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In this paper, with the help of super-solutions and sub-solutions, we set up a general
framework and get a positive threshold Λ for solution existence and non-existence of
a class of semilinear elliptic Dirichlet boundary value problems. Moreover, a result on
multiplicity is obtained when λ is large enough. We also give a numerical method to solve
and visualize the positive solutions of the problem. Theoretical results are illustrated by
numerical simulation.
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1. Introduction

In this paper, we consider the following semilinear elliptic boundary value problem (BVP)
1u(x) + λf (x, u(x)) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where λ > 0 is a parameter, Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and f ∈ C1(R, R) satisfies the
following hypotheses:

(H1) f (0) = 0,
(H2) f ′(0) = 0,
(H3) f ′′(0) < 0,
(H4) There exists β > 0 such that f (u) < 0 for u ∈ (0, β) and f (u) > 0 for u > β ,
(H5) f is eventually increasing and limu→∞ f (u)/u = 0.

Let F(u) =
 u
0 f (s)ds, the energy functional Iλ : H1

0 (Ω) → R associated with problem (1.1) is defined by

Iλ(u) =
1
2


Ω

|∇u|2dx − λ


Ω

F(u)dx. (1.2)
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The theoretical analysis and numerical results of multiple solutions to nonlinear equations of the form

1u(x) + f (x, u(x)) = 0, (1.3)

have been studied extensively by scientists.
In its theoretical aspect, Fowler [1] and Chandrasekhar [2] take the lead in studying the power type

1u + up
= 0 in Ω, u = 0 on ∂Ω,

which is the simplest, and yet the most basic form of nonlinearity. The recent works are [3,4], etc.
Henon [5] studied the stability of rotating stellar structures and proposed the equation

1u + |x|lup
= 0, in Ω, u = 0 on ∂Ω,

with p > 1, l > 0.
Lieb and Yau [6] considered Chandrasekhar’s theory of stellar collapse. They showed that the Chandrasekhar equation

for the white dwarf problem without the general relativistic effect is equivalent to the following equation

1u + 4π(2u + u2)3/2 = 0, in BR.

In view of the combined effects of superlinear and sublinear terms, Ambrosetti [7] considered the concave and convex
nonlinearities

1u(x) + λu(x)q + u(x)p = 0, in Ω, u = 0 on ∂Ω,

with 0 < q < 1 < p.
In the computation aspect, for Eq. (1.3), there are 6 different numerical methods for computing such kinds of problems,

as listed below:

(i) The Monotone Iterative Scheme (MIS) [8,9]: MIS is also called the barrier method or the method of super- and sub-
solutions. It is a general, constructive method for finding stable solutions of semilinear elliptic equations.

(ii) The Mountain Pass Algorithm (MPA) [10]: MPA was proposed by Choi and McKenna to compute the solutions with the
Morse Index (MI) 0 or 1.

(iii) The High Linking Algorithm (HLA) [11]: Ding, Costa and Chen established HLA for the sign-changing solution (MI = 2)
of semilinear elliptic problems.

(iv) The Min–Max Algorithm (MMA) [12,13]: Li and Zhou designed MMA to find multiple saddle points with any Morse
index which is more constructive than the traditional min–max theorem.

(v) The Search Extension Method (SEM) [14,15]: Chen and Xie proposed SEM, which searches the initial guess based on
the linear combination of the eigenfunctions of the linearized problem and then gets a better initial guess by the
continuation method for the discretized problem with the finite element method.

(vi) The BifurcationMethod (BM) [16–18]: BMwas proposed by the authors. Themethod can compute not only a number of
symmetric solutions of (1.3) as SEMdoes, but also various nonsymmetric solutions [16]. On the other hand, the difficulty
in searching the initial guess in other methods can be solved effectively by the bifurcation method. Some publications
also appeared in [19–22], which are concerned with the numerical computation of bifurcations and path following
methods for nonlinear parameterized equations.

In this paper, we consider (1.1) under hypotheses (H1)–(H5). Our main results are as follows.

Theorem 1.1. Let (H1)–(H5) hold. Then there exists a Λ1 ∈ R, Λ1 > 0 such that for all λ ∈ (0, Λ1), (1.1) has no positive
solution.

Theorem 1.2. Let (H1)–(H5) hold. Then there exists a Λ ∈ R, Λ > 0 such that for λ = Λ, (1.1) has at least one weak solution
u ∈ H1

0 (Ω).

Theorem 1.3. Let (H1)–(H5) hold. Then there exists a Λ2 ∈ R, Λ2 > 0 such that for all λ > Λ2, (1.1) has at least two positive
solutions.

The rest of the paper is organized as follows. Section 2 is concerned with theoretical analysis, we will give the proofs of
Theorems 1.1–1.3 in this section. Section 3 is about computation, we shall give the numerical method for solving (1.1) which
satisfies (H1)–(H5) and visualize the numerical solutions with an example f (u) = u2(u − 2)e−u2 . Finally, Section 4 gives
some conclusions.

2. Proof of theorem

First of all, we will give the following lemmas which will be used to prove Theorems 1.1–1.3.
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Lemma 2.1 ([23]). Suppose there exists a sub-solutionΨ1, a strict super-solutionΦ1, a strict sub-solutionΨ2 and a super-solution
Φ2 for Eq. (1.1) such that Ψ1 < Φ1 < Φ2, Ψ1 < Ψ2 < Φ2 and Ψ2 ≰ Φ1. Then Eq. (1.1) has at least three distinct solutions
us(s = 1, 2, 3) such that Ψ1 ≤ u1 < u2 < u3 ≤ Φ2.

Lemma 2.2 ([24]). Let g be a C1 function such that g(0) < 0, g(u) > 0 and g ′(u) > 0 for u > σ for some σ > 0 and
limu→∞ g(u)/u = 0. Then the boundary value problem −1u = λg(u) in Ω, u = 0 on ∂Ω has a positive solution uλ for λ large.
Further ∥uλ∥∞ → ∞ as λ → ∞.

Lemma 2.3. Let (H1)–(H5) hold. Then there exists a Λ2 ∈ R, Λ2 > 0 such that for λ > Λ2, (1.1) has a positive solution uλ.

Proof. Let e denote the unique positive solution of

− 1e = 1, in Ω, e = 0 on ∂Ω. (2.1)

Then there exists Φ2 = Mewith M > 0 satisfying

M ≥ λf (M∥e∥∞),

because of limu→∞ f (u)/u = 0 and f is eventually increasing.
As a consequence, the function Φ2 = Me is verified

− 1Φ2 = −1Me = M ≥ λf (Me) = λf (Φ2), (2.2)

and hence Φ2 is a super-solution of (1.1).
Next consider a C1 function g as in Lemma2.2 such that g(u) < f (u), ∀u ≥ 0. This is clearly by the hypotheses (H1)–(H5).

Let Ψ2 be a positive solution for large λ described in Lemma 2.2 of the BVP:

− 1u = λg(u) in Ω, u = 0 on ∂Ω. (2.3)

Then

− 1Ψ2 = λg (Ψ2) < λf (Ψ2), (2.4)

and hence Ψ2 is a strict sub-solution of (1.1) for λ large enough.
Now choosing M large enough so that Ψ2 < Me = Φ2, which is possible since e(x) > 0 for x ∈ Ω and ∂e/∂n < 0 for

x ∈ ∂Ω where n denotes the outward normal.
It follows that (1.1) has a solution

Ψ2 ≤ uλ ≤ Φ2 (2.5)

for λ > Λ2. �

Now we prove Theorems 1.1–1.3.

Proof of Theorem 1.1. Let the principal eigenvalue of

− 1v(x) = λv(x) in Ω, v(x) = 0 on ∂Ω, (2.6)

be denoted by λ,v(x) denotes the corresponding eigenfunction satisfyingv(x) > 0 in Ω and ∥v(x)∥2 = 1. Let u(x) be
a positive solution of (1.1). We multiply equality (2.5) by u(x) and from the result obtained we subtract equality (1.1)
multiplied byv(x). As a result, we get

Ω

{λf (u) −λu}v(x)dx = 0, (2.7)

which is easily deduced by applying Green’s identity and the boundary conditions.
From f (0) = 0, f ′(0) = 0 and limu→∞ f (u)/u = 0, there exists K > 0 such that f (u) < Ku, ∀u ≥ 0. Let Λ1 ∈ R, Λ1 > 0

be small enough, we will haveλ/λ > K for λ < Λ1, which conflicts with (2.6). Hence (1.1) has no positive solution for
λ < Λ1. This completes the proof. �

Proof of Theorem 1.2. A weak solution of problem (1.1), u ∈ H1
0 (Ω) satisfies the following variational equation

Q (u, v) ≡ (∇u, ∇v) − λ(f (u), v) = 0, ∀v ∈ H1
0 (Ω). (2.8)

From Theorem 1.1 and Lemma 2.3, we know that (2.7) has no positive solution for λ < Λ1 and at least one positive solution
for λ > Λ2. Then there exists Λ1 < Λ < Λ2, (1.1) has at least one weak solution u ∈ H1

0 (Ω) since f is C1. �
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Proof of Theorem 1.3. Consider Φ1(x) = εv(x), wherev(x) is as defined in (2.5). Now H(t) = λt − λf (t) > 0 for small
positive t since f ′(0) = 0 and f ′′(0) < 0. Thus

− 1Φ1 = λεv(x) > λf (εv(x)), (2.9)

if ε > 0 is small and hence Φ1(x) is a strict super-solution of (1.1).
Clearly Ψ1 ≡ 0 is a solution to (1.1). Now we have two sub-solutions Ψ1, Ψ2 and two super-solutions Φ1, Φ2 from the

analysis above and Lemma 2.3. Further, we can obtain Ψ1 < Ψ2 < Φ2 from Lemma 2.3 and Ψ1 < Φ1 < Φ2 while using the
method similar to Lemma 2.3. Now applying Lemma 2.1, there exist at least two distinct positive solutions for λ large which
easily follows. �

3. Numerical algorithm

3.1. Numerical method

In this section, we will use BM to solve numerical solutions of (1.1) with Ω ⊂ R2 under hypotheses (H1)–(H5). The
method discussed in this section, which is used to find zeros of function f , is Newton’s method with the following equation:

xn+1
= xn −

F(xn)
F ′(xn)

. (3.1)

The following theorem is used to show sufficient conditions under which Newton’s method converges to a solution.

Theorem 3.1 ([25]). Let D ⊂ Rn be open and convex and let F : D → Rn be continuously differentiable. Assume that for some
norm ∥ · ∥ on Rn and x0 ∈ D the following condition holds:

(a) F satisfies

∥F ′(x) − F ′(y)∥ ≤ γ ∥x − y∥

for all x, y ∈ D and some constant γ > 0.
(b) The Jacobian matrix F ′(x) is nonsingular for all x ∈ D, and there exists a constant β > 0, such that

∥F ′(x)−1
∥ ≤ β, x ∈ D.

(c) For the constants

α := ∥F ′(x0)−1F(x0)∥ and q := αβγ

the inequality

q <
1
2

is satisfied.
(d) For r := 2α the closed ball B[x0, r] := {x : ∥x − x0∥ ≤ r} is contained in D.

Then F has a unique zero x∗ in B[x0, r]. Starting with x0 Newton iteration

xn+1
= xn −

F(xn)
F ′(xn)

, n = 0, 1, . . .

is well-defined. The sequence {xn} converges to the zero x∗ of F , and we have the error estimate

∥xn − x∗
∥ ≤ 2αq2

n
−1, n = 0, 1, . . . .

We embed (1.1) into the nonlinear bifurcation problems with parameter λ̃ of the following form:
1u(x) + λ̃u(x) + λf (u(x)) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(3.2)

Considering the linearized equation of (3.2) at u = 0, we get
1ϕ(x) + λ̃ϕ(x) = 0, x ∈ Ω,
ϕ(x) = 0, x ∈ ∂Ω,

(3.3)

because of f (0) = 0. It is well known that (3.3) always has a trivial solution. Furthermore, eigenpairs {λj, ϕj} satisfying (3.3),
where the eigenvalues are 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞, and the corresponding eigenfunctions {ϕj}

∞

1 form a
complete normalized orthogonal system S∞ satisfying ⟨ϕi, ϕj⟩ = δij, where δij is a Kronecker’s symbol.
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Fig. 1. Predictor–corrector method to calculate the untrivial solution branch with parameter λ.

To compute the positive solutions of (1.1), we consider the first single eigenpair {λ1, ϕ1} here. Let F = 1u + λ̃u +

λf (u), X = {u|u ∈ C2(Ω), u|∂Ω = 0}, Y = {u|u ∈ C0(Ω)}, L = ∆ + λ1.
We define the inner product by

⟨u, v⟩ =


Ω

uvdx.

L is a Fredholm self-adjoint operator with index zero, and

N(L∗) = N(L) = span{ϕ1}, (3.4)

where N(L) and N(L∗) are the null space of L and L∗ respectively. Space X and Y have the decomposition

X = N(L) ⊕ M, Y = N(L∗) ⊕ R(L) = N(L) ⊕ R(L),

whereM = R(L) ∩ X, R(L) is the range of L.
Let P be the orthogonal projector from Y to R(L)

Pz = z − ⟨z, ϕ1⟩ϕ1, z ∈ Y .

Eq. (3.2) is equivalent to
PF(τϕ1 + ω, µ + λ1) = 0, τ ∈ R, ω ∈ M, (a)
⟨ϕ1, F(τϕ1 + ω, µ + λ1)⟩ = 0, (b) (3.5)

where µ = λ̃ − λ1, u = τϕ1 + ω. Since PFω(0, λ1) = PFu(0, λ1) = PL = L, and L restricted in M is regular, (3.5)(a) has a
unique solution ω = ω(τ, µ) which satisfies ω(0, 0) = 0 by the implicit function theorem.

Substituting ω(τ, µ) into (3.5)(b) yields

g(τ , µ) = ⟨ϕ1, F(τϕ1 + ω(τ, µ), µ + λ1)⟩ = 0. (3.6)

Then we get

F(ω, τ) = F(τϕ1 + ω, µ + λ1) = 1ω + λ1ω + h(τ , µ), (3.7)

where h(τ , µ) = µ(τϕ1 + ω) + λf (τϕ1 + ω), ω = ω(τ, µ). Eq. (3.2) is transformed into
1ω + (µ + λ1)ω + µτϕ1 + λf (τϕ1 + ω) = 0, x ∈ Ω,
ω = 0, x ∈ ∂Ω,
⟨ϕ1, ω⟩ = 0.

(3.8)

Newton’s method is used to solve the ω and τ , then we get u = τϕ1 + ω. In order to ensure the numerical solution’s
truthfulness and validity, our safeguard here is that we take different spacing h to discretize the region Ω with a uniform
mesh. Here we compute (3.8) with different h, which satisfying 1

h is a rational number or any irrational number. If those
output solutions are all close to each other, we accept them as authentic, otherwise, we reject them.

Asmentioned above,we’ve got the first positive solution of (1.1). The next is to show the second positive solutionwith the
same λ, in order to emphasize the dependence on λ, (1.1) is regarded as (1.1)λ here. Let (u1, λ1) = (uλ1 , λ1) be a solution on
the solution branch of F(uλ, λ) = 0, where F(uλ, λ) = 1u+ λf (u). To get the solution branch, the most obvious parameter
is the control variable λ. Let (u1, λ1) be the predictor point of F(u2, λ2) = 0, we can get the solution (u2, λ2) of (1.1)λ (see
Fig. 1). While the parameter λ has the advantage of having practical significance, it encounters difficulties at the turning
point, where the pulling direction is normal to the branch (see (u3, λ3) in Fig. 2).
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Fig. 2. Pseudo arclength method to calculate the untrivial solution branch with curve parameter s to cross the turning point (u3, λ3).

The solution branch of F(uλ, λ) = 0 can be parameterized by the curve parameter. A general curve parameter is called s.
A parameterization by smeans that the solution of F(uλ, λ) = 0 depends on s:

u = u(x; s), λ = λ(s).

Thismeans pulling the imaginary particle in thedirection tangent to the branch, the turningpoint does not pose problems.
We adjoint to problem (1.1) the arclength normalization equation [26,27]

N(u, λ, s) = u̇∗T (u − u∗) + λ̇∗(λ − λ∗) − (s − s∗) = 0, (3.9)

where (u∗, λ∗) is the solution previously calculated, and u̇∗T , λ̇∗ can be calculated by

u̇∗T
= βv, β ∈ R,

λ̇∗
= β,

where v, β satisfy

F∗

u v = −F∗

λ ,

β =
±1

1 + ∥v∥2
.

From equation F(uλ, λ) = 0 and Eq. (3.9), we get the system:

G(u, λ, s) =


F(u(x; s), λ(s))

N(u(x; s), λ(s), s)


= 0. (3.10)

We can solve the solution branch by Newton’s method. By this way, we can compute the second positive solution of
(1.1)λ which confirms Theorem 1.3.

3.2. Numerical example

In this subsection, we consider an example f̃ (u) = u2(u−2)e−u2 which satisfies hypotheses (H1)–(H5). Besides, we have
F̃(u) =

1
2 (1 − u2)e−u2

=
 u
0 f̃ (s)ds.

In this subsection, we will chose three types of domains for the computation of numerical solutions:

(a) Square Ω = Ω1 = [0, 1] × [0, 1];
(b) Disk Ω = Ω2 = {x ∈ R2

||x − (0, 0)| ≤ 1};
(c) L-shaped region Ω = Ω3 = S1/S2, where S1 = [−1, 1] × [−1, 1], S2 = [−1, 0] × [−1, 0].

The rationale for choosing (a)–(c) is based on the special geometrical and topological features offered by each type of
domains.

For the square, type (a), (3.3) have analytic solutions ϕn,m = sin(nπx1) sin(mπx2) while λn,m = (n2
+ m2)π2, so many

pure and applied mathematicians and physicists are interested in this domain [28].
The disk, type (b), has the strongest symmetry, whereupon the analytic information about nonlinear elliptic equations is

relatively easy.
L-shaped region, type (c): an L-shaped region formed from three rectangles is interesting for several reasons. It is one of

the simplest geometries forwhich solutions of (3.3) cannot be expressed analytically, so numerical computation is necessary.
Furthermore, the 270° nonconvex corner causes a singularity in the solution. Mathematically, the gradient of the first
eigenfunction is unbounded near the corner. Physically, a membrane stretched over such a region would rip at the corner.
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Fig. 3. Solution branch of (1.1) while f (u) = u2(u − 2)e−u2 with different λ on three types of domains.

Fig. 4. The positive solution u of (1.1) on Ω1 with λ = 90 on the branch A1 to B1.

Fig. 5. The positive solution u of (1.1) on Ω1 with λ = 90 on the branch B1 to C1.

This singularity limits the accuracy of finite difference methods with uniform grids. MathWorks has adopted a surface plot
of the first eigenfunction of the L-shaped region of (3.3) as the company logo.

In Fig. 3, the solution branches on three different types of domains: square, disk and L-shaped domains are respectively
drawn by the solid line, the dashed line and the dotted line.

Case (a) Square. Problem (1.1) has no positive solution with λ < 18.5151 and at least two positive solutions with
λ > 18.5151. Two different solutions are displayed in Figs. 4 and 5 while λ = 90. Fig. 4 denotes the solution u of (1.1)
on the branch A1 to B1, with max u = 1.1231, J = −13.7031, ε̃n = 10−5, Fig. 5 denotes the solution u of (1.1) on the
branch B1 to C1, with max u = 0.0713, J = −43.1095, ε̃n = 10−5, where J = J(u) is the energy value of the solution and
ε̃n denotes the relative convergence error from ε̃n = ∥un+1 − un∥ < ε.
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Fig. 6. The positive solution u of (1.1) on Ω2 with λ = 90 on the branch A2 to B2.

Fig. 7. The positive solution u of (1.1) on Ω2 with λ = 90 on the branch B2 to C2.

Fig. 8. The positive solution u of (1.1) on Ω3 with λ = 90 on the branch A3 to B3.

Case (b) Disk. Problem (1.1) has no positive solution with λ < 21.23015 and at least two positive solutions with λ >
21.23015. Two different solutions are displayed in Figs. 6 and 7 while λ = 90. Fig. 6 denotes the solution u of (1.1) on the
branch A2 to B2, with max u = 2.0784, J = −2.9339, ε̃n = 10−6, Fig. 7 denotes the solution u of (1.1) on the branch B2 to
C2, with max u = 0.1501, J = −42.7872, ε̃n = 10−6.

Case (c) L-shaped domain. Problem (1.1) has no positive solution with λ < 37.1125 and at least two positive solutions
with λ > 37.1125. Two different solutions are displayed in Figs. 8 and 9 while λ = 90. Fig. 8 denotes the solution u of (1.1)
on the branch A3 to B3, with max u = 1.8714, J = −4.7302, ε̃n = 10−5, Fig. 9 denotes the solution u of (1.1) on the branch
B3 to C3, with max u = 0.3102, J = −31.0397, ε̃n = 10−5.
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Fig. 9. The positive solution u of (1.1) on Ω3 with λ = 90 on the branch B3 to C3.

4. Conclusion

In this paper, our main work has two aspects:

(i) With the help of super-solutions and sub-solutions, we set up a general framework and get a positive threshold Λ for
solution existence and non-existence. Moreover a result on multiplicity is obtained when λ is large enough.

(ii) With the help of the bifurcationmethod, we solve and visualize themultiple positive solutions of (1.1) under hypotheses
(H1)–(H5). The algorithm can computemore than one positive solution of (1.1), and it can visualize the positive solution
branch of (1.1). Theoretical results are illustrated by numerical simulation.
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