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ABSTRACT 

Explicit formulas are given for rational matrix functions which have a prescribed 

null-pole structure in the complex plane and are column reduced at infinity. A full 

parametrization of such functions is obtained. The results are specified and developed 

further for matrix polynoniials. 
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0. INTRODUCTION 

A rational m X m matrix function W is said to be column reduced at 

infinity if it admits a factorization 

I A”1 \ 

AK2 
W(h) = E(A) (O-1) 

\ A 1 %I 

where E is a square rational matrix function which has no pole or zero at 
infinity (i.e., E is analytic and invertible at infinity). This concept was 
introduced into mathematical systems theory by [18] in the context of matrix 
polynomials. For a regular rational matrix function W with columns 

Wi>. . * > w, and column indices K~ > -a* > K,, column reducedness at 
infinity is equivalent to the requirement (see [4]) that the vector functions 
KK’ZL;i(h), . . .) h-+Qwk(h) associated with positive columns indices K~ > .*a 

> K~ > 0 form a canonical set of right pole functions for W at infinity of 
orders K~, . . . , K~, respectively, and the row vector functions 
A”+/+ 16 m + 1- I($& of =&~) associated with the last 1 rows 
G m+ i&0,. . . > , where I is the number of negative column 
indices, form a Gnonical set of left null functions for W at infinity of 
respective orders K,_ l+ 1, . . . ,, K,. Intuitively, column reducedness means 
that pole-zero structure at infinity can be read off from looking at the 
columns separately; there are no poles or zeros arising from interactions 
among the columns. 

The present paper concerns the problem of constructing a column 
reduced rational matrix function with prescribed null-pole data. More pre- 
cisely, given an admissible Sylvester data set r = (C, A,; A,, B; I’> (see 
Section 1 for the definition), the problem is to find a rational matrix function 
W such that 

(i) W has r as its C-null-pole triple, 
(ii) W is column reduced at infinity. 

If we suppose that A, is vacuous, then the problem is reduced to finding 
a matrix polynomial which has a prescribed (left) C-null pair, and whose 
column indices at infinity coincide with the partial indices in its Smith- 
McMillan form at infinity. 

The problem of construction of column reduced rational matrix functions 
with prescribed C-null-pole triple arises naturally in the context of the 
problem of parametrizing rational matrix functions meeting a number of 
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prescribed bitangential interpolation conditions which also have a prescribed 
McMillan degree; for details on this, see 131. Specifically, a function W as in 
(i) and (ii) provides the coefficient matrix for the linear fractional map 
involved in the parametrization of the set of all such rational interpolants. The 
column-reducedness property of W is crucial in determining the McMillan 
degree of an interpolant in terms of the associated pair of rational functions 
used as the free parameters in the linear fractional map. We expect the 
results of this paper to lead to state-space formulas for the interpolants (see 
also [l] for an earlier state-space approach to this bitangential prescribed- 
McMillan-degree interpolation problem). 

The problem of finding a column reduced rational matrix function with a 
prescribed C-null-pole triple is also closely related to Wiener-Hopf factoriza- 
tion at infinity. Indeed, if G is a given m X m rational matrix function and W 
is constructed to be a column reduced rational matrix function as in (0.1) 
having the same @-null-pole triple as does G, then G(h) = W(h)F(h), 
where F is a unimodular matrix polynomial, and hence (0.1) yields 

1 A”1 \ 

A”2 
G(A) = E(A) F(A), 

\ A / Km 

which is a Wiener-Hopf factorization of G at infinity. State-space formulas 
for Wiener-Hopf factorization in turn are useful in solving singular integral, 
Wiener-Hopf, or Toeplitz equations with rational matrix symbols (see [6] and 

m). 
In [ll] a problem related to (i) and (ii> has been solved, namely the 

problem of finding a rational matrix function W satisfying (i) and 

(ii’) W has the minimal possible McMillan degree. 

A solution of our problem automatically yields a solution of the problem with 
(ii’) in place of (ii), but the converse is not necessarily true. For matrix 
polynomials condition (ii’) means that the solution has no zero at infinity. 
However, not every matrix polynomial which has no zero at infinity is column 
reduced at infinity. For example, the matrix polynomial 

L(A) = ^o” ; 
i 1 

has no zeros at infinity, but is not column reduced. In fact, there does not 
exist an invertible constant matrix D for which I,( A)D is column reduced at 
infinity. 
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In the present paper we construct a rational matrix function W satisfying 
(i) and (ii), and we give an explicit formula for such a solution W in realized 
form. We also parametrize the set of all W satisfying (i> and (ii). These results 
appear in Section 3. In Section 6 they are specified and developed further for 
matrix polynomials. Section 1 surveys the general theory of column reduced 
rational matrices. Preliminary material about null-pole data are collected 
together in the second section. Section 4 contains some auxiliary material 
about observable and controllable pairs which we need in Section 5 for the 
proof of the second main theorem of Section 3. 

We close the introduction with a list of notation and terminology which 
will be used throughout the paper. An n X n matrix X (over the complex 
numbers) will often be identified with the linear transformation from Cm 
(complex m-tuples written as columns) into @” associated with left multipli- 
cation. The symbol Ker X denotes the subspaces of Cm equal to the kernel of 
this linear transformation, while Im X denotes the subspace of C” equal to 
its range of image. For X a square matrix, u(X) denotes the spectrum or set 
of eigenvalues (a finite subset of @) of the associated linear transformation. 

1. COLUMN REDUCEDNESS 

Let W(h) be a regular m X m rational matrix function. For j = 1, . . . , m 

let K~ denote the highest power of A in the jth column of W(h). Then W(A) 
is represented as 

/ A"' 
A”2 

W(A) = E(A) 

\ A Kin 

where 

\ 

(l-1) 

/ 

E(A) = E, + A-lE, + A-‘E, + ... . (14 

The integer ~~ is called the jth column in& of W(A), and W(A) is said to 
be column reduced at infinity if E, in (1.2) is invertible. 

THEOREM 1.1. A regular m X m rational matrix function W is column 

reduced at infinity if and only if the positive column indices of W coincide 
with the partial pole multiplicities and the negative column indices of W 
(taken with opposite sign) coincide with the partial zero multiplicities of W in 
the Smith-McMillan form of W at infinity. 
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This theorem was first established [17] in 1979. It tells us that for a 
column reduced regular rational matrix function the poles and zeros at 
infinity may be read off from the columns separately. 

In the next three theorems we state a number of important known 
properties of column reduced rational matrix functions. 

THEOREM 1.2 (The predictable-degree property). Let W be an m X m 
regular rational matrix function. Then W is column reduced at infinity if and 
only if for any C” -valued polynomial vector p(A) the column index of 
W(h)p(h) (i.e., the highest power of A in the column W(A)p(h)) is equal to 

where p,(A) is the ith entry of p(A), and ~~ is the ith column index of W( A). 

For matrix polynomials Theorem 1.2 was discovered by Fomey [7]. For 
the proof of this theorem, see Theorem 6.3-13 in [14]. Although the latter 
theorem concerns only matrix polynomials, its proof may also be used for 
rational matrix functions. 

THEOREM 1.3. Let W(A) be a regular m X m rational matrix function. 
Then there exists a unimodular matrix polynomial U(A) such that 

I+( A) := W( A)U( A) (1.4) 

is column reduced at infinity. 

Example 6.3.2 of [14] illustrates how one can find such a U(A). Note that 
if W(A) is not column reduced, then W(A) in (1.4) is obtained by applying 
elementary column operations to reduce the individual column indices until 
column reducedness is achieved. Theorem 1.3 may also be seen as a special 
case of Theorem 1.2.1 in [6], which concerns Wiener-Hopf factorization of 
rational matrix functions relative to a contour. By taking a sufficiently large 
contour Theorem 1.2.1 in [6] reduces to Theorem 1.3. 

THEOREM 1.4. Let W(A) and W(A) be m X m regular rational matrix 
functions which are column reduced at infinity. lf 

@(A) = W(A)U(A) 
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for a unimodular matrix polynomial U(A), then W(h) and W(A) have the 
same column indices at infinity and for the entries U,&h) of U(A) the 
following holds: 

(a) Uij(A) = 0 if Kj < Ki 

(b) uij( A) is a constant if ~~ = K~ 

(c) Uij(h) has degree < ~~ - ~~ if ~~ > K~ 

Here K~, . . . , K, are the column indices of W(h) and W(A) at infinity. 

For the proof of the equality of the indices, see Theorem 6.3-14 in [14] 
(the arguments given there are also valid for the rational case). The second 
part of Theorem 1.4 is an immediate corollary of the predictable-degree 
property of column reduced rational matrix functions (Theorem 1.2). Theo- 
rem 1.4 may also be viewed as a special case of Theorems 1.1.1 and 1.1.2 in 
[6], which concern the freedom one has in Wiener-Hopf factorization. 

The column reducedness of a regular rational matrix function at a point 
A, E C can be defined in a similar way to column reducedness at infinity. 
Furthermore, we mention that in the papers [17] and [5] column reducedness 
at a point in @ or at infinity is studied for rational matrix functions with full 
column rank but not necessarily regular. 

2. NULL-POLE TRIPLES AND PROBLEM FORMULATION 

In what follows W is a regular m X m rational matrix function. First we 
explain what is meant by the null-pole structure of W on C. We begin with 
the poles. A pair of matrices (C, A), where A is n X n and C is m X n, is 
called a right pole pair of W relative to Q= if 

(Pi) r-j j’= I Ker CAj- ’ = (0); 
(Pa) there exists an n X m matrix B’ such that Im(g Ag .a* A”- ‘g) = 

C” and 

W(A) - C(A - A)-lB 

is a polynomial in A. 

In this case C( A - A)-‘B’ is a minimal realization of the sum of the singular 
parts of the poles of W in C. Pole pairs are unique up to similarity, and they 
may be constructed from the poles and the corresponding pole chains (see [4, 
Chapters 3, 41 for further details). For the null structure we employ W(a)-‘. 
A pair of matrices (A, B), where A is n X n and B is n X m, is called a left 
null pair of W relative to Q= if (A, B) is a left pole pair of W-i relative to c, 
that is, 
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(N,) Im(B AB *** A”-iB) = C”; 
(N,) there exists an m X n matrix d such that n ;=i Ker CAj- 1 = (0) 

and 

W(h)-’ - d(h - A)-'B 

is a polynomial in A. 

In this case (A - A)-‘BW(h)p(A) is a polynomial in A for every Cm-valued 
vector polynomial p such that Wp is also a polynomial. In fact, the latter 
property can be taken as the starting point for the definition of a left null 
pair. 

Additional information about the connections between null structure and 
pole structure of W is encoded in the null-pole subspace, which is defined as 

where LP,,,, I denotes the set of all @“-valued vector polynomials. It turns out 
(see [4]) that given a left null pair (Al., I?) and a right pole pair (C, A,) of W 
relative to C, there exists a unique nL X n, matrix I (where ng is the order 
of A, and n, is the order of A,) such that 

W9’,X 1 = {C(A - A,)-‘x + h(A) 1 x E @“-, h ~~~~~ 
such that I+, is the sum of all the residues 

of (A - AL)-lBh(A) in @). 

The quintet (C, A T; A,, B; I’> is called a Qhull-pole triple for W, and one 
refers to I as the coupling matrix of the null-pole triple. The coupling matrix 
satisfies the following Sylvester equation: 

TA, - A, r = BC. (2.1) 

Hence in case (+( A,) r~ u.( As) = 0, th e matrix I is uniquely determined 
from the pole pair (C, A,) and the null pair (A,, B); when a( A,) and 
u( AS) intersect, I adds the additional coupling information between pole 
data and zero data required to get a complete description of the polynomial 
module Wgm x 1; see [4, Chapter 41 for further details. 

To state the main problem solved in this paper we need the notion of an 
admissible Sylvester data set. Let A, and A, be square matrices of order n, 
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and ni, respectively, let B and C be matrices of sizes ng x m and m x n,, 

respectively, and let r be an ni x n, matrix. The quintet (C, A,; A,, B; r) 
is called an admissible Sylvester data set if 

n,- 1 

(I Ker CAL- 1 = { 0} , 

j=l 

(2.2a) 

Im( B A, B ... AFc-‘B) = a=“~, (2.2b) 

and r satisfies the Sylvester equation (2.1). The problem we shall deal with is 
the following. Given an admissible Sylvester data set 7 = (C, A,; A,, B; r>, 

construct all regular rational matrix functions W such that 

(i) W has T as its C-null pole triple, 
(ii) W is column reduced at infinity. 

The matrix-polynomial case is of special interest. Assume W(A) = L(h) is 
an m X m regular matrix polynomial. Since a polynomial has no poles in @, 
the matrix A, in a right pole pair (C, A,) of L(h) is necessarily vacuous. It 
follows that a @-null-pole triple of L(h) is of the form (0,O; A,, B; O), where 
( A,, B) is a left null pair of L(h) and the coupling matrix maps @“c into (0). 
Thus for matrix polynomials our problem reduces to the following question. 
Given a pair of matrices (A, B), where A is n X n, B is n X m, and 

Im( B AB *.- A”-‘B) = @“, 

construct all regular m x m matrix polynomials which are column reduced at 
infinity and have ( A, B) as left null pair. 

3. MAIN THEOREMS 

We first introduce the notation and linear transformations needed to state 
the main results. After the statements we present some perspective on the 
formulas and illustrate them with a simple example. 

In what follows T = (C, A,; A,, B; I? is an admissible Sylvester data set 
and (Y is a complex number such that 

a P a( A,) U c( A() U {O}. (3-l) 



COLUMN REDUCED RATIONAL MATRIX FUNCTIONS 75 

Our aim is to construct a column reduced rational matrix function which has 
r as its @-null-pole triple. For this purpose we need the following notation. 

We write Zq for the space on which A,, acts, and 3 for the space on 
which A, acts. In particular, I?: ZV -+ 5. Let N be a complement of Ker I 
in Zm, and let K be a complement of Im I in q. We choose I+: 3 + Zn 
to be the generalized inverse of I such that Im I+ = N and Ker I+ = K. Let 
p, be the projection of Zr onto Ker r along N, and pl the projection of 3 
onto K along Im I’. Thus p, = I - T+I’ and pt = I - l’T+. We write 77, 
for the embedding of Ker I into S,, and 771 for the embedding of K into q. 

We may choose bases {dlk)>= i,j’=, and {g&&= 1 in Ker I and K, 
respectively, such that the following hold: 

(a,) {djk&,,~=, is a basis of Ker I n Ker C, 
(a,) A,,dj k+l = dj,k, k = 1, . . . . cxj - 1; 
(b,) (gJw $=, is a basis for a complement of Im I in Im I + Im B, 

(b,) A< gi, k + 1 - gjk E Im I + Im B, k = 0,. . . , wj - 1, where g,,a 
:= 0. 

Here we assume that cxi 2 *.. > (Y, and wi > *.* > w,. In the terminology 
of [ll] (see also [4, p. 1541) the vectors {djk}$= 1 ;= 1 form an outgoing basis for 
r at infinity, and {g .k)$ r,J”= 1 an incoming basis for r at infinity. With these 
bases we associate t 1: e following two operators. 

S: Ker I + Ker I, sdjk = dj,k+l (dj.a +I := O)T I (3.2) 

T: K-K, Tgjk = gj,k+l (&!j,o,+l ‘= O>’ (3.3) 

In the sequel rl: K + Ker I is an arbitrary linear transformation which we 
may choose freely. 

It is not difficult to show (see the proof of Theorem 3.1 below) that 

Im( A,qT - q) cIm(a-Al)I+ImB, (3.4) 

Ker( Sp, A, - p,) 2 Kerr(a -A,) n KerC. (3.5) 

These inclusions allow us to choose operators 

H: C”’ -+ Ker I, A,,:q+ Kerr 

(3.6) 

(3.7) 
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such that the following identities are fulfilled: 
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((Y - A,)rA,, = A,rl,T - q - BF, (3.8) 

A,,lY( a - A,) = Sp,, A, - p,, - HC, (3% 

A& I - aT) - (I - aS)p,A,, = r,T - ST, - HF. (3.10) 

With the operators A,, and A,, defined by (3.8)-(3.10) we introduce 

CO,-1 

X := - c A;A,,Tj: K-+%“,, 
j=O 

Y := - c SjAarAj,:q+ Kerr. 
j=O 

Finally, let 

zj = (YC( aZ - A,)-’ dja 
I’ 

j = l,.. 

and choose vectors yj E C”, j = 1,. . . , s, such that 

. . 7 

(3.11) 

(3.12) 

t, (3.13) 

(Ar-“Z)-lByj-(Z-cuT)-‘g,,~Imr, j=l,...,s. (3.14) 

We shall see later that the vectors zr, . . . , zt, yl,. . . , ys are linearly indepen- 
dent vectors in a=“‘, and hence one may choose vectors z,, r, . . . , z,_, in C” 
such that the following matrix is invertible: 

E = ( z1 .a. z, z,+~ ... x,_, y1 a.. ys). (3.15) 

We are now ready to state the main theorems. 
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THEOREM 3.1. Let T = (C, A,,; A,, B; I’) be an admissible Sylvester 

data set, and let (Y E @ be as in (3.1). Put 

W(A) = E - (A - a)C(h -A,)-’ 

x([T++(cy - A,)Xp{ - Q&a! - A[)-lB 

+77,(aS - I)-‘H)E 

+(A - o)[CX(Z - UT) - F](Z - AT)-‘P&I - AS)-‘BE. 

Then W is a column reduced regular m X m rational matrix function which 

has r as its C-null-pole triple. The jth column index ~~ of W is given by 

i 

-a. 
I’ 19j<t, 

Kj= 0, t+lGj<m-s, 

w m-j+1, m-s+l<j<m, 

where cyl > **a > (Y, are the nonzero observability indices of the pair 

(Clear, P~A,IK~~~), and q 2 a.0 > ws are the nonzero controllability 

indices of the pair ( 4 A, I K, 4 B). Moreover, 

W(A)-l = E-l + (A - a)E-’ 

X(C(a - A,)-‘[I.++ 77,Y(a -AL) - I&] 

+F(Z - crT)-‘p6)(A - A,)-‘B 

+(A - (r)E-‘C( ix- A,)-%-&AS -I)-' 

x[(Z - cxS)YB + H]. 

THEOREM 3.2. Let r = (C, A,,; A[, B; r) be an admissible Sylvester 
data set. Every column reduced regular m X m rational matrix function W 

which has r as its @-null-pole triple is obtained via the method of Theorem 

3.1 up to a certain constant invertible factor on the tight. 
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Description of column indices of column reduced rational matrix func- 
tions (or, equivalently, of factorization indices) in terms of observability 
and/or controllability indices as in Theorem 3.1 are known (see [13] and [16] 
for the case of matrix polynomials, [S] for the proper rational matrix case, and 
[lo] for the general case). See also [3] and [15], where the column indices of a 
column reduced rational matrix function W(h) with prescribed @-null-pole 
triple are given in terms of observability and controllability indices as in 
Theorem 3.1. 

Before commencing with the proof of Theorem 3.1 we give some back- 
ground information to help the reader gain some perspective on the formulas 
in Theorem 3.1. We also present a simple example. 

Let r = (C, A,; A,, B; r) be an admissible Sylvester data set and (Y a 
complex number as in (3.1). It is known (see, e.g., 141) that there exists a 
rational matrix function W which is regular at infinity and which has 7 as its 
C-null-pole triple if and only if I is invertible, and then any such W has the 
form 

W(A) = D + C( A - A,)-‘T-‘BD 

with inverse 

W(A)_’ = D-l - D-‘Cr-l(h - A,)-$ 

where D is an arbitrary regular m X m matrix. If I is not invertible, one has 
to add nontrivial pole-zero structure at infinity. The latter may be described 
by an admissible Sylvester data set over infinity, that is, an admissible 
Sylvester data set 

T, = (Cm, A,,; A,, Rx,; rm) 

with the additional property that the matrices A,, and A, are nilpotent. 
Such a quintet r, is called an {m}-null-poZe triple for the rational matrix 
function W if in addition 

W%Xl = Cm( I - AA,,)-lx + h(A) 1 x E @““, 

h E %x1 such that r,x is equal to the 

residue of ( Z - AA,) -’ Bh( A) at infinity), 
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where a,,, stands for the set of all strictly proper @“-valued rational 
functions. 

Given now the admissible Sylvester data set r, the complex number CX, 
and an admissible Sylvester data set over infinity r,, then it is known (see [9] 
or [4]) that there is a regular m X m rational matrix function W with 
@-null-pole triple equal to T and with {m}-null-pole triple equal to 7% if and 
only if the matrix 

is invertible, where Ii2 and I,, are determined as the unique solution of the 
Stein equations 

A, r12 A7rm - r12 = BC,, 

In this case, any such W is given by 

W(A) =zl+(/i-a)(C C,) 
(A - A,)-1 

0 (1 

(A, - a)-bUl 

(I - aA,)-lBmD 

with inverse given by 

B,C. 

W(A)_l = D-’ - (A - CX)(D-~C(A -A,)-' D-'C&Z - AA,,)-') 

r l-12 

x r,, r, 

-l (A~-A)-’ 0 B 

( )I 0 (z-h~~~)-’ 
)i ) 

‘m ’ 

The problem we are confronted with is to construct an admissible 
Sylvester data set over infinity r,, which fits the given admissible Sylvester 
data set r in the way described above, such that the resulting W is column 
reduced at infinity. This problem is a more refined version of the problem 
considered in [ll], where W is only required to have minimal McMillan 
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degree. One of the main points of the recipe in Theorem 3.1 is that in order 
to obtain a column reduced W one has to take 

To = (CX( I - d) - F, 2’; S, (I - aS)YB + H; rm) 

with 

I, = -Y( LY - A$( (Y - A,)X + p,( (Y - A,)X + Y( LY - A&( - Il. 

It turns out that in this case F-’ has the simple form 

t-1 = r+ 77, ( i -Pl 0 ’ 

and a straightforward computation shows that the formulas for W(e) and 
W(e)-’ in Theorem 3.1 result from those given in the previous paragraph by 
plugging this special choice of r, and with the matrix D chosen to be equal 
to 

This choice of D gives the appropriate basis for C”’ with respect to which the 
resulting W(h) is column reduced with column indices in nondecreasing 
order. 

The main point of Theorem 3.2 is that any {w}-null-pole triple of a 
column reduced W with @-null-pole triple equal to r must occur in this way. 

An important distinguishing feature of the 7, leading to a column 
reduced W is that the sizes of the nilpotent Jordan blocks of S and T must 
agree with the nonzero observability indices of the pair 

(C IKerr, p,A, IK er I) and controllability indices of the pair 

( pCAs I K, p#. Th is is certainly a necessary condition, since the sizes of the 
Jordan blocks of T represent the partial pole multiplicities and those of S 
represent the partial zero multiplicities of W at infinity. 

Unfortunately the results from [ll] are not of an appropriate form to be 
directly applicable to the problem of this paper. This forces us to recall 
results from [lo], where analogous problems were considered with spectral 
data added at a finite point rather than at infinity, and then use a Mobius 
transformation to map the finite point to infinity. 
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If r is invertible, then the spaces Ker r and K are trivial, the matrix E 
can be taken to be any m X m invertible matrix, and the formula for W in 
Theorem 3.1 collapses to 

W(A) = E - (h - a)C(h -A,)p’(T-‘(a -Ai)plB]E, 

which one may rewrite as 

W(A) = D + C(A - A,)-h-‘BD, 

with D invertible and equal to E - Cr-‘(a - A,)-‘BE. 
Let us now consider the following example. Take m = 2, vr = 1 = 1, 

and let 

T= (C, A,; A,, B,r) = 

where y is a real number. If y # 0, we are in the situation considered in the 
previous paragraph, and in this case the solution is 

WA) = ((: y) + (;) (z - ())-‘Y-~(() 1) 

where D is an arbitrary nonsingular 2 x 2 matrix. In this case the column 
indices are (0, O}. 

More interesting is the case y = 0. Then the spaces are 

2yr= @, q = @, Ker I = @, N = {Oj, 

Im r = {O}, K = c, 

the various mappings are 

p,= 1, Pl= 1, rl,= 1, q = 1 

and t = 1, oi = 1, d,, = 1, s = I, 01 = I, g11 = 1. ln this case we have 

s = 0, T = 0, 
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both on @, and rl = yl: @’ + @’ is an arbitrary number. The linear 
transformations 

A,, = uI2 (a complex number), and A,, = uzl are subject to 

0=0-l-(0 1) 
fi 

( 1 fi ’ 

0 = 0 - 1 - (h, h,) ; ) 
( 1 

and 

a21 - a12 = -(h, h,) ; . 

i 1 2 

From (3.8’) and (3.9’) we see that 

f2 = -1, h, = -1, 

and then (3.10’) becomes 

a21 - a12 =f1 + h2 

with 

F= H = (-1 h,). 

Equations (3.11) and (3.12) give 

x = -u12’ Y = -ug. 

According to (3.13) we should take 

(3.8’) 

(3.9’) 

(3.10’) 

1 
z1= o’ 0 
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while (3.14) demands 
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where y: is an arbitrary number. Thus the matrix E is given by 

and E is invertible, since by assumption (Y # 0. The formula for W in 
Theorem 3.1 works out to be 

W(A) = “^bl ( P-P + PO + p1A 
-A I 

where 

p_, = a 2 
al2 + ayl + ayf + a’h,, 

p, = -2aa,, - ~1 - Y: - o(fi + h,), 

Pl = %2 +_L 

Here cx is a futed nonzero number, while uis, y:, h,, yl, fi are free complex 
parameters. From the expressions for p _i, p,, p, we see that p _ i, p,, p, 
are independently arbitrary parameters. The content of Theorems 3.1 and 3.2 
is that the above W(A) describes the set of all column reduced rational matrix 
functions having 

7= (( 1 ; ,O;O,(O 1);O 1 
as C-null-pole triple. Note that the column indices are ( - 1,l). 

Once we know the answer, it is straightforward to verify directly that it 
has the desired properties for this example. In particular, to verify that r as 
above indeed is a C-null-pole W as above, we need only to check 

that a rational vector function 

P-P-’ + PO + P,A 
-A 
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for some polynomials hi and h, if and only if there is a number x and two 
polynomials 9i and 92 such that 

subject to 

92(o) = (0 1) 91(o) = 
! 1 92(O) 

0*x=0. 

Proof of Theorem 3.1. The proof is divided into eight parts. In the first 
four parts we justify the various choices made in the paragraph preceding the 
present theorem. 

Par-t (a). In this part we show that one may choose operators F and A,, 
as in (3.6) such that (3.8) holds. From (3.3) and properties (b,), (b,) it follows 
that 

(~~5T-775)g~~~Imr+ImB (3.16) 

for k = 1,. . . , oj and j = 1,. . . , s. Since r is a Sylvester data set, we have 
IA, - A,I = BC. The latter identity implies that 

Im I + Im B = Im(o - A,)r + Im B. (3.17) 

Equations (3.16) and (3.17) yield the inclusion (3.4), which we may rewrite as 

Im( A,qT - q> C Im((a - A,)I B). 

Hence we can find F and A,, as in (3.6) such that 

(+I$ - q) = ((a - A,)r B)( ‘;)> 
which yields (3.8). Note that (3.8) allows one to choose p, A,, as one wishes. 
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Part (b). We show that one may choose the operators H and A,, as in 
(3.7) such that (3.9) holds. From (3.2) and the property (a,) one sees that 

(S&A, - P7Mj,k+l = 03 k = l,..., oj - 1. 

This together with (a,> implies that 

Ker( Sp, A, - p?,) 2 Ker I f’ Ker C. (3.18) 

Since IA, - A,F = BC, we have 

KerI’nKerC=KerI’(a-A,)f?KerC. (3.19) 

Equations (3.18) and (3.19) yield the inclusion (3.5), which may be rewritten 
as 

Ker( Sp, A,, - p,) ~Ker(r(a(A~)). 

It follows that one can find operators H and A,, as in (3.7) such that 

which yield (3.9). Now note that (3.9) fures A,, on Im I. Hence one may 
choose AslqL as one wishes. 

Since H and F are determined and Ii is given, the right-hand side of 
(3.10) is now fixed. On the other hand p, A,, and A,,q are still free to be 
chosen. It follows that we can always choose A,, and A,, in such a way that 
(3.10) holds. 

Part (c). This part concerns (3.14). Property (b,) may be rewritten as 

(Al - cr)gjY + agj, - gj,,_, E Im I’ + Im B, v= l,..., wj. 
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Here gjO = 0. It follows that 
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2 
v=l 

oY-i(Ag - cr)gjY + a’+gjo, E Im l? + Im B. 

NOW use property (b,), the definition of T in (3.3), and the identity (3.17) to 
conclude that 

(AS-- cy)(I - aT)-lgji E Im(A, - a)r + Im B, j = l,...,s. 

From the latter formula it is clear that we may choose yr, . . . , yS in Cm such 
that (3.14) holds, 

Part cd). In this part we show that the matrix E in (3.15) is well defined 
and invertible. First, we prove that the vectors zl,. . . , z, are linearly inde- 
pendent. Assume Cj= I fij zj = 0. Then 

(a -An)-’ Ik Pjdja, 
j=l 

E KerC n Kerr, 

and hence 

t t s 
(a - A~)-’ c bjdja, = c c Yjk djk 

j=l j=l k=2 

for some scalars yjk. It follows that 

k Pj djaj = ,cl k$2 ayjk djk - ,cl kg2 yjk dj, k- 1’ (3.20) 
j=l _ _ 

Since the vectors (djk& I,;= 1 are linearly independent, we see from (3.20) 

that yj2 = 0 for j = 1,. . . , t. Thus (3.20) holds with 2 replaced by 3, which 
implies that yj3 = 0 for j = 1,. . . , t. It follows that (3.20) remains true if 2 is 
replaced by 4. Proceeding in this way we find that all Yjk are zero. But the 
left-hand side of (3.20) is zero, and we may conclude that pi = **. = p, = 0. 
Thus x1,. . . , zt are linearly independent. 
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Next, we prove that the vectors (A, - ol-‘Byj, j = 1,. . . , s, are linearly 
independent module Im l?. Indeed, if 

k Aj( A, - a)-‘Byj E Im I, (3.21) 
j=l 

then we see from (3.14) that 

(3.22) 

But {gjk)rL i,J= 1 is a basis of K, and K n Im I consists of the zero vector 
only. So the coefficient of gjk in (3.22) is zero. In particular, A,, . . . , A, are 
zero. Thus (3.20) implies Aj = 0 (j = 1,. . . , s). 

By (3.13) and (2.1), 

(AL- a)-bzj= a(Ac- c~-k(a-A~)-~d~,~ 

= a( A, - &)-l{I’( A,, - a> - (A, - q} 

x( a - A,)-’ dja, 

= a(a-A,)-kdja, - c&(crA,)-‘dja,. 

Now, recall that dim, E Ker I’. Thus 

(A, - n)-iBzj E Im r, j = l,...,t. 

By combining this with the result of the previous two paragraphs, we see that 
the vectors zi, . . . , z,, yl, . . . , ys are linearly independent. Hence we can 
find vectors .z~+~, . . . , z,_, with the property that the matrix E in (3.15) is 
invertible. 
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Part (e). In what follows we shall use an argument of the Mobius-trans- 
formation type (cf. [9, Section 31) which will allow us to apply the main results 
from [lo]. For this purpose we need the following matrices: 

c^ = aC( A,, - a)-‘, &= -+(A,+cr)(A,-a)-‘, 

i&= -+(Ac+ cz)(AI- a)-‘, Z! = (AS - a)-%, 

f= -+(I + crT)(Z - aT)-l, s^ = - +(I + aS)(Z - cxS)_‘, 

Ei = (I - as)-%, F^ = aF(Z - cuT)-‘, 

X= ((Y-A,)X, 2 = Y( cr - A(), 

A,, = -“A,,( I - aT)-‘, i&i = - (Y(Z - ‘~S)-lAai. 

In this part we rewrite the formulas (3.8)-(3.12) in terms of the above 
matrices. 

Consider the Mobius transformation 

2A - 1 1z+a! 
P(h) = U2h+l’ cp-‘(2) = -2z-(y> (3.23) 

and set 

&= {A E @I p(A) E a(A,) U a(Ar) U (0)). 

Note that A^,, = p-‘( A,) and A, = cp-‘( A, ). It follows (cf. [4, Theorem 
5.1.31) that the quintet 

(3.24) 

is a &-admissible Sylvester data set. From (3.8) and (3.9) it is straightforward 
to derive the following identities: 

PA7 - fpv = tic^ + &,I-, (3.26) 
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which imply that 

ki,,( z - p{) = ( p, A, - s”p, - EjF)r+. 

From (3.10) one obtains that 

(3.30) 

The matrices X and Y defined by (3.11) and (3.12), respectively, are the 
unique solutions of the following Stein equations: 

A,XT - X = A,,, SYA, - Y = A,,. (3.31) 

From these identities one may derive that X and Y^ satisfy Sylvester equa- 
tions, namely 

To see this, let us check the first identity in (3.32). We have 

z -a(A,- c+‘(cA,)X-((Y-A,) 

xX{-aT(Z - aT)-‘} 

= (ax - a2XT + a”XT - crAA,XT)(Z - aT)-’ 

= a( X - A,XT)( Z - aT)-’ 

= -“A,,(Z - aT)-1 = &. 

The second identity in (3.32) is checked in a similar way. 
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Part cf. In this part we come to the matrix function W(o) appearing in 
the theorem. Note that a(S) = U(F) = {- i] and - f@ 6. The two 
identities inn(3.27) tell us (using the terminology introduced i,n Section 2 of 
[lo]) that (S, H) is a zero correction pair for ? and that (F, 7’) is a pole 
correction pair for ?. It follows that we can apply Theorem 2.1 in [lo] to show 
that 

is a minimal complement of ?. Let W(s) be the m X m rational matrix 
function which is analytic at infinity, has the value I,,, at infinity, and has 
? @ F, as its global null-pole triple. By Theorem 2.2 of [lo] we have 

$(A) = z, + C”(h - Lq(rr, - qj)S + %3} 

+(-cs - $)(A - f)-lpcB^, 

G(h)-’ = z, - ((cqry, - x^pJ - $pJ(h -l&p 

- c177,( A - S)_l( -% + Ei), 

where rfi : Xl + X, is fmed by the identities 

,. 
rry, =I-v~P~+~xP~, fu:, = off + P, 2~~ - rl 4. (3.34) 

The identities in (3.34) imply that 

r:, = p,rr, + (I - p,)rr, = p,r:, + r+rr; 

= 77,$ + pTips - bp, + r+- r+9pl + (I- P~)~P< 

=r++ 77,Y^+x^pg-rlpc 
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It is now straightforward to check that 

W(‘P-i(h)) = Z, - (A - o)C(A -A,)-’ 

x([r++(a-A,)Xq-rIq](a-Ac)-lB 

+q,J(Ys - I))‘H) 

+(A - a)[CX(Z - (YT) - F] 

x(Z - AT)-‘p&r -A<)-%, 

and 

91 

lq cp-‘( A))_’ =~+(A-~~)(C((Y-A,)-~[I++~J(~-A~)-I~~~] 

+F(Z - nT)-$<}(A - A,)-‘B 

+(A - cr)C(o -A,)-‘17,(AS -I)-’ 

X[(Z - aS)YB + H]. 

Now, put W(A) = l@(cp-‘( A))E. Then WC.> and W(e)-’ are given by the 
formulas appearing in the theorem. Furthermore, it is not difficult to show 
(cf. [4, Theorem 5.1.31) that r is a C-null-pole triple for W. 

Part (g). Put 

(-a> y-a~ d 
ja 7 

k=l ?**‘) ffj> j=l ,...,t; 

(3.35) 

(3.36) 

In this part we shoy that {d;,}~Sl,~Sl is an outgoing basis for Ker r with 
respect to the pair (C, A, + 5) and that {~j&~ l,i= i is an incoming basis for 
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the complement 
Section 1 of [lo] 

K of Im IY with respect to the pair (iis + i, 5). (See 
&for the terminology.) 

Obviously, {djk)k r,;= 1 i: a basis :f Ker I’. Fix 1 < k < CYST- 1. By 
property (a,), we have A,dj,k+, - adj,k+, + aciik = 0. Since A, + f = 
(Y((Y - A,)-‘, it follows that 

Furthermore, because of property (a,), 

Thus {~jkJ&i~= 1 is a linearly independent set of vectors in Ker lY n Ker c^. 
On the other i: and 

b& = aC( A, - a)-‘dja, = -zj. 

Since the vectors zi, . . . , z, are linearly independent [see part (d)], we may 
conclude that {d;k)>z-,f:_, is a basis of Ker C n Ker IY, as desired. 

Next, we turn to the vectors & defined by (3.36). Obviously, { gjk}r~ l.y= 1 
is a basis for K. We put iji, o,+ I = 0. One computes that 

(a -A<)Zj,k+l - asiijk E Im(cx - A# + Im B, l<kaoj-ll. 

Since kc + i = a( CK - As>-‘, we conclude that 

(Al + $)gjk - gjj,k+l E Im r + Im 6. (3.37) 

Note that gj, w = (- l)W,‘lor V’gj, w E Im I + Im B. It follows that (3.37) 
holds for k = TL, . . . , wj, Since ’ 

ijl= 2 cPgjv = 3 a”+Y1gjl = (I - “T)-‘g,,, j = l,...) s. 
v=l l/=1 

we see from (3.14) that 

gjil - IGjj E Im r, j = l,...,s. (3.38) 
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We already know [see part (d)] that the vectors I&,, . . . , 6ys are linearly 
independent Amodulo Im r. Thus (3.38) shows that ilr, . . . , isI are vectors in 
Im r + Im B which are linearly independent modulo Im p. On the other 
hand the vectors { gjjk}$ 2,J= i are linearly independent modulo Im I + Im B. 
Indeed, assume 

s 0, 

C CAjkijjkEImr+Imi, 
j=l k=2 

where hjk are complex numbers. Since I! = (AC - cxplB and (& + i)-’ 
=cY -‘(a - AC), we see from (3.17) and (3.37) that 

s Y 
c c #ijk&k_I E h r + Im B. 

j=l k=2 

Recall that {g .w )J”= 1 
r:’ 

is a basis of Im r + Im B modulo Im r. So there exist 
complex num ers /.~r, . . . , /.L~ such that 

'jk gj. k - 1 - pj gjw, E K n Im r = {O}. 

Now use (3.36) to conclude that the coefficient of gjl in the left-hand side of 
the previous formula is equal to Aj2, and hence hjZ = 0. Again using (3.36) 
we see that the coefficient of gjZ is equal to oAjg, and so Aja = 0. Proceed- 
ing in this way we obtain that all hjk are zero, and hence the vectors 
{ ijk}r; ?,i=, are linearly independent modulo Im I + Im I?. Since { gjjk& r,i= I, 
is a basis of K, we conclude that z,,, . . . , $,, is a basis of Im I? + Im B 
modulo Im r, as desired. 

Part Ch). In this part we finish the proof. By using arguments 
the ones employed in part (g) one shows that 

(f + +)Zjk = ij,k+Ia k = l,...,wj, &o+l = 0. 
I 

similar to 

(3.39) 

(3.40) 

In particular, the orders of the Jordan blocks of s^ are equtl to the outgoing 
indices oi, . . . , cq, and the orders of the Jordan blocks of T are equal to the 
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incoming indices wr, . . . , 0,. But then we can use the result of Section 4.3 in 
[lo] (see also the end of Section 2 in [lo]) to show that I@(.) factors as 

ti(h) = ti_(A)6(A), (3.41) 

II 
where W_(e) is a regular m X m rational matrix function which does not 
have a pole or zero at - $ and 

y=zj, j=l,..., t, 

z5(A)y = ( y, y =zj, j=t+1 ,...,m -s, 

y=yj, j=l,..., s. 

Note that 

b(A)E = E (3.42) 

where K~, . . . , K, are as in the theorem. Now take 

W_(A) = ti_(cp-l(A))ES, 

where 

S = diag( cxU1,. . . , aat, 1,. . . , 1, Co’, . . . , a-“~). 

Then W_(A) is a regular m X m rational *matrix function which is arm&tic 
and invertible at infinity. Since W(A) = W(cp-‘(A))E, we see from (3.41) 

. and (3.42) that 

W(A) = W-(A) 

which completes the proof. 
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The proof of Theorem 3.2 will be given in Section 5. It requires some 
auxiliary results which we present in the next section. 

4. AUXILIARY RESULTS ON OBSERVABLE PAIRS AND 
ON CONTROLLABLE PAIRS 

Let (C, A) be a pair of matrices, where A is n X n and C is m X n, such 
that (C, A) is observable. We write or > 0.. > aYt > 0 for the nonzero 
observability indices of (C, A). 

PROPOSITION 4.1. Let (S, H) be a pair of matrices, where S is n X n 
and H is n X m, such that 

(i) A - HC = S, 

(ii) S is nilpotent. 

and assume that the Jordan blocks in the Jordan normal form of S have or&r-s 

ff1,. . . > a,. Then there exists a basis {Zjk}9: l,f= 1 of C” such that 

i:i p;“‘; y$,,+,, k = 1, *.*> aj - 1, 
e,k >= I,j= 1 zs a basas for Ker C, 

(Pa) SZjk = e’. ~, k + r, k = 1, . . . , aj, where Zj, a,+ 1 = 0. I 

For the proof of Proposition 4.1 we need a lemma. Consider the following 
2 X 2 block matrix: 

(4.1) 

where A, is a nilpotent Jordan matrix of order m,l which consists of m, 

Jordan blocks N of size 1 X 1, and A, = Nl @ 0.. @ Nm,, where for v = 
1 >a.-> m2 the matrix N, is a nilpotent Jordan block of order 1, < 1. Further- 
more, 

(4.2) 
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where for each i and j the entry Uzj is a matrix of size 1 X lj which has the 
following form: 

j; 1:: ; ;]. (4.3) 

Let d,,, . . . , dll, d,,, . . . , dzl,. . . , d,,, 1,. . . , dml,[ be the first m,Z basis vec- 
tors of C” (partitioned according to the partitioning of A, = N @ 0-e CD N). 

LEMMA 4.2. Let A in (4.1) have the properties described in the previous 

paragraph, and assume that A’ = 0. Then there exists a matrix F of size 

m,Z X (I, + ..* +Em2) such that 

and 

cspan(djkIk=l ,..., I-l,j=l,... ,m,}. (4.5) 

Proof. The (1,Z)th block entry of Ap is equal to 

p-1 

c A;M,,A,P-I-“. 
v=o 

(4.6) 

Since A’ = 0, the matrix in (4.6) is zero for p = 1. But then we can use 

A, = N CB -.. @ N, A, = N, @ .-. $ Nm, (4.7) 

and (4.2) to conclude that for i = 1,. . . , m, and j = 1,. . . , m2 we have 

l-l 

c 
N”U..N.l-l-” = 0. 

23 3 (4.8) 

v=o 

Now fK i and j, and let ZL~ be the kth entry in the last column of Uij. We 
claim that 

uy = 0 k = l,...,Zj. (4.9) 
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To see this, recall that Njlj = 0 and lj < 1. Thus (4.8) may be rewritten as 

Z-l 

c jV’fJjN;-l-y = 0. (4.10) 
v=z-l I 

Multiplying a matrix on the right by Nj removes the first column, moves all 
other columns one step to the left, and sets the last column equal to zero. 
Thus the first column of U,jNJ~-l is precisely the last column of qj. For 
v > 1 - lj the first column o I Ui Njl-l-u is equal to zero. Multiplying a 
matrix on the left by N removes t h e last row, moves all other rows one step 
down, and sets the first row equal to zero. It follows that the first column of 
the left-hand side of (4.10) is given by 

(0 . . . 0 u;j . . . u;;)‘, 

where r denotes the transpose. Hence (4.10) implies (4.9). 
Note that (4.4) is equivalent to 

A,F - FA, = M,,. (4.11) 

Write F = (Fjj),m_ll,Jril, where Fj. is a matrix of size 1 X lj. From the special 
form of A, and A, [see (4.7)] and (4.2) ‘t f 11 1 o ows that (4.11) may be rewritten 
as 

NFij - FijNj = CJj (i = l,..., m,, j = l,..., VQ). (4.12) 

Now choose Fij to be the following 1 X 1, Toeplitz matrix 

Fij = 

0 

(4.13) 



98 J. A. BALL ET AL. 

Then Fij satisfies the equation (4.121, by virtue of (4.91, and thus (4.4) is 
fulfilled with F = (F. .>? ? ‘I 1 _ 1 3 _ 1, where Fij is given by (4.13). Since the last row 
of Fij is zero for each i and j, the inclusion (4.5) holds. n 

Proof of Proposition 4.1. The proof is divided into five parts. In parts 
(b)-(e) we take A = S, and in part (a) we justify this additional assumption. 

Part (a). Since A - HC = S, properties (P,) and (Ps) together imply 
(P,). Furthermore, (C, S> is an observable pair, and the observability indices 
of the pair (C, S> coincide with those of (C, A). Therefore, in order to prove 
the proposition, we may without loss of generality assume that A = S. 

Part (b). Since (C, A) is observable, we may (see [lo]) choose a basis 
{ejk}$= i,i= i of Cc” such that (Pi) and (P,) hold true for e .k. Relative to the 
basis { ej&= I f = 1 the transformation A is represented by t $n e block matrix 

where 

Nji = 

A= 

0 0 * 

1 * 

1 : 

\ 

,Nij = [; 1:: % i] (i Zj). 

For each i and j the matrix Nij has size (Y~ X aj. The *‘s denotes entries 
which we don’t specify further, and the blank spots in Nii stand for zero 
entries. 

Let 1 i,. . . ,1, be the diff erent numbers in the sequence (pi > **. > cr, > 
0, and let mi be the number of times Zi occurs in the sequence oi, . . . , at. 
Thus 

{a1 )...) a,} = ( I, )...) z,,z, )...) 1, )..., !r’.+ , 
-w I 

ml 7% m, 

9 + *.. +m, = t. 
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Since A = S, we have A’1 = 0, and therefore Aej, = 0 for j = 1,. . . , ml. 
Thus 

J 

‘0 . . . 0 0’ 

ATi= l . 0 . > i = l,...,m,, 

\ 1 0, 

Nij = 0, i = l,...,m,, j=l , . * * > t, j # i. 

Put J1 = N,, @ ... @ N,,,,,. Then 

where 

A, = 

N m,+1,m,+1 **- N m,+l,t 

N * t,VL*+1 0.. N, t 

(4.14) 

Part cc). Since A is nilpotent, we see from (4.14) that the same holds for 
A,. We claim that A”,2 = 0. To see this consider 

By our assumption on the Jordan normal form of A we have rank A”2 = (I, 
- Z2>m,. Also, rank A’2 = (I, - Z,)m. It follows that 

Im 

which shows that Al2 = 0 2 . 

Part Cd). Since A> = 0, w e may repeat the reasoning in the last 
paragraph of Part (b) with A, in place of A. It follows that 

/O . . . 0 0’ 
1 0 

Nji= . * > i =m, + l,...,m, +m,, 

\ 1 0, 

Nij = 0, i=m,+l,..., m,+m,, j=m,+l,..., t, j#i. 
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Then 

From (4.15) it is clear that A, is nilpotent. We claim that At = 0. Indeed, 
consider 

A’3 = 
‘x3 B, B2 

0 J2 % 

0 0 A$ 

By our conditions on the Jordan normal form of A we have 

rank A’3 = (Z1 - I,)m, + (1, - 13)m2. 

On the other hand, rank J:3 = (2, - l&n,, and rank 113 = (II - Z&n,. It 

(4.15) 

follows that 

Im 

and therefore A”,3 = 0. 

Part (e). Proceeding in this way, we see that 

A= (4.16) 
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where Ji is a nilpotent Jordan matrix of order m,Zi which consists of mi 
Jordan blocks of size li X Ej (i = 1,. . . , r). Moreover, for 

Aj = 

we have A: = 0. 
Now apply Lemma 4.2 to the block matrix 

This allows us to find an invertible linear transformation V, on @” such that 
relative to the basis {V,e,,}&,;=, the matrix A has again the block form 
(4.16), but now with M,_ 1, r =‘O. The inclusion (4.5) shows that V, may be 
chosen in such a way that V, leaves Ker C invariant. In particular, 

IV,ejkl&l,f= 1 1s a am a basis of Ker C. Pass to this new basis of C”, and g . 

apply Lemma 4.2 to the block matrix 

partitioned as a 2 X 2 block matrix in the indicated way. We find an 
invertible linear transformation V, on @” that leaves Ker C invariant and is 
such that relative to the basis {V, ejk}2: l,J, 1 the matrix A has again the block 
form (4.161, but now with 

My,,. = 0, M,_2,r-l = 0, M,_2,r = 0. 

Proceeding in this way, we find an invertible linear transformation V on C” 
such that 

ejk - = Vejk, k=l )..., a. ,’ j=l,..., t, 

has the desired properties (Pi), (P,), (Pa) for A = S. n 
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Proposition 4.1 has a natural analogue for controllable pairs. Let (A, B) 
be a pair of matrices, where A is n X n and B is n X m, such that (A, B) is 
controllable, and let oi 2 *em 2 w, > 0 be the nonzero controllability in- 
dices of (A, B). 

PROPOSITION 4.2. Let (F, T) be a pair of matrices, where T is n x n 
andFismXn, suchthat 

(i) A - BF = T, 

(ii) T is nilpotent, 

and assume that the Jordan blocks in the Jo&an normal form of T have 
orders wl,. . . , w,. Then there exists a basis (J,}~L l,J= 1 of C” such that 

@I’, ;‘f;k -f;J+l E ImB, k = I,..., Oj> wheref;,,,+1 = 0, 
u,..., f Sl isabasisofZmB, 

(Q:) T&k =&,;+I> k = I..., oj, where fi, a,+1 = 0. 

Proposition 4.2 may be derived from Proposition 4.1 by using a duality 
argument, or one may prove it by using the same type of arguments as were 
used in the proof of Proposition 4.1. We omit the details. 

5. PROOF OF THEOREM 3.2 

Throughout this section T = (C, A,; A,, B; I’) is an admissible Sylvester 
data set, and V(o) is an arbitrary regular m X m rational matrix function 
which has r as its @-null-pole triple and which is column reduced at infinity. 
Our aim is to show that V may be constructed via the method of Theorem 
3.1. The proof is divided into five parts. 

Part (a). In this part we show that among all regular rational matrix 
functions having r as C-null-pole triple, those which are also column reduced 
at infinity have the minimal possible McMillan degree. This fact may be 
derived from Theorem 3.3 in [5], where a more general result for nonregular 
rational matrices is given; here we present a direct proof for the regular case. 

We write deg V for the McMillan degree of V. Theorem 1.1 implies that 

deg V = order A, + c ~~ = order A, + c - Kj, 
K,>O K, < 0 

(5.1) 

where K~, . . . , K, are the column indices of V. Let W be the m X m regular 
rational matrix function defined in Theorem 3.1. Since V and W have the 
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same @-null-pole triple, there exists (cf. [3, Theorem 4.5.81) a unimodular 
matrix polynomial U(h) such that V(A) = W( h)U(A). According to Theorem 
1.4 this implies that up to a reordering V and W have the same column 
indices. So 

C K~= ko,=dimK, c - ~~ = 5 ffj = dim Ker I. 
K,> 0 j=l K, < 0 j=l 

Here we use the notation introduced in the second and third paragraphs of 
Section 3. It follows that 

degV=dimXr+dimXS-rankr. 

Thus (see [3, Theorem 4.5.11) the function V’(e) is of minimal McMillan 
degree among all regular m x m rational matrix functions which have r as 
@-null-pole triple. 

Part (b). Choose r.r E C such that (3.1) holds. Let cp be given by (3.23), 
and let F be defined by (3.24). Consider 

V(A) = V(cp(A))E-‘, (5.2) 

where E = V( cu). Our ckoice of (Y implies that V(s) is analytic at (Y and 
V(a) is invertible. Thus V(e) is well defined, I’(.> is analytic at infinity, and 
V(QJ) = I,. Put 

G = {A E @ 1 p(A) E CT( A,) U CT( As) U {O}}. 

By applying [3l, Th eorem 5.1.3, and similarity transformations in the spaces 
Z= and q we see that + is a G-null-pole triple for Q;(.>. Since q( - i) = ~0, 
we may choose a { - +)-admissible Sylvester data set Q, such that ? @ !a is a 
global null-pole triple for G. By the result of part (a) the function V is of 
minimal McMillan degree among all regular m X m rational matrix functions 
which have ? as &-null-pole triple. Thus i, is a minimal complement (see [9, 
Section 21) of +. 

Part cc). By the second part of Theorem 2.1 in [lo], every minimal 
complement of ? is similar to a minimal complement of 4 obtained via the 
construction described in the first part of Theorem 2.1 in [lo]. So without loss 
of generality we may assume that 
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Here (s^, g ) is a zero c_orrection_ pair for + and ( F”, 9) is a pole correction pair 
of ?, such thtt a(S) = a(T) = {- i}. The linear transformations X: 
K + Pm and Y: q + Ker I are the unique solutions of the Lyapunov 
equations 

where A*,,: K + Zq 
satisfy the identities 
K + Ker F. Finally, 

and Al,,: 3 * Ker I are linear transformations which 
(3.28), (3.291, and (3.30) for some linear operator rl: 

Since V is co$mn reduczd at infinity, ? is column reduced at - j. Hence 
the matrices S + i and T + i*are nilpotent, the orders of the Jordan blocks 
in the Jordan normal form of S + i coincide with the absolute valyes of the 
negative column indices of V, and the sizes of the Jordan blocks of T + i are 
equal to the positive column indices of V. Now recall [see part (a)] that up to 
a reordering V and W have the same column indices. Furthermore, we may 
yse the description of the column indices of W given in Theorem 3.1. So 
S + $ is nilpotent, and the orders of the Jordan blocks i? its Jorda; normal 
form are equal to the observability indices of the pair (C lKer r, p, A,, 1 ker r>. 
Similarly, T + f is nilpotent and the orders of the Jordan blocks i? its Jord$n 
normal form are equal to the controllability indices of the pair ( pi A, I K, pc B 1. 

Part (d). ,. * In this part we apply Propositions 4.1 and 4.2. We know that 
(S, H) is a zero correction pair for ?. Hence 

The result of the previous part for s^ 
So Ker r has a basis {+jk}>=l,f= i 
Ker c^ n Ker F and 

+ $ allows usAt apply Proposition 4.1. 
such that (djk}>=-lfj= 1 is a basis of 

(s^+ +)c& = dj,,,, k = l,..., crj, (5.5) 
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where d:, a + i = 0. Since IYA^, - ,$ r = L%, the operator A^, maps Ker c^ 
n Ker r into Ker l7. Thus (5.3) remains true if p, in (5.4) is deleted. In 
other yor$s, {&},a, i,f= i is an outgoing basis for Ker r with respect to the 
pair (C, A, + 6). _ _ 

Next, we use that (p, y> is a pole correction pair of 4. so 

The result of the previous part for f + i allows us to apply Proposition 4.2. 
So K has a basis { &}$ ,,J= , such that ii,, . . . , is1 is a basis of Im pc B and 

(TV + i)$j,k = ij,k+l> k = l,..., wj, (5.7) 

where a^. hJ> W, + 1 = 0. Recall that pL is the proj:ction of q onto K along Im r. 

Thus g^n> . . . , &l is a basis of Im r + Im B modulo Im r and, because of 

(5.6), 

In other words { iik}$‘~ i,,‘= 1 is an incoming basis for K with respect to (A;- 

Part (e). Now put 

d. = ry4-k 
aj - k 

Jk v-k 

(5.8) 

k=l,..., oj, j=l I..., s. 

(5.9) 

It is straightfonvard to check that {d,,}$i,~=i and {gjk)FL i,T= i are bases of 
Ker r and K, respectively, such that properties (a,>, (a,>, (b,), and (b,) hold 
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(see the third paragraph of Section 3). Furthermore, (3.35) and (3.36) are 
valid. Next, define S and T as in (3.2) and (3.31, and put 

H = (I - aS)Zi, F = a-+( I - UT), 

A,, = -&&( Z - aT), A,, = - &(I - as)&, 

X = (a -A,)-?, Y = f(a -A[)-'. 

Then (3.8), (3.91, and (3.10) are satisfied, and the operators X and Y are also 
given by (3.11) and (3.12), respectively. Let V,,(a) be the regular m X m 

rational matrix function given in Theorem 3.1, where the operators appearing 
in the paragraphs preceding Theorem 3.1 are defined as above, The argu- 
ments given in the proof of Theorem 3.1 show that 

%(A) := vo(cpw)vo(~)-l 

is a regular rational matrix function which is analytic at ~0, has the value I,,, at 
~0, and has + @ ?a as its global null-pole triple. It follows that V,,(A) = V(h), 
and therefore 

V(A) := V,,(A)V,,(a)-'V(a), 

which completes the proof. n 

6. COLUMN REDUCED MATRIX POLYNOMIALS 

In this section the results of the previous section are specified and 
developed further for matrix polynomials. Let (A, B) be a pair of matrices, 
where A is n X n and B is n X m, such that 

Im(B AB a** A”-’ B) = @“. (6.1) 

Our aim is to parametrize all regular m X m matrix polynomials L(A) for 
which 

(j) L( A) has ( A, B) as its left null pair; 
(jj) L(A) is column reduced at infinity. 
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A regular matrix polynomial satisfying (j) and (jj) has been constructed in 
the papers [2,16] by studying the controllability matrix in the left-hand side of 
(6.1). In these papers a desired matrix polynomial is constructed entrywise. In 
the present paper all regular matrix polynomials satisfying <j> and <jj> are 
obtained explicitly in realized form. 

Let oi > *** > w, be the positive controllability indices of the pair 
(A, B). From the Brunowski canonical form of (A, B) (see [14]) it follows 
that we may choose a basis { gjk& i,i= r in @” such that 

(c,) {gJw >I”+ is a basis of Im B; 
Cc,> Agjlkcl - gjk E Im B, k = 0,. . . , wj - 1, where gj, := 0. 

With the basis {gjk)TL i,J= i we associate the operator T: C” + @” defined by 

k = l,..., oj - 1, 

k = wj. (6.2) 

Note that Im(AT - I) c Im B, and hence there exists an operator F: 
C” 4 C” such that 

AT + BF = 1. (6.3) 

Next, choose a complex number CY that is not an eigenvalue of A. From 
the definition of T in (6.2) it follows that 

Since T is nilpotent, I - CYT is invertible and thus 

(I-aT)-‘gjl= 2 a “- ‘gj, ) j=l >*.*> s. (6.4) 
v=l 

The latter equality implies that 

(~-A)(Z-(YT)-‘~~~EI~R, j=l,..., s. (6.5) 
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Indeed, substituting (6.4), we get 

(a-A)(Z-aT)-ig,,=(cr-A) c ( v~lffp~l~jv) 

= a”lgjw, + 2 cyy-lAgj,U_i - 2 CIAgjy 
v=l v=l 

= ff m’gjw, - 2 au-l 
CAgjv - gj,v-l>, 

v= 1 

where gjo = 0. By properties (cl> and (c,> of the basis {gjk}$ l,j= 1 we obtain 
the desired formula (6.5). From (6.5) we can get vectors yl, . . , , yS in C” 
such that 

Byj = (a - A)( Z - ‘yT)-‘gjl, j=l > a..> s. (6.6) 

Since the vectors g,,, . . . , g,, are linearly independent, the same must be 
true for the vectors yl, . . . , yS (because QI - A and I - (YT are invertible). 
We may extend yi,..., yS to a basis of C” by choosing yS+ 1, . . . , ym so that 

{YS, 1,. *. ) YmJ is a basis of Ker B. Finally, let the operator V: @” -+ C” be 
defined by 

Vej = yj, j=l I . * * , m, (6.7) 

where the vectors e,, . . . , e, form the standard basis of C”‘. 
We are now ready to construct a regular matrix polynomial satisfying (j> 

and (jj>. 

THEOREM 6.1. Let (A, B) be a pair of matrices such that (6.1) holds. 

Choose a basis {gjk}&JEl such that conditions (c,> and (c,) are fulfilled, 
and let T be the linear transformation defined by (6.21, choose F as in (6.31, 
define V by (6.7), and let a! be the complex number used in the definition of 

V. Then 

0,-l 

L(h) =V+(h-a) c hjFTj(vA)-lBV (6.8) 
j=o 
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regular m X m matrix polynomial satisfying (j> and (jii>. Moreover, the 

nonzero column indices of L( A) are wl, . . . , os. 

Theorem 6.1 may be derived from Theorem 3.1 by applying Theorem 3.1 
to the quintet (0,O; A, B; 01, which is an admissible Sylvester data set with 
ZT = {O}. We omit the details. 

The next theorem asserts that the construction carried out in Theorem 4.1 
yields all regular m X m regular matrix polynomials satisfying (j) and (jj) up 
to a certain invertible constant factor on the right. 

THEOREM 6.2. Let L(A) be a regular m X m matrix polynomial satisfy- 

ing (j> and (jj>. then L(A) may be represented as 

L(A) = D + (A - a)F(Z - AT)-l(czZ - A)-%D, (6.9) 

with cy a complex number which is not an eigenvalue of A and with matrices 

T and F of sizes n X n and m X n, respectively, for which 

AT + RF = I, (6.10) 

T is nilpotent. (6.11) 

Also, there exists a basis {g.k}&f=l of C” such that conditions (c,), (c,) 
are fulfilled, (6.2) holds, and 

D = VR, (6.12) 

where V is given by (6.7) and R is a constant invertible matrix whose (i, j)th 
entry is zero whenever wj < q. 

Theorem 6.2 may be proved in the same way as Theorem 3.2. Details are 
omitted. Note that the statement about the entries of R is an immediate 
consequence of Theorem 1.4. 

Theorems 6.1 and 6.2 develop further the results in Section 2 of [12]. In 
particular, Theorem 6.1 shows that the matrix polynomial constructed in 
Theorem 2.1 of [12] is column reduced up to an invertible constant on the 
right. 
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