal.  The  benefits  of separate
regionalization  were  substantial  in  catchments  with  considerable  proportion  of  agricultural
landuse  and  higher  mean  annual  temperature.
©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC

BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Proper management of freshwater resources requires quantification of the spatial and temporal distribution of available
freshwater in its different compartments of the earth. This is often achieved through implementation of hydrological models,
which have different levels of complexity, depending on the specific purpose to which they are to be applied, input data
available, and resource availability (e.g. Singh, 1995; Refsgaard et al., 2010; Pechlivanidis et al., 2011; Hrachowitz et al.,

2013). Although such assessment is usually performed at a catchment or river basin level, there is an increasing need for a
more integrated assessment across regions at continental and global scales as society is becoming more and more integrated
and resources need to be managed in a coordinated way.
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Continental and global scale assessment of water resources have been performed in the past using macro-scale hydro-
ogical models (eg. Yates, 1997; Vörösmarty et al., 2000; Alcamo et al., 2003; van Beek et al., 2011). Such models have a
ather coarse spatial resolution and low accuracy. In recent years, however, there has been a shift towards more detailed and
igher resolution models for assessment of water resources at regional and continental scales (Arnold et al., 1999; Schuol
t al., 2008; Arheimer et al., 2012; Donnelly et al., 2016; Pechlivanidis and Arheimer, 2015; Rakovec et al., 2016).

Implementation of more detailed hydrological models at large scale often requires calibration of the models at a large
umber of subbasins across the model domain to account for the spatial variability of the model parameters (e.g. Graham,
999; Abbaspour et al., 2015). This entails a huge computational effort and requires availability of catchment response obser-
ations, such as discharge data, with a sufficient spatial and temporal coverage, limiting prediction in ungauged subbasins.
ne possible solution to ease these requirements is incorporating a regionalization approach, in which model parameters
stimated in carefully selected gauged donor catchments are transferred to other catchments based on their similarity with
he catchments where the model has been calibrated (see Parajka et al., 2013 for a review of the different methods).

A number of research efforts have been put on developing strategies to relate model parameters to measurable catchment
roperties using different approaches. One group of approaches uses an assumption that catchments that are spatially close
o one another tend to be similar in their characteristics and hydrological behaviors and therefore parameters of the models
mployed to simulate their flows (e.g. Li et al., 2009; Gottschalk et al., 2011). Using such an assumption, model parameters
re transferred from calibrated nearby catchments. Another group of approaches groups catchments based on catchment
hysiographic and/or hydrological similarities using different catchment properties and flow indices to transfer model
arameters (e.g. Johansson, 1992; Arheimer and Brandt, 1998; Merz and Blöschl, 2004; Lee et al., 2005; Parajka et al., 2005;
indström et al., 2005; Seibert and Beven, 2009; Bulygina et al., 2011). A third group of approaches follows a strategy in
hich regression based models are established between model parameters and several catchment characteristics and flow

ndices from a number of catchments for which the model is calibrated independently (e.g. Abdulla and Lettenmaier, 1997;
eibert, 1999; Wagener and Wheater, 2006; Pechlivanidis et al., 2010; Singh et al., 2012).

One of the problems associated with the regression based approach is that because of the problem of equifinality (Beven
nd Binley, 1992), it may  be difficult to obtain a unique set of parameters in the individual catchments, potentially making it
ifficult to come up with a strong relationship between the model parameters and catchment properties. In order to address
his problem, a regional calibration approach, which treats the model calibration and fitting of the relationship between
he model parameters and catchment attributes simultaneously, has been pursued by some researchers (Fernandez et al.,
000; Hundecha and Bárdossy, 2004; Hundecha et al., 2008; Samaniego et al., 2010; Kumar et al., 2013; Wallner et al., 2013).

n this approach, the functional form of the relationship between the model parameters and catchment characteristics is
ssumed a-priori and model calibration is done for a number of catchments simultaneously to estimate the parameters of
he functions relating the model parameters and the catchment characteristics.

Each of the methods listed above has their own advantages and shortcomings. The proximity and similarity based methods
re easier to implement in that the entire set of parameters are assumed to be the same in all ungauged catchments where
he parameters are transferred to. However, they ignore the possible variability of the catchment characteristics between
he different catchments. The regression based method enables estimation of a unique set of parameters for each catchment
ased on their catchment characteristics. However, as mentioned in the previous paragraph, the equifinality problem makes

t difficult to achieve a strong relationship between model parameters and catchment characteristics. The regional calibration
pproach eases this problem, but at a higher computational cost. See Blöschl et al. (2013) for a review of the different methods.

In the present work, we brought together some elements from the different groups of approaches in order to exploit their
dvantages and achieve robust parameter regionalization. To that end, we grouped catchments into homogeneous groups
sing catchment classification and performed regional calibration separately for each group by simultaneously calibrating
he model for multiple catchments within each group while concurrently estimating the regional relationship between the

odel parameters and the catchment descriptors whose form is assumed a-priori. The rationale behind combining the two
pproaches lies in the following:

A regional model calibration approach, in which model calibration and estimation of the relationship between model
arameters and catchment characteristics is performed simultaneously, needs a prior assumption of the functional form
f the relationship between the model parameters and the catchment descriptors (eg. Hundecha and Bárdossy, 2004;
amaniego et al., 2010). If this approach is implemented over a large spatial domain, where the variability of the catch-
ent descriptors is large, the assumed function may  fail to capture the inherent relationship over the full range of variability

f the catchment characteristics. Reducing the variability of the catchment characteristics over which the relationship is
stablished by grouping catchments of similar catchment characteristics would reduce this risk and could lead to a stronger
elationship. On the other hand, regionalization approaches that are based on catchment similarity have usually been pur-
ued by directly transferring parameters from calibrated catchments to other similar catchments. This has been performed
ither from a single catchment or from a group of catchments through averaging the parameters estimated at individual
atchments (eg. Parajka et al., 2005), or by simultaneously calibrating selected catchments of a homogeneous group estab-
ished through catchment classification (eg. Pagliero et al., 2014). Nevertheless, despite their homogeneity, catchments in

he same group still exhibit some variability in their catchment characteristics. Therefore, estimating the model parameters
s functions of the catchment characteristics within a group would improve the parameter estimation.

We tested the benefits of using this new parameter estimation scheme for the HYdrological Predictions for the Envi-
onment (HYPE) model (Lindström et al., 2010) set up for the pan-European region and referred to as E-HYPE (Donnelly
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Fig. 1. Model domain with subdivision into smaller subcatchments shown for portion of the domain.

et al., 2016), which is a large-scale multi-basin model run operationally for several purposes. Current uses include flood
forecasting across the continent (EFAS and WET, see http://hypeweb.smhi.se/), estimating inflow of water and substances
to oceanography models, soil-water forecasts for gardening companies and climate change impact assessments, e.g. for
hydropower companies. HYPE has also been used for scientific studies to test hypotheses using a large sample of catchments
(Donnelly et al., 2016; Pechlivanidis and Arheimer, 2015). The overall aim of the present study is to improve the model per-
formance through a refined calibration and parameter regionalization for a large geographical domain with a high diversity
of catchment characteristics. We  specifically aimed to address the following research questions:

• Does introducing a functional relationship between the model parameters and catchment descriptors in a simultaneous
calibration scheme for a group of general parameters that would otherwise be assigned constant values improve the
E-HYPE model performance in ungauged basins?

• Can one achieve stronger regional relationships and better model performance when classifying catchments into homo-
geneous groups and derive the regional relationships separately for each group compared to deriving the relationships
across the full model domain?

2. Data and method

The HYPE model was  setup for the pan European domain, which covers an area of 8.8 million km2 and was subdivided
into 35,408 subcatchments with an average size of 248 km2 (Fig. 1). The model setup is referred to as E-HYPE and it is a
further development of the previous version v2.1 (Donnelly et al., 2016). The version used in this work is v3.0.

2.1. Data

A range of open data sources were used in setting up the model (see Table 1). River networks and subcatchments were
delineated using WWF’s Hydrosheds data (Lehner et al., 2008) for the model domain south of 60◦ latitude and from Hydro1 K
(Verdin, 1997) further north. Hydrological response units (HRUs) were derived from landuse and soil data obtained from
different sources. Landuse was derived from the CORINE landuse data and GlobCover data (Arino et al., 2008) where CORINE

does not have coverage. Lakes and reservoirs were extracted from GLWD (Lehner and Döll, 2004) and GranD (Lehner et al.,
2011) data sets respectively. Irrigated areas were identified from GMIA (Siebert et al., 2010) and MIRCA (Portmann et al.,
2010) data sets. Soil types were derived from the European Soil Database, ESDB (Panagos, 2006) and Digital Soil Map  of the
World (DSMW)  data sets. 8 soil types and 15 landuse classes were used in the model setup and based on their combination, a

http://hypeweb.smhi.se/
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Table 1
Data used for model setup and their database.

Data Database Source link Reference Resolution

Subcatchments and
river networks

Hydrosheds http://hydrosheds.cr.usgs.gov/index.php Lehner et al., (2008). 15 arc-second

Hydro1K (>60 ◦N) https://lta.cr.usgs.gov/HYDRO1K Verdin (1997) 1 × 1 km2

Precipitation,
temperature

WATCH  (WFDEI) http://www.eu-watch.org/data availability Weedon, et al.(2014) 0.5◦ (approx 50 km)

Observed discharge GRDC http://www.bafg.de/GRDC/EN/02 srvcs/21 tmsrs/riverdischarge node.html;jsessionid=
C22E2022D049900355DDB9C3C6502A6E.live1042

GRDC (2014) Daily
Daily
Daily
Daily

EWA  http://www.bafg.de/GRDC/EN/04 spcldtbss/42 EWA/ewa node.html EWA  (2013) Daily
BHDC  http://www.smhi.se/sgn0102/bhdc/ BHDC (2008) Daily
SMHI  http://vattenwebb.smhi.se/station/ SMHI (2014) Daily
Spanish authorities – – Daily

Snow  data GlobSnowFSUS http://www.globsnow.info/index.php?page=Snow Water Equivalent – 25 km
http://nsidc.org/data/g01170 – –

Potential
evapotranspiration

MODIS  ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/ Mu  et al., 2011 1 × 1 km2

LandUse  CORINE http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database-1– 100 × 100m
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster

GlobCover http://due.esrin.esa.int/page globcover.php Arino et al. (2008). 300 × 300 m
GLWD  http://worldwildlife.org/pages/global-lakes-and-wetlands-database Lehner and Döll (2004) –
GranD  http://www.gwsp.org/products/grand-database.html Lehner et al. (2011) –
GMIA  http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm Siebert et al. (2010) 5.5 min (approx. 10 km

at  equator).

Irrigation  GMIA http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm Siebert et al. (2010) 1.5 min (approx. 10 km
at  equator).

MIRCA https://www.uni-frankfurt.de/45218023/MIRCA Portmann et al. (2010) 2.5 min (approx. 10 km
at  equator).

Soil  ESDB 1 × 1 km http://eusoils.jrc.ec.europa.eu/ESDB Archive/ESDB data 1k raster intro/ESDB 1k raster data intro.html Panagos (2006) 1 km × 1 km
ESDB  10 × 10 km http://eusoils.jrc.ec.europa.eu/ESDB Archive/rasterarchive/ESDBv2 ETRS LAEA raster archive.html Panagos (2006) 10 km × 10 km
DMSW  http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116 –

http://hydrosheds.cr.usgs.gov/index.php
http://https://lta.cr.usgs.gov/HYDRO1K
http://www.eu-watch.org/data_availability
http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html;jsessionid=C22E2022D049900355DDB9C3C6502A6E.live1042
http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html;jsessionid=C22E2022D049900355DDB9C3C6502A6E.live1042
http://www.bafg.de/GRDC/EN/04_spcldtbss/42_EWA/ewa_node.html
http://www.smhi.se/sgn0102/bhdc/
http://vattenwebb.smhi.se/station/
http://www.globsnow.info/index.php?page=Snow_Water_Equivalent
http://nsidc.org/data/g01170
http://ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database-1
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
http://due.esrin.esa.int/page_globcover.php
http://worldwildlife.org/pages/global-lakes-and-wetlands-database
http://www.gwsp.org/products/grand-database.html
http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm
http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm
http://https://www.uni-frankfurt.de/45218023/MIRCA
http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDB_data_1k_raster_intro/ESDB_1k_raster_data_intro.html
http://eusoils.jrc.ec.europa.eu/ESDB_Archive/rasterarchive/ESDBv2_ETRS_LAEA_raster_archive.html
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
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Fig. 2. Schematic representation of the HYPE model processes.

maximum of 75 HRUs were identified. Daily discharge data at more than 3000 gauging stations were obtained from different
sources (Table 1). A subset of the gauging stations was used in this work − 115 discharge stations were used for calibration
while 538 independent stations were used for model validation (see Section 2.5 for the selection procedure).

The WFDEI meteorological forcing data set, an observation corrected reanalysis (Weedon et al., 2014) for the period
1979–2010 was used for model calibration and validation. The dataset provides daily gridded meteorological records with
approximate grid size of 2500 km2 which is approximately 10 times greater than the subcatchment resolution. For each
subcatchment, the daily precipitation was taken from the grid center nearest to the subcatchment centroid, while the
magnitude was rescaled on the monthly basis so that the monthly total precipitation equals the area weighted mean total
precipitation of all grid cells whose portions fall within the subcatchment. Temperature was  computed as the area weighted
average of the values at the grid cells that are within the subcatchment.

2.2. Hydrological model

The hydrological model employed in this study, HYPE, is a continuous process-based model, which simulates components
of the catchment water cycle at a daily or hourly time step. The model is a semi-distributed conceptual model, in which a
river basin may  be subdivided into multiple subcatchments, which are further subdivided into homogeneous hydrological
response units (HRUs) based on combined soil type and landuse classes (Fig. 2). Normally, model outputs are generated at
the subcatchment outlet. The model has conceptual routines for most of the major land surface and subsurface processes
(e.g. including snow/ice accumulation and melting, evapotranspiration, surface and macropore flow, soil moisture, discharge
generation, groundwater fluctuation, aquifer recharge/discharge, irrigation, abstractions and routing through rivers, lakes
and reservoirs) that are controlled by a number of parameters (Table 2) that are often linked to physiography to account
for spatial variability and need to be estimated through calibration. The snow accumulation and melt process is modeled
using the degree-day method with landuse dependent parameters. A fraction of rainfall or snowmelt infiltrates into the
topsoil, which is limited by a soil type dependent maximum rate (mactrinf). If the soil moisture in the upper soil layer
exceeds a threshold for macropore flow (mactrsm), part of the remaining water forms macropore flow that is controlled
by a soil type dependent runoff coefficient macrate. Part of the remaining water is transformed into surface runoff using a
soil dependent coefficient srrate. The remaining water forms a surface pool and overland flow is computed using a landue
dependent recession coefficient srrcs. Potential evapotranspiration (PET) is estimated using the modified Jensen-Haise model
(Oudin et al., 2005), whose parameters (kc) are landuse dependent. PET is achieved only if the actual soil moisture exceeds a
large proportion (lp) of the soil field capacity and for soil moisture below this limit, the actual evapotranspiration decreases
linearly to zero at wilting point. Runoff from the soil zone is computed when the soil moisture exceeds field capacity using

soil type dependent recession coefficients rrcs. Water percolates from upper to lower soil layers when the soil moisture in
the upper layer exceeds field capacity and the rate is determined using a soil type dependent percolation parameter mperc.
The ground water level is estimated based on the level in the soil zone where the pore space is filled.
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Table  2
Different groups of model parameters and the basis of their regionalization.

Process Parameter Units Min  Max

Soil type based
Water holding Fraction of soil water available for PET (wcfc) – 0.05 0.5

Wilting point as fraction of soil depth (wcwp) – 0.05 0.5
Effective porosity as fraction of soil depth (wcep) – 0.05 0.5

Percolation Maximum percolation capacity (mperc) mm/d 5 120

Recession Soil recession coefficient (rrcs) – 0.05 0.6

Surface  runoff Threshold for macro pore flow (mactrinf) mm/day 0 100
Threshold soil water as fraction of soil depth for macro pore flow and surface runoff (mactrsm) – 0 1
Fraction of macro pore flow (macrate) – 0.05 0.5
Fraction of surface runoff (srrate) – 0.05 0.5

Landuse based
Evapotranspiration Crop coefficient used to scale reference PET (kc) – 0.8 1.2

Snow  Threshold temperature for snowmelt (ttmp) ◦C 0 0
Degree-day factor (cmlt) mm/d ◦C 1 4

Surface  runoff Recession coefficient for surface runoff (srrcs) – 0.01 0.2

Catchment scale
Evapotranspiration Threshold soil water for activation of PET (lp) % 0.8 1

Temperature correction for elevation in relation to mean subcatchment elevation (tcelevadd) ◦C/100m 0 0.7
Adjustment factor for PET (cevpcorr) – −0.2 0.2
Adjustment factor for temperature (tempcorr) – −0.2 0.2

Precipitation Threshold elevation for precipitation adjustment (pcelevth) m – –
Adjustment factor for precipitation with elevation (pcelevadd) mm/100m 0 5

Flood  speed Clelerity of flood wave (rivvel) m/s 0.5 1.5
Fraction of delay in water course (damp) – 0.4 0.7

Recession Correction factor for soil recession coefficient (rrcscorr) – −0.2 0.2
Slope dependent recession coefficient in the upper soil layer (rrcs3) – 0.0 0.1

Lakes  and reservoirs

w
r
g

2

c
p
d
2
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(
d
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m
(
W
t
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w

Lake Rating curves Lake recession factor (gratk) – 1 2
Exponent parameter to lake depth (gratp) – 1 100

The generated discharge is routed through each subcatchment and between subcatchments using a river routing routine
hich simulates attenuation and delay using a flow wave and delay parameters rivvel and damp, respectively. If lakes and

eservoirs are present within a subcatchment, the flow is routed in the lake or reservoir using a rating curve with parameters
ratk and gratp.

.3. Catchment classification

As a first step in our parameter regionalization framework, we  classified catchments into different groups of similar
haracteristics based on a set of catchment physiographic and climate descriptors. Different descriptors have different
rocess controls on different flow signatures and the objective of the classification is to group catchments with different
ominant catchment response behaviors that are controlled by their catchment descriptors (Sawicz et al., 2011; Olden et al.,
012). All descriptors were derived from readily measurable and available data such as topographic, soil and land cover data,
s well as climate data. We  selected a set of catchment descriptors that are expected to influence the hydrological response
f a catchment partly based on an evaluation of how catchment characteristics affect aspects of observed discharge in Europe
Donnelly et al., 2016), but extended to include more descriptors. In total, we used 21 catchment physiographic and climate
escriptors as a basis for catchment classification: catchment area, mean catchment elevation, mean catchment slope, 9

anduse classes, 7 soil types, mean annual catchment precipitation and temperature. There could be significant correlation
etween some of the descriptors. Hence, we employed principal component analysis to derive variables that are independent
nd have less dimensionality than the original descriptors.

Catchments were grouped into groups of similar characteristics using a hierarchical minimum-variance clustering
ethod, since the method keeps the within group variability to a minimum. To this end, we employed the k-means algorithm

Hartigan and Wong, 1979) with a large number of groups (100 groups in this work) and hierarchically merged groups using

ard’s minimum variance method (Ward Jr., 1963). Two  groups are merged in such a way that the increase in the sum of

he within group variance of the descriptors weighted by the respective group size across all groups is the minimum. After
ach merging step the k-means algorithm was applied to the reduced number of groups. The optimum number of groups
as established by evaluating the changes in the total weighted variance of the catchment descriptors across all groups
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between successive merging steps. The point where the rate of change becomes steeper was set as the optimum number of
groups.

2.4. Model parameter regionalization

2.4.1. Base-line regionalization
HYPE has several parameters that can be grouped into different categories based on how they are estimated and region-

alized (Table 2). Calibration is normally carried out in a stepwise manner by estimating parameters of each group at a time
(Arheimer and Lindström, 2013; Donnelly et al., 2016; Pechlivanidis and Arheimer, 2015). The HRU parameters, which are
soil or landuse type dependent, are first estimated for each soil and landuse type by calibrating the model for a group of rep-
resentative gauged subcatchments for which the dominant soil or landuse type is the one whose parameters are estimated.
The parameters thus estimated are applied everywhere in the model domain since they are soil or landuse type specific.
In the second step, subcatchment scale parameters, which are not directly linked to soil or landuse type, are estimated by
calibrating the model for all subcatchments used to calibrate the first group of parameters. These parameters are set to be
constant across the entire model domain. These include rating curves for lakes and reservoirs. However, the rating curves
can be estimated for individual lakes where discharge gauging stations are collocated with lakes.

In the current model version (E-HYPE v.3.0), the landuse dependent evapotranspiration parameters were estimated
against satellite based (MODIS global dataset, Mu  et al., 2011) PET data. The HYPE model PET parameters were optimized for
each landuse type so that HYPE modeled annual PET matches the MODIS PET within the entire model domain. The landuse
dependent snow accumulation and melt parameters were also estimated for each landuse type so that the model estimated
snow depth matches the GlobSnow snow depth data. The other HRU parameters that are defined based on landuse or soil
type were estimated for each landuse or soil type by calibrating the model simultaneously for a set of selected gauged
catchments in each catchment group identified through catchment classification at a time and repeating the procedure
iteratively. Parameters that are not defined based on landuse and soil types were adjusted manually such that certain features
of the hydrographs, such as time shift, which are modelled using the routing parameters, are corrected. These parameters
were calibrated and regionalized in detail at the next step of model calibration described in Section 2.4.2. General parameters
that control flows out of lakes and dam regulation were calibrated using a set of subcatchments with significant proportion
of lakes or regulation and used as default parameters. For those rivers in Europe most affected by lake and reservoir processes
and sufficiently gauged, these parameters were individually tuned to the nearest downstream gauge. In total 39 gauging
stations were used for individual calibration of lakes and reservoirs in 8 river systems.

2.4.2. Introduced regional parameter estimation scheme
We introduced a calibration strategy, where the general parameters that are set constant throughout the model domain

in the standard calibration procedure of HYPE are estimated as functions of a set of catchment descriptors. Each catchment
will then have a unique set of these parameters that are regionalized based on the catchment characteristics. We  employed
a method similar to a regionalization approach outlined in Hundecha and Bárdossy (2004), in which a linear relationship
between a model parameter and a set of catchment descriptors is assumed a-priori and the coefficients of the linear function
are estimated during model calibration. While assumption of linearity of the relationships is attractive due to its simplicity,
the relationship could deviate from linearity if the catchment descriptors show a large variability, which is the case in a
large-scale model setup such as the present work. Therefore, we performed the estimation for each parameter separately in
each group of catchments established through catchment classification. Since the catchments were grouped into different
groups based on their catchment descriptors, the variability of the catchment descriptors within each group is much less
than the corresponding variability across the entire model domain. Therefore, it is assumed that the error that could result
from a linearity assumption would be reduced by regionalizing the parameters separately for each group of catchments.

The catchment descriptors used in the regionalization of the parameters were initially set based on prior knowledge of the
controls of the processes they describe (e.g. Strömqvist et al., 2012; Donnelly et al., 2016; Pechlivanidis and Arheimer, 2015).
See also Section 3.2 for which descriptors were used as a basis of regionalization for the different parameters. Descriptors
to which the parameters did not show sensitivity during the estimation procedure were subsequently left out and the
relationships with the remaining descriptors were refined through a subsequent estimation.

To investigate the value of separate regionalization for each group of catchments, we  compared the results with a ref-
erence regionalization approach, where a single set of regionalization equations, which were estimated by simultaneously
calibrating the model for all the calibration catchments obtained by merging all groups of catchments, were applied across
the entire model domain (hence accounting for the entire heterogeneity in the domain). Finally, we compared the model
performance after introducing the new regional parameter estimation scheme with the results from the base-line model
(standard HYPE parameter estimation).

2.5. Parameter estimation and model evaluation
2.5.1. Parameter estimation strategy
Estimation of the model parameters was performed using a set of daily discharge stations. The calibration period was  set

to 1980–1999 with 1979 used as a spin-up period. Since many stations do not have a complete data set over this period, we
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ltered stations to exclude those with a maximum of 60% missing data. Furthermore, selection of the stations was guided
y the need to have the entire subcatchments draining to the given station belong to the same class of catchment groups
See Section 3.1). In addition, since the climate drivers for each subcatchment were estimated from grid based data and the
mall scale variability may  not be well represented, we set a minimum drainage area of 1000 km2 for the selected stations.
here were 115 stations that meet these criteria and we used all of them for model calibration.

At each stage of model calibration, simultaneous calibration was performed to all stations of the calibration set within
 given catchment group. We  employed the sum of Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) at each of the
tations as a basis of the objective function. However, this could lead to unbalanced model performance at the different
tations since a poor performance at some stations could be offset by a good performance at others. Therefore, we used
n objective function that gives more emphasis to the station where the performance is the poorest (see Hundecha and
árdossy, 2004):

Obj =
N∑

i=1

NSEi + NminNSE (1)

here N is the number of stations, minNSE is the minimum of the NSEi values. A combination of automatic calibration and
anual tuning was employed in the process of estimation of the soil, landuse and the catchment scale parameters. We

mployed the DE-MC algorithm (Ter Braak, 2006) for automatic calibration with 200 generations of 100 parallel chains at
ach step of calibration. The median values of the last 100 generations were used as estimates of the optimum parameter
alues.

.5.2. Evaluation of the regionalized model
The regional parameterization established using the calibration set of stations was tested using a set of independent

alidation stations that were not used during the model calibration. We  selected 538 stations that were not highly influenced
y anthropogenic alterations by screening those stations known to be influenced by regulation and manually inspecting the
emaining stations for unusual hydrographs. To group the validation stations into the different groups of catchments, we
omputed the percentages of the catchment areas draining to the stations belonging to the different groups and assigned
he station to the group that has more than a 50% share of the drainage area. Those stations to which there is no group with

ore than 50% contribution to the upstream area were treated as belonging to a new group representing inhomogeneous
onditions (mixed).

We employed NSE and relative volume error, which is defined as the percentage bias of the modeled average daily
ow against the observed to evaluate the model performance in both the calibration set and validation set of catchments.
urthermore, we evaluated the model performance in terms of its ability in reproducing different features of the daily
ydrograph by using a set of flow signatures. We compared the modelled and observed mean specific daily flow (Qmean),
he daily specific flows that are exceeded 5% (Q95) and 95% (Q05) of the number of days to characterize the overall daily,
igh flow, and low flow, respectively. Furthermore we compared the modelled and observed coefficient of variation (CV) of
he daily flow to evaluate the models ability to capture the variability of the daily flow.

. Results and discussion

.1. Catchment classification

Application of principal component analysis on the 21 catchment descriptors resulted in 12 principal components
ccounting for 86% of the total variability and these were used for catchment classification. Following the procedure outlined
n Section 2.3, we ended up with 16 groups of catchments. This can be seen in Fig. 3, where the change in the sum of the

eighted variance of the principal components that are used for the classification across all groups between successive
erging steps shows a sharp change when the number of groups is 16.
Generally, the catchment groups display spatial coherence across the study domain with a visible north-south distinction

Fig. 4a). Analysis of the distributions of the different catchment descriptors employed in the classification (Fig. 4b) shows
hat much of the variability between the groups comes from the landuse and soil types. In addition, catchments in the
lps and Norway with high elevation are grouped into a few classes, highlighting the added importance of elevation in

he classification. However, as the classification is dominated by landuse and soil types, there are also catchments in low
ying areas that are grouped together with the high elevation catchments. This is reflected by the higher variability of the
istribution of elevation in such groups (see for instance groups 3, 12, 14 and 16 in Fig. 4b). Each of the groups is characterized
y one or two dominant landuse and soil types. The distribution of mean annual precipitation within the catchment groups
losely follows that of the elevation, with a bit higher median value and higher variability in groups where the high elevation
atchments are grouped. On the other hand, mean annual temperature displays a clear north-south gradient, with a higher

ariability within groups made up of catchments located in both northern and southern Europe, such as group 12. Catchment
rea has similar distribution within all groups and thus plays little role in the classification.

The fact that the dominant controls for the catchment classification are landuse and soil types was exploited in the
egionalization of the model parameters. Since there are one or two  dominant landuse and soil types in each group of
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Fig. 3. Sum of within group variances of the principal components of catchment descriptors weighted by the respective group size at each stage of the
hierarchical clustering procedure of the catchment classification.

Table 3
Number of stations used for calibration and spatial validation in different groups of catchments.

Group No. Calibration set Validation set

No. Stats Min. area Max. area Avg. area No. Stats Min. area Max. area Avg. area

1 11 955 5202 2248 31 1170 194376 18162
2  4 920 5510 2225 73 1033 97780 15880
3  7 1060 2240 1368 24 1107 13733 4505
4  2 1920 14100 8010 13 1020 54700 9423
5  18 903 5560 1774 25 1036 6983 2464
6  20 1000 2418 1597 31 1010 19920 2964
7  20 908 4160 1696 64 1026 36275 5622
8  2 2780 3062 2921 7 1110 12000 3726
9  16 995 5090 2007 73 1010 285000 21276
10  0 – – – 0 – – –
11  5 1110 8538 2759 7 1704 14191 5224
12  1 1142 1142 1142 4 1755 7074 3459
13  0 – – – 0 – – –
14  9 908 5915 2128 19 1100 26084 6347

15  0 – – – 0 – – –
16  0 – – – 1 7380 7380 7380
Mixed  – – – – 166 1119 807000 76510

catchments, estimation of the landuse and soil type based parameters was performed by separately calibrating a group of
parameters for catchments belonging to a single group at a time and refining the estimates iteratively.

There were too few calibration stations (Table 3) in some of the catchment groups to allow a reasonable estimation of the
catchment scale parameters using a regional relationship. Therefore, for estimation of the catchment scale parameters, we
manually merged some of the catchment groups that have similar distributions of their catchment descriptors. We  merged
groups with less than 5 stations with groups that have similar dominant landuse and soil types and more than 5 stations. This
resulted in 8 groups (Table 4) with a slightly modified distribution of the dominant catchment descriptors within the merged
groups, showing somewhat less variability than within the group in the original classification with the highest variability
(Fig. 5). Note that the original classification was used for estimation of the HRU parameters since the groups have more
distinct landuse and soil class distribution.

3.2. Regional relationships between parameters and catchment descriptors

Table 5 shows that the catchment descriptors to which the catchment scale parameters are sensitive are mostly linked

to soil type, mean catchment slope, up-stream area or mean catchment elevation. Table A1 also shows the correlation
coefficients between the parameters and catchment descriptors for each group of catchments. It should be noted that some
of the catchment-scale parameters, such as the evapotranspiration and recession parameters, have mainly the effect of
modulating the soil and landuse parameters, as these were estimated during the first step to calibrate the base-line model
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Fig. 4. (a) Spatial pattern of catchment groups and their frequency distribution, and (b) distribution of the different catchment descriptors in each of the
groups (landuse and soil types are shown as fractional proportions).

Table 4
Original groups of catchments merged together to form a new grouping for regionalization of catchment scale parameters and the number of stations in
the  new groups of catchments.

New group ID. Merged groups Calibration set Validation set

No. Stats Min. area Max. area Avg. area No. Stats Min. area Max. area Avg. area

A 1,2 16 920 5510 2242 132 1033 194376 18367
B  3,4,12 9 1060 14100 2758 45 1020 54700 5723
C  5 18 903 5560 1774 25 1036 6983 2464
D  6,15 20 1000 2418 1597 32 1010 19920 3105
E  7,8,11 27 908 8538 1984 89 1026 36275 5593
F  9 16 995 5090 2007 73 1010 285000 21276
G  13,14,16 9 908 5915 2128 26 1100 26084 7219
H  10 0 – – – 0 – – –
Mixed  – – – – – 116 1119 807000 101502
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Table 5
Catchment scale model parameters and catchment descriptors they are regionalized with.

Process Parameter Catchment descriptors used for regionalization

Catchment group ID

A B C D E F G

Evapotranspiration lp % coarse soil
% medium soil

% medium soil % fine soil
%  agriculture

– – – % medium soil
% shallow soil

tcelevadd 0.6 0.6 0.6 0.6 0.6 0.6 0.6
cevpcorr % forest

%agriculture
% forest
% agriculture
% open area

% forest
%  agriculture
%  pasture

% forest
%  agriculture
%  pasture

– % forest
% open area

% forest
% agriculture
% pasture
% open area

tempcorr – – – – – – –

Precipitation pcelevth 450m 1000m 250m 400m – – 950m
pcelevadd Mean elevation Mean elevation Mean elevation Mean elevation – – Mean elevation

Flood  speed rivvel Slope
Upstream area

Slope
Upstream area

Slope
Upstream area

Slope
Upstream area

Slope Slope
Upstream area

Slope
Upstream area

damp  Slope
Upstream area

Slope
Upstream area

Upstream area Slope – – Slope
Upstream area

Recession rrcscorr % coarse soil
% medium soil

– % medium soil
% fine soil

– – – % medium soil
% shallow soil

rrcs3  % coarse soil
% medium soil

% coarse soil
% medium soil
% shallow soil

% medium soil
% fine soil

% medium soil
% fine soil
%  shallow soil

– % medium soil
% moraine

–



Y. Hundecha et al. / Journal of Hydrology: Regional Studies 6 (2016) 90–111 101

F
c

(
p

t
f
g
c
n
c
T
l
t

W
a
l
o
c

i
a
c
c
T
w
f

G
d
u
t

3

c
m

ig. 5. Distributions of catchment descriptors in the different catchment groups that are formed after merging some of the classes for regionalization of
atchment scale parameters (landuse and soil types are shown as fractional proportions).

Section 2.4.1). Others, such as the flood propagation parameters, pertain to processes whose parameters have not been
roperly calibrated in the previous step.

The parameters that control evapotranspiration (lp and cevpcor) were regionalized based on the proportions of the soil
ype and landuse within each group of catchments. For the parameter lp,  which controls the threshold for activation of the
ull potential PET in the soil root zone, strong relationships were obtained with the proportion of soil types in some of the
roups. Only in group C does proportion of landuse (agriculture) show a strong correlation with this parameter. No strong
orrelation was obtained with either landuse or soil type in three of the groups (D, E, and F), which are mainly located in the
orthern part of Europe. The parameter cevpcor, which adjusts the potential evapotranspiration, was  found to have a strong
orrelation with proportions of the dominant landuses in most groups, except in group E, where no adjustment was needed.
he landuse dependent parameter kc that controls PET was estimated using satellite data (See Section 2.4.1). However, the
anduse characteristics in different parts of the model domain could have different features and, therefore, cevpcor adjusts
he PET for a possible variation of the landuse characteristics in different catchment groups.

The adjustment parameters for soil recession were regionalized using proportions of the soil types making up the group.
hile the parameter rrcs3, which adjusts the upper soil layer recession as a linear function of mean catchment slope shows

 strong correlation with some of the soil types in most groups, the parameter rrcscorr, which adjusts the recession in all
ayers, was found to be strongly correlated with proportions of soil types only in groups A, C, and G. Groups A and C consist
f catchments that are mainly located in the southern and central parts of Europe, while group G consists of high elevation
atchments in the Alps and Norway.

The threshold elevation above which precipitation correction is needed (pcelevth) was set constant for each group and
t varies between the different groups. Generally, the threshold gets higher in catchments where the elevations are high (B
nd G) and the rate of correction with elevation (pcelevadd), which was  also set constant for a given group, is lower in these
atchment groups compared to low lying catchments. Similarly the rate of correction for temperature (tcelevadd) was  set
onstant for each group. However, temperature correction did not lead to any noticeable increase in model performance.
herefore, the parameter was not regionalized in order to reduce the number of parameters used for model calibration and
as instead assigned a default lapse rate value everywhere. The same was  done to the catchment temperature adjustment

actor tempcorr.
The flood propagation parameters were regionalized based on total upstream area and mean catchment slope (Table 5).

enerally, both the flood celerity parameter (rivvel) and the damping parameter (damp) show a strong correlation to both
escriptors in most catchment groups (Table A1). However damp shows no variation with respect to both the slope and
pstream area in the mainly flat areas of northern Europe (groups E and F) where possibly lakes dominate routing more
han slope and area.

.3. Evaluation of the regionalized model in terms of NSE and volume error
Fig. 6 shows that there is some variation in the distribution of the performances, especially the NSE, between the different
atchment groups. The relative volume error has a fairly similar distribution across all groups, with a general tendency of the
odel to underestimate the total discharge volume in the calibration catchments, except in groups A and F. In the validation
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Fig. 6. Distribution of performance measures at the stations used for calibration and validation of the different catchment groups (number of stations
within  each class shown in Table 4).

catchments, however, the model slightly overestimates the discharge for most groups. However, the median relative error
across all stations is only within ±2% in both the calibration and validation sets of catchments.

The available data in the period after the calibration period at many of both the calibration and validation stations is
not enough to allow a reasonable temporal validation of the regionalized model. Therefore, we computed the performance
measures at the validation stations for all available data over 1980–2010. In order to use the calibrated model as reference
for comparison, we present the performance in the calibration set of stations over the calibration period.

Model performance is the highest in group D, both in the calibration and validation sets, with high NSE values and low
volume error and less variability in performance between stations (Fig. 6). The catchments in this group are characterized by
a predominantly medium texture soil and pasture landuse with some agriculture and forest. Most of the catchments in this
group are located in the low lying areas of Western Europe and the British isles (Fig. 7), with a relatively high mean annual
precipitation and less variability of temperature. The performance is generally the lowest in group C, with a median NSE of
0.3 in the calibration set and the flow being underestimated in almost all catchments with a median relative error of −12%.
Group C constitutes catchments with predominantly fine soil and agricultural landuse. They span a diverse region across
central and Eastern Europe as well as south Western Europe (Fig. 7). They are characterized by low lying areas with low
mean annual precipitation and high mean annual temperature. They generally have lower flows with higher variability (See
section 3.4). This highlights the relatively poor model performance under an arid setting. The overall performance when all
the calibration sets of catchments in all groups are pooled together is reasonably acceptable, with median NSE and relative
volume error of 0.54 and −1.6%, respectively.

The median NSE values in the validation set of catchments are comparable with the corresponding values in the calibration

set in most groups. They are slightly lower in groups A and E and considerably higher in group C than in the corresponding
calibration sets; however, the scatter across stations is higher in most groups (Fig. 6). Note that there are more stations in
the validation set than in the calibration set in each group and the catchments draining to the validation stations do not all
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Fig. 7. Spatial patterns of NSE and Relative volume errors at the calibration (a and c) and validation (b and d) stations.

elong to the same group and hence are more heterogeneous, as we have set a 50% area rule to decide the membership of
he stations (see section 2.5.2). This consequently leads to a higher spread in the model performance. However, the median
alues and variability of the relative volume error across stations within a given group are not very much different between
he calibration and validation sets in most groups. The median NSE is similar to that of the calibration set (0.53 versus
.54) with slightly higher spread between stations, while the distribution of the relative volume error is similar both in the
alibration and validation sets with median values of −1.6% and 1.3%, respectively. The performance at stations that could
ot be grouped in any of the catchment groups, because none of the groups account for at least 50% of the upstream area,
as a similar distribution of performance with that of the entire validation set of catchments. Overall, this indicates that the
odel parameters are robust enough for predictions in ungauged basins within the model domain with comparable skills,

otwithstanding regional differences.
Generally, the regionalized model performance in terms of NSE shows a north-south gradient, with the performance

ecreasing southwards. Catchments located in the north, such as groups E and F, are characterized by a predominantly
orest landuse and lower mean annual temperature, while those in the southern part, such as A and C are predominantly of
gricultural landuse with higher mean annual temperature.

.4. Evaluation of the regionalized model in terms of flow signatures

The model reproduces different flow signatures related to the long term mean, variability, and extremes with different
evels of accuracy (Fig. 8). The model skill to predict the flow signatures varies between the different groups of catchments
nd could thus be linked to catchment characteristics.

As shown in Fig. 8, catchment groups A and C generally have lower mean (Qmean) and high flow (Q95) values while
hose in group G have the highest. Groups A and C are characterized by dominantly agricultural catchments with some
orest landuse. While group A has a predominantly coarse to medium soil texture, group C has a predominantly fine soil.
oth groups have a low mean annual precipitation and high mean annual temperature with little variation between the
atchments making up the group. Catchments in group G have a predominantly forest landuse with some open land. The soil
ayer is mainly shallow with less storage, meaning that there is less water available for evapotranspiration and hence higher
ow. In addition, the mean annual precipitation in this group of catchments is the highest among all the catchment groups.

n all the other groups, the flows are generally variable across the catchments within each of the group. Generally, except in
roup C where there is a general underestimation, Qmean is slightly overestimated in catchments with lower mean flows
hile it is underestimated in catchments with higher flows within most catchment groups. No systematic bias in relation to
ow magnitude is apparent in the estimation of Q95 within all groups. The low flows (Q05), on the other hand, are estimated
ith overestimation in catchments with lower low flows and underestimation in those with higher low flows.
Coefficient of variation of the daily flow shows less distinct variation between the different groups of catchments except
hat catchment group C has the highest value than the others, while the other groups have similar variation. The model
stimates this signature with less bias compared to the other three signatures, which are related to magnitude of flows.
owever, the spread in the prediction is high across the entire range of variability of the values.
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3.5. Value of catchment classification in parameter regionalization

Fig. 9 shows that both the median and upper quartile values of the NSE got lower in most catchment groups when
parameters were regionalized without catchment classification. The model performance deteriorated the most in group C,
where the flow displays the highest variability and the model performance was the lowest, with the median NSE dropping
from 0.29 to 0.21 at the calibration stations and from 0.55 to 0.46 at the validation stations. Similarly, the distribution of NSE
at all stations showed a slight shift to the lower side when regionalization was  performed without catchment classification.
The pattern of the difference in performance in the validation set of stations within most groups was  similar with that of
the corresponding calibration set of stations.

In terms of the relative volume error, regionalization with catchment classification led to less model bias in the calibration
set of stations in all groups of catchments compared to regionalization without catchment classification. While the median
error values were similar in most of the groups except within a few groups where the absolute median value showed
improvement under classification based regionalization, the spread between the lower and upper quartiles were reduced
in most of the groups and this tendency was also seen when all stations were pooled together. At the validation stations,
however, the performance in terms of volume error was not consistently better in all groups under the classification based
regionalization. It got better in group C, while little or no improvement was observed in most other groups. It got worse
in groups B and G, which are groups that constitute high elevation catchments located both in the north and southern
parts of the model domain. These groups are characterized by a wide variability of many of their catchment characteristics.
Although the model performance showed improvement in the calibration set, transferring parameters to the validation set
may  not lead to improvement in all catchments consistently due to the wide variability of the catchment characteristics. The
volume error distributions when all the validation stations were pooled together were also similar under both approaches.

Fig. 8. Scatter plots of simulated vs. observed flow signatures in the calibration (a–d) and validation (e–h) stations within different catchment groups.
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ig. 8. Scatter plots of simulated vs. observed flow signatures in the calibration (a–d) and validation (e–h) stations within different catchment groups.

lso in terms of volume error, the performance improved the most in group C when regionalization was  performed with
lassification, with the median volume error going down from −10.6% to −6.4% at the calibration stations and from −12% to
6% at the validation stations.

Overall, the classification based regionalization yielded considerably better model prediction in some of the catchment
roups, such as in groups C and D, while the improvement against regionalization without classification in the other groups
as marginal. The distribution of the NSE and volume error when all stations were pooled together was  also slightly better
nder a classification based regionalization approach.

Regarding the improvement of model performance by introducing the regional parameter-estimation scheme for the
atchment scale model parameters in the stepwise calibration, Fig. 10 shows that the model performance in terms of NSE
mproved at stations where the model performance was good under the base-line model calibration. However it got worse
t those stations where the performance was very low. The median performance, nevertheless, got slightly better. In terms
f volume error, regionalization clearly led to a better performance, especially at those stations where the flow was  under-
stimated under the base-line model calibration. The median volume error reduced from −5% at both the calibration and
alidation stations to ±2%.

Our finding that the employed regionalization scheme improved for sites where the model works well while it got
orse at sites where the performance is the least could be suggestive of the possibility that other factors than parameter

alues might have led to the poor performance at these locations. Such factors can be erroneous or inconsistent input data,

oor model forcing or human alterations. It is well known that the routing from the Hydrosheds database and the gridded
eteorological products are far from perfect for Europe (Donnelly et al., 2012; Kauffeldt et al., 2013). Moreover, most of

urope is significantly affected by water regulation, irrigation, abstractions, channel strengthening, etc, which is probably
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Fig. 9. Distribution of NSE (a) and RE (b) within the different catchment groups during the calibration period when regionalization of catchment scale

parameters was performed without and with catchment classification (left side boxes in each group of stations: regionalization without classification, and
right  side boxes: regionalization with classification).

not fully described in the global databases at the resolution used in the E-HYPE model. This highlights the importance of
more detailed spatial data across Europe to improve model parameter values and model structure.

4. Conclusions

By introducing a regional parameter-estimation scheme for the catchment scale parameters based on catchment phys-
iography within a stepwise calibration procedure in the E-HYPE version 3.0, we  found that:

• Regionalizing the model parameters as a function of catchment descriptors can improve prediction skills of a processed-
based model. For E-HYPE this was especially valid for sites where the model is already performing well. The eventual
success of the tested regional parameter-estimation scheme is influenced both by climate and human influence on the
catchments.

• For some groups of catchments with similar physiography, stronger relationships between model parameters and
catchment descriptors could be achieved with higher model performance than if regionalization was  done for the full
geographical domain. However, the overall performance for the full model domain did not improve much by introducing
homogeneous groups and derive the regional relationship separately for each group.

• The properties of soil, land use and to some extent elevation were the most distinct physiographical characteristics for

classification of catchment similarities across Europe. The strongest relationships between E-HYPE model parameters and
catchment characteristics were found for soil, slope, up-stream area or elevation, to which model performance of flow
signatures could also be linked.
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The implemented regionalization scheme was found to allow transferability of parameters from a limited set of calibration
tations to other locations without a need to calibrate a large number of catchments in a multi-basin setup of large scale
odeling and to further enable modeling in ungauged catchments. The model performance in catchments that were not

sed for the derivation of the regional parameters was  comparable with that of the catchments used for model calibration
nd parameter regionalization.
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http://hype.sourceforge.net/
http://hypeweb.smhi.se
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Table A1
Correlation coefficients between the optimum catchment scale model parameters and the different catchment descriptors (A value is shown as bold if the catchment descriptor is used as a basis of regionalization
for  the corresponding parameter and is significant at 5%).

Parameter Group ID Catchment descriptors

cathment
area
(km2)

Mean
eleva-
tion
(m)

Mean
slope

Water
(%)

Glacier
(%)

Urban
(%)

Forest
(%)

Agricluture
(%)

Pasture
(%)

Wetland
(%)

Open
with
vegit.
(%)

Open
with-
out
vegit
(%)

Coarse
soil (%)

Medium
soil (%)

Fine
soil (%)

Organic
soil (%)

No
texture
(%)

Shallow
soil (%)

Moraine
(%)

lp A 0.06 −0.14 −0.06 0.14 0.02 0.11 0.07 −0.15 0.07 0.17 0.04 0.00 0.38 −0.80 0.17 0.22 0.23 0.17 0.11
B  −0.01 −0.01 −0.19 0.16 0.16 −0.03 −0.22 −0.19 −0.15 0.20 0.06 0.15 0.12 −0.94 0.16 0.03 0.25 0.15 0.18
C  0.06 0.02 0.14 −0.01 0.20 0.16 −0.08 −0.41 0.12 0.00 −0.10 0.22 0.20 −0.12 −0.64 0.13 0.23 0.07 0.23
D  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E  0.14 0.10 0.09 0.01 0.06 −0.14 0.12 0.08 0.19 0.18 0.09 −0.02 −0.15 0.07 0.21 0.22 0.07 0.01 0.10
F  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G  0.08 0.06 0.11 0.13 0.00 −0.03 0.13 0.16 −0.03 −0.10 −0.11 −0.16 0.11 0.49 0.08 0.15 −0.11 0.38 0.03

tcelevadd A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

cevpcorr  A −0.03 0.00 −0.15 0.02 0.00 0.14 −0.74 0.83 −0.19 −0.02 0.17 0.05 −0.23 0.22 0.04 −0.16 0.06 0.06 −0.09
B  0.05 0.34 0.35 −0.09 −0.02 0.21 0.35 0.86 0.20 −0.17 −0.79 −0.04 −0.03 0.18 0.19 −0.20 −0.12 −0.16 −0.22
C  −0.03 0.08 −0.29 0.03 0.00 −0.02 −0.72 0.93 −0.47 0.02 −0.17 0.13 −0.04 0.00 0.09 −0.04 0.02 −0.20 −0.11
D  −0.12 0.21 0.11 0.04 0.02 0.19 0.41 0.60 −0.92 −0.21 0.17 0.06 −0.03 −0.22 0.17 −0.22 0.22 0.15 0.07
E  −0.13 −0.02 0.04 0.08 0.01 0.06 0.07 0.15 0.00 −0.19 −0.08 −0.07 0.03 −0.15 0.06 −0.08 −0.14 −0.07 0.13
F  0.03 −0.10 0.04 0.12 0.00 0.18 −0.83 0.25 0.20 0.08 0.91 0.07 0.04 −0.17 0.08 0.11 0.15 0.16 −0.03
G  0.29 −0.02 −0.15 0.13 0.14 −0.09 −0.78 −0.52 −0.39 0.13 0.34 0.63 0.08 −0.17 −0.11 0.04 0.14 −0.12 0.20

tempcorr  A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
G  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

pcelevth  A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B  −0.04 −0.32 −0.05 −0.10 −0.10 0.16 0.33 0.30 0.15 −0.17 0.26 −0.88 0.03 0.38 −0.11 0.09 −0.19 −0.28 −0.13
C  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E  0.10 −0.03 0.06 −0.08 −0.01 −0.04 −0.58 0.09 0.32 0.47 0.30 0.13 −0.09 0.16 −0.01 0.75 0.42 −0.09 −0.72
F  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table A1 (Continued)

Parameter Group ID Catchment descriptors

cathment
area
(km2)

Mean
eleva-
tion
(m)

Mean
slope

Water
(%)

Glacier
(%)

Urban
(%)

Forest
(%)

Agricluture
(%)

Pasture
(%)

Wetland
(%)

Open
with
vegit.
(%)

Open
with-
out
vegit
(%)

Coarse
soil (%)

Medium
soil (%)

Fine
soil (%)

Organic
soil (%)

No
texture
(%)

Shallow
soil (%)

Moraine
(%)

pcelevadd A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00
B  0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00
C  0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
D  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rivvel  A 0.27 0.11 0.33 0.32 0.00 0.05 0.09 −0.15 −0.01 0.01 0.06 0.06 0.06 −0.10 0.11 −0.12 0.14 −0.03 −0.03
B  0.33 0.13 0.33 0.03 0.13 −0.13 −0.20 −0.20 −0.10 0.06 −0.20 0.29 −0.03 −0.20 0.10 −0.11 0.11 0.21 0.07
C  0.30 −0.07 0.47 0.21 −0.01 0.09 0.06 −0.07 −0.09 0.16 −0.02 0.01 0.16 0.02 −0.18 −0.01 0.19 0.04 0.00
D  0.39 −0.07 0.39 0.20 0.04 0.26 0.01 0.10 −0.21 −0.10 0.12 0.07 0.04 −0.15 0.05 −0.08 0.20 0.06 0.01
E  0.09 0.22 0.38 −0.03 0.00 0.00 −0.12 −0.10 0.06 0.15 0.13 0.12 0.02 0.04 0.00 −0.07 0.15 0.12 −0.21
F  0.36 −0.13 0.36 −0.04 0.00 0.04 −0.09 −0.01 0.04 0.09 0.11 0.03 0.33 −0.14 0.02 0.00 0.05 −0.05 −0.02
G  0.51 −0.06 0.41 0.27 −0.05 0.12 −0.02 0.17 0.01 −0.06 −0.12 −0.05 0.04 0.11 0.13 −0.03 0.17 −0.20 −0.02

damp  A −0.22 0.11 −0.27 −0.14 0.01 −0.07 0.01 0.05 −0.03 −0.06 0.00 −0.02 −0.08 0.13 −0.10 0.06 −0.19 0.05 0.00
B  0.30 −0.22 −0.26 0.07 −0.20 0.13 0.11 0.18 0.05 −0.05 0.17 −0.47 0.09 0.20 −0.07 0.09 0.00 −0.22 −0.06
C  0.28 −0.08 −0.07 0.26 0.00 0.09 0.06 −0.06 −0.09 0.16 −0.02 0.01 0.17 0.02 −0.18 −0.01 0.42 0.04 0.00
D  −0.19 −0.64 −0.78 0.12 0.02 0.23 −0.26 0.21 0.02 0.03 0.11 0.01 0.13 −0.21 0.10 0.14 0.24 −0.11 0.04
E  −0.13 −0.14 −0.20 0.06 0.01 0.01 0.21 0.02 −0.23 −0.17 −0.18 −0.12 0.03 −0.03 0.04 −0.41 −0.24 −0.04 0.41
F  0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G  −0.32 0.30 0.91 −0.25 −0.02 −0.08 0.03 0.17 0.05 −0.14 −0.05 0.01 −0.02 0.02 0.26 −0.02 −0.19 0.01 −0.04

rrcscorr  A −0.04 −0.02 −0.02 −0.04 0.01 −0.07 0.24 −0.22 0.02 −0.02 0.01 0.01 0.90 −0.55 −0.17 −0.03 −0.07 −0.20 −0.07
B  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C  0.01 0.09 −0.01 −0.23 0.00 −0.21 −0.18 0.13 0.12 −0.16 −0.04 0.08 −0.19 −0.45 0.86 0.09 −0.15 −0.17 −0.12
D  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E  0.09 0.05 −0.08 −0.03 −0.01 −0.04 −0.24 −0.16 −0.09 0.70 −0.12 0.07 0.01 0.08 −0.02 −0.22 0.16 0.11 −0.17
F  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G  0.21 −0.24 −0.17 0.27 0.43 −0.04 −0.29 −0.20 −0.12 0.30 0.11 0.18 0.20 −0.88 −0.32 0.02 0.15 0.17 0.17

rrcs3  A 0.01 −0.04 −0.01 −0.02 0.00 0.02 0.13 −0.12 0.06 −0.02 −0.03 −0.02 0.62 −0.83 0.18 −0.07 −0.02 −0.21 −0.10
B  0.04 0.13 0.05 0.07 0.13 −0.15 −0.14 −0.21 −0.15 0.12 −0.21 0.19 −0.46 −0.38 0.17 −0.09 0.14 0.28 0.08
C  0.01 0.07 −0.02 −0.21 0.00 −0.21 −0.17 0.11 0.13 −0.14 −0.03 0.09 −0.21 −0.58 0.91 0.13 −0.19 −0.17 −0.10
D  0.08 0.14 0.14 −0.22 −0.05 −0.21 0.12 0.22 −0.02 −0.14 −0.07 0.01 −0.20 −0.62 0.76 −0.47 −0.01 −0.48 −0.21
E  0.11 0.01 −0.06 −0.05 −0.01 −0.05 −0.11 −0.11 0.03 0.10 −0.01 0.10 −0.02 0.13 −0.02 −0.04 0.15 0.08 −0.21
F  −0.09 −0.10 −0.06 −0.07 0.00 0.08 −0.03 0.09 0.04 −0.10 0.00 0.00 0.10 −0.36 −0.02 −0.10 −0.12 −0.07 −0.38
G  −0.05 0.13 0.12 −0.08 −0.18 −0.01 0.05 0.21 0.11 0.08 −0.16 −0.10 0.20 0.19 0.22 0.02 −0.17 −0.11 0.15
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at
http://dx.doi.org/10.1016/j.ejrh.2016.04.002.

References

Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B., 2015. A continental-scale hydrology and water quality model for Europe:
calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 524, 733–752.

Abdulla, F., Lettenmaier, D., 1997. Development of regional parameter estimation equations for a macroscale hydrologic model. J. Hydrol. 197, 230–257.
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., Siebert, S., 2003. Development and testing of the WaterGAP 2 global model of water use

and  availability. Hydrol. Sci. J. 48 (3), 317–337.
Arheimer, B., Brandt, M., 1998. Modelling nitrogen transport and retention in the catchments of southern Sweden. Ambio 27 (6), 471–480.
Arheimer, B., Lindström, L., 2013. Implementing the EU water framework directive in Sweden. Chapter 11.20. In: Bloeschl, G., Sivapalan, M.,  Wagener, T.,

Viglione, A., Savenije, H. (Eds.), Runoff Predictions in Ungauged Basins—Synthesis Across Processes, Places and Scales. Cambridge University Press,
Cambridge UK, pp. 353–359 (p. 465).

Arheimer, B., Dahné, J., Donnelly, C., Lindström, G., Strömqvist, J., 2012. Water and nutrient simulations using the HYPE model for Sweden vs. the Baltic
Sea  basin ?influence of input-data quality and scale. Hydrol. Res. 43 (4), 315–329, http://dx.doi.org/10.2166/nh.2012.010.

Arino, O., Bicheron, P., Achard, F., Latham, J., Witt, R., Weber, J.-L., 2008. GLOBCOVER The Most Detailed Portrait of Earth. Esa Bull.—Eur. Space Agency, pp.
24–31.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Allen, P.M., 1999. Continental scale simulation of the hydrologic balance. J. Am.  Water Resour. Assoc. 35 (5),
1037–1051.

Beven, K.J., Binley, A.M., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6 (3), 279–298.
Blöschl, G., Sivapalan, M.,  Wagener, T., Viglione, A., Savenije, H.H.G. (Eds.), 2013. Cambridge University Press, Cambridge, UK, p. 465 p.
Bulygina, N., McIntyre, N., Wheater, H., 2011. Bayesian conditioning of a rainfall-runoff model for predicting flows in ungauged catchments and under

land use changes. Water Resour. Res. 47, http://dx.doi.org/10.1029/2010wr009240W02503.
Donnelly, C., Rosberg, J., Isberg, K., 2012. A validation of river routing networks for catchment modelling from small to large scales. Hydrol. Res. 2012,

http://dx.doi.org/10.2166/nh.2012.341 (special issue, Large-Scale Hydrology).
Donnelly, C., Andersson, J.C.M., Arheimer, B., 2016. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across

Europe. Hydrol. Sci. J. 61 (2), 255–273, http://dx.doi.org/10.1080/02626667.2015.1027710.
Fernandez, W.,  Vogel, R.M., Sankarasubramanian, A., 2000. Regional calibration of a watershed model. Hydrol. Sci. J. 45 (5), 689–707.
Gottschalk, L., Leblois, E., Skoien, J.O., 2011. Distance measures for hydrological data having a support. J. Hydrol. 402 (3–4), 415–421.
Graham, L.P., 1999. Modeling runoff to the Baltic Sea. Ambio 28, 328–334.
Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: a K-means clustering algorithm. J. R. Stat. Soc. Ser. C 28 (1), 100–108.
Hrachowitz, M.,  Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M.,  Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer,

J.E.,  Gelfan, A., Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C.,
Woods, R.A., Zehe, E., Cudennec, C., 2013. A decade of predictions in ungauged basins (PUB)—a review. Hydrol. Sci. J. 58 (6), 1198–1255,
http://dx.doi.org/10.1080/02626667.2013.803183.

Hundecha, Y., Bárdossy, A., 2004. Modeling the effect of land use changes on runoff generation of a river basin through parameter regionalization of a
watershed model. J. Hydrol. 292, 281–295.

Hundecha, Y., Ouarda, T.B.M., Bárdossy, A., 2008. Regional estimation of parameters of a rainfall-runoff model at ungauged watersheds using the spatial
structures of the parameters within a canonical physiographic-climatic space. Water Resour. Res. 44, http://dx.doi.org/10.1029/2006WR005439.

Johansson, B., 1992. Runoff calculations in ungauged catchments—an evaluation of the PULSE model. Vatten 48, 111–116 (in Swedish with English
abstract).

Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., Westerberg, I.K., 2013. Disinformative data in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 17
(7),  2845–2857, http://dx.doi.org/10.5194/hess-17-2845-2013.

Kumar, R., Samaniego, L., Attinger, S., 2013. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and
locations. Water Resour. Res. 49 (1), 360–379, http://dx.doi.org/10.1029/2012WR012195.

Lee, H., Mcintyre, N., Wheater, H., Young, A., 2005. Selection of conceptual models for regionalisation of the rainfall-runoff relationship. J. Hydrol. 312
(1–4), 125–147, http://dx.doi.org/10.1016/j.jhydrol.2005.02.016.

Lehner, B., Döll, P., 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22.
Lehner, B., Verdin, K., Jarvis, A., 2008. New global hydrography derived from spaceborne elevation data. Eos 89 (93),

http://dx.doi.org/10.1029/2008eo100001.
Lehner, B., Liermann, C., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M.,  Frenken, K., Magome, J., Nilsson, C., Robertson, J.C., Rödel,

R.,  Sindorf, N., Wisser, D., 2011. High resolution mapping of the world’s reservoirs and dams for sustainable river flow management. Front. Ecol.
Environ. 9 (9), 494–502, http://dx.doi.org/10.1890/100125.

Li,  H., Zhang, Y., Chiew, F.H.S., Xu, S., 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J. Hydrol.
370  (1–4), 155–162, http://dx.doi.org/10.1016/j.jhydrol.2009.03.003.

Lindström, G., Rosberg, J., Arheimer, B., 2005. Parameter precision in the HBV-NP model and impacts on nitrogen scenario simulations in the Rönneä river,
southern Sweden. Ambio 34 (7), 533–537.

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., Arheimer, B., 2010. Development and testing of the HYPE (Hydrological Predictions for the Environment)
water  quality model for different spatial scales. Hydrol. Res. 41 (3–4), 295–319, http://dx.doi.org/10.2166/nh.2010.007.

Merz, R., Blöschl, G., 2004. Regionalisation of watershed model parameters. J. Hydrol. 287, 95–123.
Mu,  Q., Zhao, M.,  Running, S.W., 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115 (8),

1781–1800, http://dx.doi.org/10.1016/j.rse.2011.02.019.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. J. Hydrol. 10, 282–290.
Olden, J.D., Kennard, M.J., Pusey, B.J., 2012. A framework for hydrologic classification with a review of methodologies and applications in ecohydrology.

Ecohydrol 5, 503–518, http://dx.doi.org/10.1002/eco.251.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C., 2005. Which potential evapotranspiration input for a lumped

rainfall–runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J. Hydrol. 303 (1–4),
290–306, http://dx.doi.org/10.1016/j.jhydrol.2004.08.026.

Pagliero, L., Bouraoui, F., Willems, P., Diels, J., 2014. Large-Scale hydrological simulations using the soil water assessment tool, protocol development, and

application in the danube basin. J. Environ. Qual. 43, 145–154, http://dx.doi.org/10.2134/jeq2011.0359.

Panagos, P., 2006. The european soil database (2006). GEO: Connexion 5 (7), 32–33.
Parajka, J., Merz, R., Blöschl, G., 2005. A comparison of regionalization methods for catchment model parameters. Hydrol. Earth Syst. Sci. 9 (3), 157–171.
Parajka, J., Viglione, A., Rogger, M.,  Salinas, J.L., Sivapalan, M.,  Blöschl, G., 2013. Comparative assessment of predictions in ungauged basins—part 1:

runoff-hydrograph studies. Hydrol. Earth Syst. Sci. 17, 1783–1795, http://dx.doi.org/10.5194/hess-17-1783-2013.

http://dx.doi.org/10.1016/j.ejrh.2016.04.002
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0005
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0020
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0025
dx.doi.org/10.2166/nh.2012.010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0035
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0040
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0045
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0050
dx.doi.org/10.1029/2010wr009240W02503
dx.doi.org/10.2166/nh.2012.341
dx.doi.org/10.1080/02626667.2015.1027710
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0070
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0075
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0080
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0085
dx.doi.org/10.1080/02626667.2013.803183
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0095
dx.doi.org/10.1029/2006WR005439
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0105
dx.doi.org/10.5194/hess-17-2845-2013
dx.doi.org/10.1029/2012WR012195
dx.doi.org/10.1016/j.jhydrol.2005.02.016
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0125
dx.doi.org/10.1029/2008eo100001
dx.doi.org/10.1890/100125
dx.doi.org/10.1016/j.jhydrol.2009.03.003
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0145
dx.doi.org/10.2166/nh.2010.007
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0155
dx.doi.org/10.1016/j.rse.2011.02.019
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0165
dx.doi.org/10.1002/eco.251
dx.doi.org/10.1016/j.jhydrol.2004.08.026
dx.doi.org/10.2134/jeq2011.0359
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0185
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0190
dx.doi.org/10.5194/hess-17-1783-2013


P

P

P

P

R

R

S

S

S

S
S
S

S

S
T

V

V

W

W

W
W

Y
v

Y. Hundecha et al. / Journal of Hydrology: Regional Studies 6 (2016) 90–111 111

echlivanidis, I.G., Arheimer, B., 2015. Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrol. Earth
Syst.  Sci. 19, 4559–4579, http://dx.doi.org/10.5194/hess-19-4559-2015.

echlivanidis, I.G., McIntyre, N.R., Wheater, H.S., 2010. Calibration of the semi-distributed PDM rainfall–runoff model in the Upper Lee catchment, UK. J.
Hydrol. 386 (1–4), 198–209.

echlivanidis, I.G., Jackson, B., McIntyre, N., Wheater, H.S., 2011. Catchment scale hydrological modelling: a review of model types, calibration approaches
and  uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST J. 13 (3), 193–214.

ortmann, F.T., Siebert, S., Döll, P., 2010. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data
set  for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, http://dx.doi.org/10.1029/2008GB003435.

akovec, O., Kumar, R., Mai, J., Cuntz, M.,  Thober, S., Zink, M.,  Attinger, S., Schäfer, D., Schrön, M.,  Samaniego, L., 2016. Multiscale and multivariate
evaluation of water fluxes and states over European river basins. J. Hydrometeor 17 (1), 287–307, http://dx.doi.org/10.1175/JHM-D-15-0054.1.

efsgaard, J.C., Storm, B., Clausen, T., 2010. Système Hydrologique Europeén (SHE): review and perspectives after 30 years development in distributed
physically-based hydrological modelling. Hydrol. Res. 41 (5), 355–377.

amaniego, L., Kumar, R., Attinger, S., 2010. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res.
46,  http://dx.doi.org/10.1029/2008wr007327W05523.

awicz, K., Wagener, T., Sivapalan, M.,  Troch, P.A., Carrillo, G., 2011. Catchment classification: empirical analysis of hydrologic similarity based on
catchment function in the eastern USA. Hydrol. Earth Syst. Sci. 15, 2895–2911, http://dx.doi.org/10.5194/hess-15-2895-2011.

chuol, J., Abbaspour, K.C., Srinivasan, R., Yang, H., 2008. Modelling blue and green water availability in Africa at monthly intervals and subbasin level.
Water Resour. Res. 44, http://dx.doi.org/10.1029/2007W R0 06609.

eibert, J., Beven, K., 2009. Gauging the ungauged basin: how many discharge measurements are needed? Hydrol. Earth Syst. Sci. 13, 883–892.
eibert, J., 1999. Regionalization of parameters for a conceptual rainfall runoff model. Agric. For. Meteorol. 98-99, 279–293.
iebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F.T., 2010. Groundwater use for irrigation—a global inventory. Hydrol. Earth

Syst.  Sci. 14, 1863–1880, http://dx.doi.org/10.5194/hess-14-1863-2010.
ingh, S.K., Bárdossy, A., Götzinger, J., Sudheer, K.P., 2012. Effect of spatial resolution on regionalization of hydrological model parameters. Hydrol.

Process. 26, 3499–3509.
ingh, V. (Ed.), 1995. Water Resources Publications, Littleton, Colorado.
er Braak, C.J.F., 2006. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter

spaces. Stat. Comput. 16 (3), 239–249, http://dx.doi.org/10.1007/s11222-006-8769-1.
örösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. Science

289,  284–288.
erdin, K.L., 1997. A system for topologically coding global drainage basins and stream networks. In: Proceedings, 17th Annual ESRI Users Conference, San

Diego, California, July 1997.
agener, T., Wheater, H.S., 2006. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. J. Hydrol. 320

(1–2), 132–154.
allner, M.,  Haberlandt, U., Dietrich, J., 2013. A one-step similarity approach for the regionalization of hydrological model parameters based on

Self-Organizing Maps. J. Hydrol. 494, 59–71.
ard Jr., J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am.  Stat. Assoc. 58, 236–244.

eedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J., Viterbo, P., 2014. The WFDEI meteorological forcing data set: wATCH Forcing Data

methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514, http://dx.doi.org/10.1002/2014WR015638.
ates,  D.N., 1997. Approaches to continental scale runoff for integrated assessment models. J. Hydrol. 201 (1–4), 289–310.
an Beek, L.P.H., Wada, Y., Bierkens, M.F.P., 2011. Global monthly water stress: 1. Water balance and water availability. Water Resour. Res. 47,

http://dx.doi.org/10.1029/2010W R009791.

dx.doi.org/10.5194/hess-19-4559-2015
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0205
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0210
dx.doi.org/10.1029/2008GB003435
dx.doi.org/10.1175/JHM-D-15-0054.1
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0225
dx.doi.org/10.1029/2008wr007327W05523
dx.doi.org/10.5194/hess-15-2895-2011
dx.doi.org/10.1029/2007W R0 06609
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0245
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0250
dx.doi.org/10.5194/hess-14-1863-2010
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0260
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0265
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0265
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0265
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0265
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0265
dx.doi.org/10.1007/s11222-006-8769-1
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0275
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0280
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0285
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0290
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0295
dx.doi.org/10.1002/2014WR015638
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
http://refhub.elsevier.com/S2214-5818(16)30015-5/sbref0305
dx.doi.org/10.1029/2010W R009791

	A regional parameter estimation scheme for a pan-European multi-basin model
	1 Introduction
	2 Data and method
	2.1 Data
	2.2 Hydrological model
	2.3 Catchment classification
	2.4 Model parameter regionalization
	2.4.1 Base-line regionalization
	2.4.2 Introduced regional parameter estimation scheme

	2.5 Parameter estimation and model evaluation
	2.5.1 Parameter estimation strategy
	2.5.2 Evaluation of the regionalized model


	3 Results and discussion
	3.1 Catchment classification
	3.2 Regional relationships between parameters and catchment descriptors
	3.3 Evaluation of the regionalized model in terms of NSE and volume error
	3.4 Evaluation of the regionalized model in terms of flow signatures
	3.5 Value of catchment classification in parameter regionalization

	4 Conclusions
	Conflict of interests
	Acknowledgements
	Appendix B Supplementary data
	References
	References


