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a b s t r a c t

Styrax caporum is a native shrub from the Brazilian savanna. Most of its leaves are diaheliotropic, whereas
some are paraheliotropic, mainly at noon. A previous study of this species revealed higher stomatal
conductance (gs) and transpiration rates (E) in para- compared to diaheliotropic leaves, and a rise in CO2

assimilation rates (A) with an increase of irradiance for paraheliotropic leaves. We hypothesized that this
species exploits the paraheliotropism to enhance the light use efficiency, and that it is detected only if
gas exchange is measured with light interception by both leaf surfaces. Gas exchange was measured with
devices that enabled light interception on only one of the leaf surfaces and with devices that enabled light
interception by both leaf surfaces. Water relations, relative reflected light intensity, leaf temperature (Tl),
and leaf anatomical analyses were also performed. When both leaf surfaces were illuminated, a higher
A, E, and gs were observed in para- compared to diaheliotropic leaves; however, A did not depend on
gs, which did not influence CO2 accumulation in the stomatal cavity (Ci). When only the adaxial leaf
surface was illuminated, a greater A was detected for para- than for diaheliotropic leaves only at 11:00 h;
no differences in T were observed between leaf types. Light curves revealed that under non-saturating

brought to you by etadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher C
l

light the adaxial side of paraheliotropic leaves had higher A than the abaxial side, but they showed
similar values under saturating light. Although the abaxial leaf side was highly reflective, both surfaces
presented the same response pattern for green light reflection, which can be explained by the compact
spongy parenchyma observed in the leaves, increasing light use efficiency in terms of CO2 consumption
for paraheliotropic leaves. We propose that paraheliotropism in S. camporum is not related to leaf heat

tion.
avoidance or photoprotec

. Introduction

Trees and shrubs growing in the cerrado, or the Brazilian
avanna, which is characterized by wet (October–March) and
ry (April–September) seasons, have to adjust their morpho-
hysiological traits seasonally to successfully cope with the soil
ater availability. The cerrado vegetation is a vertically structured

osaic of grassland, scrubland, and dense woodland physiog-

omies (Haridasan, 2008). The soils of these areas are deep, acidic,
andy, contain low levels of organic matter and phosphorus, and
re rich in aluminum (Haridasan, 2008).

∗ Corresponding author. Tel.: +55 19 3526 4210; fax: +55 19 3526 4201.
E-mail address: ghaber@rc.unesp.br (G. Habermann).
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098-8472/© 2010 Elsevier B.V. Open access under the Elsevier OA license.
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© 2010 Elsevier B.V. Open access under the Elsevier OA license.

Concomitant to seasonal water deficit, the cerrado environment
experiences a high irradiance load and elevated vapor pressure
deficits (VPD). Under such conditions, paraheliotropic leaf move-
ment is one of the strategies used by many plants. Diaheliotropic
leaves, which are oriented at an angle perpendicular to incom-
ing light, maximize light interception, while paraheliotropic leaves,
which orient parallel to the light, minimize it (Koller, 1986, 1990;
Bielenberg et al., 2003; Pastenes et al., 2005; Arena et al., 2008).

In leguminous species, paraheliotropic leaf movements are
rapidly induced by unfavorable conditions. In beans, leaf para-
heliotropism is induced by water deficit (Pastenes et al., 2005),

leaf heat and excess sunlight interception (Bielenberg et al., 2003).
In the soybean, leaf paraheliotropism is induced with increasing
irradiance (Jiang et al., 2006). For leguminous cerrado species,
paraheliotropism may be a strategy to avoid excess sunlight inter-
ception at noon (Caldas et al., 1997; Rodrigues and Machado, 2006),

https://core.ac.uk/display/82792179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.envexpbot.2010.10.012
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hich reinforces the photo-protective role of paraheliotropism.
ven the leaf wilting movement of non-leguminous species, such
s cotton plants, confers photo-protection and maintains carbon
ssimilation (Zhang et al., 2010).

Another leguminous species, Robinia pseudoacacia exhibits
araheliotropic leaf movement at high irradiance levels (Liu et al.,
007), reducing light interception and leaf temperature (Arena
t al., 2008). However, paraheliotropic leaves of R. pseudoacacia
how higher stomatal conductance (gs) and CO2 assimilation rates
A), which are attributed to a higher photochemical performance of
nrestrained paraheliotropic leaves, compared to restrained leaves
Arena et al., 2008).

However, the physiological role of paraheliotropism may not
e universal. Styrax camporum, a non-leguminous species from the
errado, possesses leaves that are always diaheliotropic as well as
ther leaves that assume a paraheliotropic position from 10:00 h
o 17:00 h (Habermann et al., 2008). Paraheliotropic leaves of this
pecies have higher A and transpiration rates (E) compared to the
iaheliotropic leaves, although this high E has a weak relationship
ith the reduction in leaf temperature (Habermann et al., 2008).

his study also demonstrated compact spongy parenchyma in both
eaf types, and a rise in A with the increase of irradiance for parahe-
iotropic leaves. Thus, this species might exploit the paraheliotropic
eaf movement to enhance light use efficiency.

In the present study, we hypothesized that, compared to diahe-
iotropic leaves, the paraheliotropic leaves of S. camporum would
how higher values of gas exchange rates if measured with light
ntercepted by adaxial and abaxial leaf surfaces. Measurements of
as exchange with devices that enabled artificial light intercep-
ion only by adaxial or abaxial leaf surfaces (LI-6400 Irga with a
400-02B red/blue LED light source) and with devices that enabled
unlight interception by both leaf sides (LI-6200 Irga with a trans-
arent 6000-12 one liter chamber) were performed in April 2006,

n Botucatu-SP and Corumbataí-SP, Brazil. The leaf water potential,
he leaf temperature of para- and diaheliotropic leaves, and the rel-
tive reflected light intensity of adaxial and abaxial leaf surfaces of
. camporum were also measured. Anatomical and ultra-structural
eaf analyses were performed as a framework for the functional
tudies (see online supplementary information, Fig. S1).

. Materials and methods

.1. Site description

This study was conducted using adult plants of S. camporum
ohl. from cerrado fragments characterized by scattered trees and
hrubs and a large proportion of grassland (“closed field”) in the
unicipalities of Botucatu, São Paulo (SP) state, Brazil (22◦ 51′ S,

8◦ 26′ W) and Corumbataí, SP state, Brazil (22◦ 13′ S, 47◦ 37′ W).
Five individual plants between 1.5 and 2-m tall from each of

hese sites were used. Plants were completely leafy at the begin-
ing of the fall season in April 2006, when the measurements were
btained.

.2. Leaf angle measurement

In order to classify leaves as para- or diaheliotropic, the petiole
ngle formed with the horizon was measured. A fine wire was posi-
ioned between the petiole and a ruler with a water level, which
epresented the horizon. The curvature radius formed by the wire

irrored the petiole angle. Then, the angle defined by the wire was

eproduced on paper and determined with a goniometer, similar to
he method presented by Arena et al. (2008).

Leaves showing petiole angle greater than 50◦ were classified as
araheliotropic leaves, which were marked on each plant at noon
perimental Botany 71 (2011) 10–17 11

on the day before the measurements were performed. Leaves dis-
playing a petiole angle between 0◦ and 10◦ were considered as
diaheliotropic. Both leaf types occurred on woody stems, and had
mature fully expanded leaf blades. Very young and very old leaves
were avoided.

2.3. Leaf gas exchange measurements

Gas exchange was measured using an infrared gas analyzer (LI-
6200, LI-Cor, USA) with a 6000-12 one liter chamber, which is made
of Lexan® and MargardTM transparent materials. These materials
have a transmittance of 90% in the visible and near infra-red spectra,
but bellow 450 nm it falls markedly to 60% at 400 nm (Li-Cor, 1990).
Therefore, this leaf cuvette enables sunlight absorptance from 300
to 1100 nm (Li-Cor, 1990). This leaf cuvette has inserts which were
used to fix leaf area to 6 cm2 (a predetermined size), allowing faster
measurements and exposure of adaxial and abaxial leaf surfaces to
direct sunlight or diffuse irradiance (soil reflection and scattered
irradiance). Additionally, gas exchange was also measured with an
infra-red gas analyzer (LI-6400, Li-Cor, USA) using a leaf cuvette
that enables artificial red and blue LED light (6400-02B, Li-Cor, USA)
interception by only one of the leaf surfaces. The 6400-02B red blue
light source spectral output has one peak centered at about 670 nm
and a secondary peak at about 465 nm (Li-Cor, 2004).

Because paraheliotropic leaves were not flat on both sides of the
midrib, and showed different inclination planes, it was not possible
to measure just one of the leaf sides of the midrib without disturb-
ing the leaf planes. Otherwise, it would not match the minimum
area necessary to make measurements in gas exchange chambers.
Thus, the leaf planes of paraheliotropic leaves became entirely flat
when leaf cuvettes of both equipments were closed. However, the
petiole angle was not disturbed. Diaheliotropic leaves were nat-
urally completely flat, following the petiole angle, which was not
disturbed as well.

CO2 assimilation (A) and transpiration (E) rates, stomatal con-
ductance (gs), and intercellular CO2 (Ci) were determined by the
Irgas’ data analysis programs, which employ the Von Caemmerer
and Farquhar (1981) general gas exchange equations for both
equipments. The photosynthetic radiation use efficiency (PhRUE),
was also calculated (See online supplementary data for more
details about the method for calculating PhRUE, Table S1). Both
leaf cuvettes had external quantum sensors, which were used to
measure the incoming sunlight. In the case of the leaf cuvette that
enabled light interception by both leaf sides, the quantum sensor
measured ambient PPFD intercepted by leaves. The leaf cuvette that
enabled artificial light interception by only one of the leaf sides was
set to provide 1800 �mol photons m−2 s−1, as ambient PPFD varied
from 1000 to 1600 �mol photons m−2 s−1. The leaf temperature (Tl)
was obtained using a small thermocouple within the leaf cuvettes
of both systems, according to Bielenberg et al. (2003).

Curves of A, gs, and Ci as a function of the PPFD values estab-
lished in the leaf cuvette that enables artificial light interception
by only one of the leaf sides were also constructed to detect the
sole responses of the adaxial and abaxial leaf surfaces of para- and
diaheliotropic leaves. These curves were generated at a controlled
leaf temperature (25 ± 1 ◦C).

2.4. Estimation of leaf reflectance

An estimation of the relative intensity of reflected light from
both leaf sides was performed using a fluorometer (Cary Eclipse,

Varian, USA), which detects scattered light reflected within the
same spectrum (�) of incident light. Five young one-year-old S.
camporum potted plants were maintained under natural sunlight.
As no previous differences were detected from the same leaf surface
between para- or diaheliotropic leaves, one randomly selected leaf
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rom each of the five plants was detached and immediately inserted
nto the equipment. The angle between the leaf and light beam was
lose (but not exactly) to 45◦, so that reflected light intensity could
ot saturate the detector.

.5. Leaf water potential

The leaf water potential at predawn (� pd) and midday (when
he vapor pressure deficit, VPD, was maximum) (� md) were mea-
ured by the pressure chamber method (Turner, 1981) using a
IK-7000 (Daiki Kogyo, Japan) pressure chamber.

.6. Data analysis

Statistical analysis was carried out using two leaves randomly
elected from five plants (replicates) within an area of five hectares
ha) in Botucatu and 37 ha in Corumbataí. Gas exchange variables
A, E, gs, and Ci), Tl, � pd, and � md were determined (mean and stan-
ard deviation), and they were then subjected to one-way analysis
f variance (comparisons between para- and diaheliotropic leaves),
ollowed by the Tukey’s test (P < 0.05).

.7. Light and electron microscopy

See online supplementary data for more details about the meth-
ds used for obtaining and analyzing light and electron microscopic
mages (Fig. S1).

. Results

.1. Morpho-anatomical traits

Leaves of S. camporum are almost all diaheliotropic, but some
ature fully expanded leaves assume paraheliotropic position

rom 10:00 h to 17:00 h. These mature completely expanded para-
nd diaheliotropic leaves are observed on woody stems, and also
n primary branches of adult plants (Fig. S1a).

Young leaves of S. camporum presented the trichome indumen-
um on both surfaces of the leaf blade (Fig. S1b), while mature fully
xpanded leaves displayed a glabrous adaxial surface, regardless of
ts heliotropic position (Fig. S1d).

The mesophyll of both young (Fig. S1c) and mature
Figs. S1d and e) leaves was differentiated into a unistratified
alisade and a two- to three-layered spongy chlorenchyma.
pongy parenchyma cells showed numerous wall ingrowths
Figs. S1d and e), which developed into slit-like gas spaces. Such
ells presented thin walls and a peripheral cytoplasm with numer-
us chloroplasts (Fig. S1e) and a single central vacuole that could
e translucent or dense if filled with phenolic substances. See
nline supplementary data (Fig. S1) for details.

.2. Gas exchange variables

When the leaves were measured with light interception by both
eaf sides, the CO2 assimilation rate (A) was significantly higher for
ara- than for diaheliotropic leaves at 9:00 h, 11:00 h, and 14:00 h,
ut A was similar between leaf types at the end of the day (Fig. 1a).
he stomatal conductance (gs) and transpiration rates (E) followed
lmost the same response pattern (Fig. 1c and e), with parahe-
iotropic leaves demonstrating higher values than diaheliotropic
eaves during most parts of the day. Paraheliotropic leaves exhib-

ted a significant lower value of internal CO2 (Ci) compared to
iaheliotropic leaves, but only at 9:00 h (Fig. 1g).

Leaves measured with light interception by only the adaxial leaf
urface demonstrated similar A values for para- and diaheliotropic
eaves throughout the day, except at 11:00 h, when paraheliotropic
perimental Botany 71 (2011) 10–17

leaves exhibited a higher A compared to diaheliotropic leaves
(Fig. 1b). For gs and E, differences were detected only at 9:00 h
and 14:00 h, respectively (Fig. 1d and f). Internal CO2 concentra-
tions were similar in para- and diaheliotropic leaves, with the latter
showing greater values at 14:00 h, although this increase was not
significantly higher than the CO2 concentrations in paraheliotropic
leaves (Fig. 1h).

Variations in gs did not seem to influence the A of leaves mea-
sured with sunlight interception by both leaf sides; daily results
revealed a conserved low gs range with respective low carbon
assimilation rates for diaheliotropic leaves, while most of the data
for paraheliotropic leaves demonstrated a higher gs range with
respective higher CO2 assimilation rates (Fig. 2a). In contrast, when
leaves were measured with light interception by only the adax-
ial leaf surface, increases in gs resulted in greater CO2 assimilation
rates, regardless of the leaf type (Fig. 2b).

The Ci values of leaves measured with sunlight interception by
both leaf sides were not dependent on gs (Fig. 3a). However, when
leaves were measured with light interception by only the adaxial
leaf surface, Ci fluctuated between 200 and 300 �mol mol−1, and
this effect was dependent on gs (Fig. 3b).

Similarly, A was not influenced by Ci in either paraheliotropic or
diaheliotropic leaves intercepting light by both leaf sides (Fig. 4a);
but when measuring gas exchange with light interception by only
the adaxial leaf side, increases in Ci resulted in greater carbon
assimilation rates, regardless of the leaf type (Fig. 4b).

Both surfaces of para- and diaheliotropic leaves displayed a sim-
ilar (P < 0.05) A from 0 to 100 PPFD; but from 200 to 1800 �mol
photons m−2 s−1, diaheliotropic leaves showed significantly higher
(P < 0.05) A for the adaxial than for the abaxial side (Fig. 5a). The
adaxial surface, compared to the abaxial surface of paraheliotropic
leaves, showed a higher (P < 0.05) A within the range of 200 and
800 �mol photons m−2 s−1; however, from 1000 to 1800 PPFD,
adaxial and abaxial sides of the paraheliotropic leaves exhibited a
similar (P < 0.05) A (Fig. 5a). Regarding the gs/PPFD curves, adaxial
and abaxial sides of both leaf types presented similar (P < 0.05) val-
ues at each PPFD (Fig. 5b). For Ci, the abaxial side presented greater
values than the adaxial side for only diaheliotropic leaves, consid-
ering a range between 200 and 800 �mol photons m−2 s−1; from
1000 to 1800 PPFD, both surfaces of the two leaf types had similar
(P < 0.05) Ci values (Fig. 5c).

The photosynthetic radiation use efficiency (PhRUE) was higher
in paraheliotropic than in diaheliotropic leaves at every time of day
considered, when the leaves were measured with sunlight inter-
ception by both leaf sides. However, when leaves were artificially
illuminated only on the adaxial leaf surface, PhRUE was the same
between para- and diaheliotropic leaves, except at 11:00 h, when
paraheliotropic leaves presented increased PhRUE in relation to
diaheliotropic leaves. See online supplementary data (Table S1) for
details.

3.3. Leaf temperature

The leaf temperature remained between 30 ◦C and 38 ◦C for
leaves measured when light intercepted both leaf sides, and para-
heliotropic leaves demonstrated lower values than diaheliotropic
leaves only at 11:00 h and 16:00 h (Fig. 6a). When leaves were mea-
sured with light interception by only the adaxial leaf side, the leaf
temperature fluctuated between 25 ◦C and 32 ◦C, although no sig-
nificant differences between leaf types were detected throughout
the day (Fig. 6b).
3.4. Water relations

The leaf water potentials at predawn (� pd) or midday
(� md) were statistically similar among para- and diaheliotropic
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eaves measured in both locations (Botucatu and Corumbataí)
Fig. 7).

.5. Leaf reflectance

Reflectance from both leaf sides showed a similar response
attern, showing the peak of reflectance in the green spectrum

550 nm). The relative light intensity reflected from the abaxial
eaf surface was significantly higher than light reflected from the
daxial leaf surface within the visible light (400–700 nm). How-
ver, considering wavelengths of 200–400 nm and 700–800 nm,
eflectance was similar between both leaf surfaces (Fig. 8).
and diffuse) irradiance interception by both leaf surfaces (a, c, e and g) as well as
s indicate significant difference between para- and diaheliotropic leaves (P < 0.05).

4. Discussion

4.1. Water relations

Plants from Botucatu and Corumbataí displayed a similar � w,
indicating no differences in night rehydration (� pd) or in water
uptake capacity under the highest VPD (� md) (Fig. 7); these results

assure comparable physiological conditions between both popula-
tions. It is unlikely that these plants were experiencing a soil water
deficit, as the relative water content of both leaf types remained
around 80% (data not shown). Moreover, S. camporum adult plants
evaluated in the field during the dry season (July to September)
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oth leaf surfaces (a) as well as light interception by only the adaxial leaf surface
b). Only regression equations with R2 > 0.5 are shown.

howed mean values of -0.5 MPa � pd and −1.6 MPa � md with low
s compared to the wet season (January to March) (data not shown).

.2. Leaf temperature

Forseth and Teramura (1986) estimated that naturally orient-
ng leaves of Pueraria lobata would maintain temperatures up to
◦C lower than horizontally restrained leaves. However, when S.

amporum leaves were illuminated on both sides, the low leaf tem-
erature (Tl) observed in paraheliotropic leaves at 16:00 h seemed
o have a weak relationship with E or gs, which were similar
etween the leaf types (Fig. 1c and e). Habermann et al. (2008)
oted that S. camporum paraheliotropic leaves illuminated on both

eaf sides had lower Tl and higher E, gs, and A during part of the day
ompared to diaheliotropic leaves, but neither E nor gs was respon-
ible for the low Tl of paraheliotropic leaves, and there was no
ndication that the low Tl explained their high A. When leaves were

easured with light interception only on the adaxial leaf sides,
o differences in Tl were noted between para- and diaheliotropic

eaves (Fig. 6b), even when evaluated for an entire year (March,
pril, June, August, and October) (data not shown). Tl for the vertical

eaflets of P. pubescens at midday was only 1.5 ◦C lower compared

o horizontal leaflets (Caldas et al., 1997). For Arena et al. (2008),
he reduction in Tl caused by paraheliotropism may be relevant
nly if the air temperature reaches values higher than the optimum
emperature for photosynthesis. Therefore, paraheliotropism in S.
amporum does not seem to be related to leaf heat avoidance. More-
the field, measured using natural (direct and diffuse) irradiance interception by both
leaf surfaces (a) as well as light interception by only the adaxial leaf surface (b). Only
regression equations with R2 > 0.5 are shown.

over, cerrado species seem to be well adapted to high temperatures
(Franco et al., 2007; Simon et al., 2009).

4.3. Leaf gas exchange and light interception

S. camporum paraheliotropic leaves that intercepted light on
both leaf sides displayed significantly higher A, E, and gs than dia-
heliotropic leaves during most times of the day (Fig. 1a, c and e).
This high A for paraheliotropic leaves could not be explained by
the higher gs of para- compared to diaheliotropic leaves (Fig. 1c).
When leaves were illuminated on both leaf sides, it was clear that
A did not depend on gs (Fig. 2a). Separate groups of data demon-
strate the greater response ranges for A and gs in paraheliotropic
compared to diaheliotropic leaves (Fig. 2a). For both leaf types, the
increased stomatal aperture did not result in enhanced intercellu-
lar CO2 (Fig. 3a), the variation of which clearly did not affect the
carbon assimilation rates (Fig. 4a). Furthermore, in nature, sunlight
interception by the abaxial leaf side certainly does not explain the
greater gs found in para- compared to diaheliotropic leaves (Fig. 1c),
because adaxial and abaxial sides of both leaf types when illumi-
nated by the artificial red/blue light demonstrated the same values
of gs at each PPFD of the gs/PPFD curves (Fig. 5b).
Leaves measured with light interception by only the adaxial
leaf surface showed significantly higher A in para- than in diahe-
liotropic leaves only at 11:00 h (Fig. 1b). However, leaves displayed
daily Ci values that were clearly influenced by the opening of the
stomatal pores (Fig. 3b). Consequently, higher carbon assimilation
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egression equations with R2 > 0.5 are shown.

ates followed from increased Ci values, regardless of the leaf type
Fig. 4b).

The adaxial leaf surface of S. camporum seems to be specialized
n direct light interception and absorptance, because it had a sig-
ificantly lower light reflectance compared to the abaxial leaf side
Fig. 8). For Helianthus annus leaves, direct light reflectance was only
lightly higher in the abaxial compared to the adaxial leaf surface,
ut diffuse light reflectance was significantly higher in the abax-

al compared to the adaxial side (Gorton et al., 2010). The stellate
ubescence, which covers the abaxial leaf surface and is absent on
he adaxial side of S. camporum leaves (Habermann et al., 2008)
s, then, responsible for this increased light reflectance. In fact, the
ffective quantum yield of photosystem II (� PSII) and the electron
ransport rate (ETR) for both leaf sides of one-year-old S. campo-
um plants were similar between leaf types, but higher in adaxial
ompared to abaxial sides (data not shown).

However, when carbon assimilation was measured with light
nterception by only one of the leaf sides using the artificial
ed/blue light, which precisely emits the photosynthetic active
aveband, it seems that the vertical leaf position of S. campo-

um enables increased light use efficiency. When PPFD varied from
00 to 1800 �mol photons m−2 s−1, the adaxial sides of diahe-

iotropic leaves displayed maximum CO2 assimilation rates (Amax
nder saturating light, but non-saturating CO2, for photosynthesis
esponses) that were significantly higher than those of their abaxial
ides (Fig. 5a). Interestingly, non-saturating light for photosynthe-
is responses (200-800 �mol photons m−2 s−1) did not induce CO2
ductance (b), and intercellular CO2 (c) in response to the photosynthetic photon flux
density (PPFD) in para- and diaheliotropic leaves of S. camporum (n = 5) measured
using light interception by only adaxial or abaxial leaf sides. (Vertical bars = SD).

consumption on the abaxial sides of diaheliotropic leaves, which
exhibited significantly higher Ci than those of their adaxial surfaces.
When using more than 1000 �mol photons m−2 s−1 (saturating
light), Ci was similar between both leaf sides of the two leaf types
(Fig. 5c), but the adaxial leaf sides of diaheliotropic leaves main-
tained a higher A compared to their abaxial sides (Fig. 5a). This
suggests that increased light interception by the abaxial sides of
diaheliotropic leaves does not improve their light use efficiency;
therefore, some innate low Amax values are present for the abax-
ial sides of diaheliotropic leaves. Adaxial surfaces of para- and
diaheliotropic leaves presented the same (P < 0.05) A as the PPFD
varied from 200 to 1800 �mol photons m−2 s−1 (Fig. 5a). Leaves
illuminated only on the adaxial side, which did not render any con-
spicuous differences in A between the two leaf types (Fig. 1 b, d
and f) were measured using a PPFD of 1800 �mol photons m−2 s−1.
Moreover, adaxial and abaxial sides of paraheliotropic leaves dis-
played a distinct Amax when PPFD was below 800 �mol photons
m−2 s−1, but similar values of Amax when PPFD was between 800
and 1800 �mol photons m−2 s−1 (Fig. 5a), indicating that parahe-

liotropic leaves somehow integrate the photosynthetic capacities of
both leaf sides under elevated irradiances. In fact, the leaves of Olea
europaea, when intercepting light on both sides, showed higher
apparent quantum yield [mol (CO2 assimilated) mol−1 (incident
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ara- and diaheliotropic leaves (P < 0.05). (Vertical bars = SD).

uanta of PPFD)] and greater A compared to cases in which their
eaves intercepted light only on one leaf side under the same PPFD

Proietti and Palliotti, 1997). Similarly, leaves of Eucalyptus mac-
lata and E. pauciflora, which had been horizontally or vertically
estrained, exhibited higher A values when equally illuminated on
oth leaf sides compared to when abaxial or adaxial illumination

ig. 7. Predawn (� pd) and midday (� md) leaf water potential in para- and dia-
eliotropic leaves of S. camporum (n = 5) in the field, in Botucatu-SP, and in
orumbataí-SP, southeastern Brazil. For each evaluation time (predawn and mid-
ay), the same letters indicate the lack of statistical significance (P < 0.05) among
ara- and diaheliotropic leaves of plants from Botucatu and Corumbataí. (Vertical
ars = SD).
leaves irradiated on the adaxial and abaxial leaf surfaces of S. camporum. Each curve
represents data from leaves detached from five replicates (plants). (a.u. = arbitrary
unit).

alone was applied (Evans and Jakobsen, 1993). These results sup-
port the integration of the photosynthetic capacities of adaxial and
abaxial leaf sides, which may have occurred in S. camporum (Fig. 1a).

We have not measured the apparent quantum yield, but when
leaves were illuminated on both surfaces, the photosynthetic radi-
ation use efficiency (PhRUE) was higher in para- compared to
diaheliotropic leaves throughout the day, and when the same
range of PPFD intercepted adaxial leaf surfaces only, para- and dia-
heliotropic leaves showed similar PhRUE at 9:00 h, 14:00 h, and
16:00 h (See online supplementary data for details; Table S1). Thus,
we propose that the leaves of S. camporum photosynthetically ben-
efit from paraheliotropism, although there is no evidence that this
great PhRUE increases plant ecological performance, for instance,
by increasing plant biomass.

The vertical leaf position in S. camporum enables increased pho-
tosynthetic efficiency in terms of CO2 consumption, but not in
terms of light absorptance, especially when considering the contri-
bution of the abaxial leaf surface, which is highly reflective. In fact,
for some epiphytic fern leaves, the higher A values observed for
the leaf side mostly exposed to direct sunlight was attributable to
a greater CO2 consumption (Martin et al., 2009). Notwithstanding,
the reflectance pattern of the adaxial side is very similar to the abax-
ial leaf side, with both sides exhibiting great reflectance within the
green spectrum (525–575 nm) (Fig. 8). This indicates that, although
pubescence promotes light reflectance, the abaxial leaf surface cer-
tainly absorbs a small amount of light within the red spectrum,
which is greater in direct sunlight than in scattered light. For H.
annus leaves, there was almost the same direct light absorptance
between the adaxial and abaxial leaf surfaces, but when diffuse
light absorptance was measured, the abaxial side showed a slightly
lower value (Gorton et al., 2010). Therefore, as supported by A/PPFD
curves (Fig. 5a) abaxial leaf surfaces of S. camporum may not have
light leaf absorptance significantly decreased under elevated irra-
diances. S. camporum leaves have compact spongy parenchyma and
amplified palisade parenchyma (See online supplementary data
for details; Figs. S1d, e and f), suggesting that these cells have
high chlorophyll content. Features such as stomata limited to the
abaxial surface, developed palisade parenchyma, and compactly

arranged spongy parenchyma are constant in leaves of cerrado
woody species (Bieras and Sajo, 2009). Indeed, compact leaf tissues
have previously been suggested to enable greater light interception
and high water use efficiency (Chaves et al., 2002).
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Von Caemmerer, S., Farquhar, G.D., 1981. Some relationships between the biochem-
G. Habermann et al. / Environmental

One could still argue that different devices, rather than light
nterception, determined the differences in gas exchange, since nat-
ral sunlight was used for double sided illumination measurements
nd artificial red/blue light was used for single sided illumination
easurements. However, regardless of the device/system used,

he range of PPFD values reaching leaf surfaces was very similar.
oreover, results of A, gs, and Ci obtained from PPFD curves indi-

ated that there are distinct responses in para- and diaheliotropic
eaves when considering each leaf surface under saturating and
on-saturating red/blue light (Fig. 5).

Finally, it is essential to emphasize that it was not the leaf age,
ather than the leaf position, that determined our observations.
araheliotropic leaves that were assessed were distinguishable
rom diaheliotropic leaves. These paraheliotropic leaves had

ature fully expanded blades, and they were localized on woody
tems and primary branches of adult plants. Additionally, for some
tems, paraheliotropic and diaheliotropic leaves were adjacent to
ach other (See online supplementary data for details; Fig. S1a).

.4. Ecophysiological significance of heliotropism for S.
amporum

It has been accepted that paraheliotropism is a mechanism
or reducing transpiration rates, irradiance interception, conse-
uently minimizing leaf heat and the potential for photoinhibition
Ehleringer and Forseth, 1980; Forseth and Ehleringer, 1982;
orseth and Teramura, 1986; Bielenberg et al., 2003; Pastenes et al.,
005; Liu et al., 2007; Arena et al., 2008), although paraheliotropism
ay also prevent optimum CO2 assimilation rates (Pastenes et al.,

005). These traditional explanations for the significance of leaf
eliotropism have been based on leguminous species, including P.
ubescens from the cerrado (Caldas et al., 1997).

Nonetheless, our data strongly suggest that, although the abax-
al leaf surface is highly reflective, it may absorb a small amount
f natural direct light within the red spectrum, which photosyn-
hetically increases the efficiency of paraheliotropic leaves in terms
f CO2 consumption, because adaxial and abaxial leaf sides seem
o integrate their respective carbon assimilation rates. However,
hese observations are detected only if measured with devices that
nable light interception by both leaf surfaces. Moreover, parahe-
iotropism in S. camporum does not seem to be related to leaf heat
voidance (Fig. 6), neither does it minimize the potential for pho-
oinhibition (data not shown). Therefore, in contrast to the results
or leguminous species, the paraheliotropism of only some leaves
f S. camporum, which do not even show pulvinus in their petioles
Machado, 1991), could have novel significance for plant ecophys-
ology.
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