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Let A42 N be a factor-subfactor pair with a faithful normal conditional expecta- 
tion E: M + N satisfying Ind E < +co. Let Ns ME M, 5 M2 s be the Jones 
tower of basic extensions, and E,, : M, + M,_ I be the dual expectation constructed 
canonically from the given E. We prove that, if E: M -+ N is minimal, then so is the 
composition Eo E, 0 0 Ek: M,, + N. Some consequences of this result are also 
presented. 0 1992 Academic Press, Inc 

1. INTRODUCTION 

Motivated by Jones’ index theory [lo] for II ,-factors we have developed 
index theory for general factors in [12, 15, 161. Let us point out that this 
framework naturally appears in the Quantum Field Theory context. Here, 
for a given normal conditional expectation E from a factor onto its sub- 
factor the index value Ind E is defined (so that Ind E does depend on the 
choice of E). 

In the Jones theory the normal conditional expectation E, determined 
by the unique III-trace plays an important role. For general factors it was 
shown in [7, 8, 151, that one can choose a unique normal conditional 
expectation E, satisfying Ind EO = Min,(Ind E) (when Ind E < +a and 
this property does not depend on the choice of E). Various characteriza- 
tions of this minimal E, are known (see 2.3). 

* Supported in part by MURST and CNR-GNAFA. 
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The notion of basic extension is crucial in index theory. Starting from 
a factor-subfactor pair Mz N, one considers the basic extension 
Mi = J,N’JM = (iki, e,), where eN is the Jones projection and JM is the 
modular conjugation associated with M. Repeating this construction, one 
obtains the Jones tower Ns MS M, z M, . . of factors. By setting 
E,=(IndE))‘J,Epl(J,.J,)J,, one obtains the dual expectation from 
M, onto M. Repeating this procedure again, one obtains EZ: M, + M,, 
E3:M3+M2, and so on. 

The purpose of the present article is to show that, if E: M + N is mini- 
mal, then so is the composition EO E, 0 . . . 0 E,: Mk -+ N. After some 
preliminary results in Section 2, we will prove this main result in Section 3. 
By the simple trick of tensoring by a factor of type III,, we will reduce this 
problem to the II, case so that we will be able to use the result in [22]. 
In Section 4 some consequences will be explained. Other consequences will 
be contained in [17]. 

Basic facts on index theory can be found in [3, 10, 12, 15, 16, 191 while 
standard results on the modular theory and type III factors that will be 
needed in the article are treated in [23]. 

2. PRELIMINARIES 

Let Mg N be a factor-subfactor pair with a faithful normal conditional 
expectation E: M -+ N. Throughout we will assume Ind E < +oo in the 
sense of [12, 15, 161. 

2.1. Let cp be a faithful normal state on N, and we set 
+=cpoE~M*+. Since afJN=ay, we obtain the following inclusion of 
von Neumann algebras of type II,: 

This inclusion does not depend on the choice of VE N,+ thanks to 
Connes’ Radon-Nikodym theorem. Note that the dual action {e”},, u on 
fl is exactly the restriction of that { O;M},,Iw on i@. Hence, in what follows, 
we shall simply denote them by (0,} fE Iw. From the construction, the dual 
weight 4 on fi is just the restriction of 4. In particular, $ is semi-finite 
on It. Because of 0” 1 m = a! ( = Ad n(t)) Takesaki’s theorem guarantees 
that there exists a unique normal conditional expectation ,$: fi + fi condi- 
tioned by $. Notice that 8,o ,!? = 80 8, (which follows from the uniqueness 
of g and 4. e1 = 6). As was pointed out in [ 14, 151, k also comes from the 
canonical trace tro (scaled in the usual way under the dual action), and we 
have trmai= trm. 
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As usual we regard N( z x(N)), M( z n(M)) as subalgebras of & and fi, 
respectively. We claim that the restriction of i?: I@ + fi to M is precisely 
E: M + N. In fact, for x E M we compute 

cj &(x,jrn y(t)qt)dt =I+5 
( > ij 

‘L xy(t) i,(t) dt 
-cc --1 i 

= $(xy(O)) = cp(E(x) Y(O)) 

=@ 
( 

ECx,j” y(t)4t)dt , 
~ m > 

where sroc y(t) n(t) dt is a “smooth” element in fi. We thus get 

u, I? x(t) n(t) dt = j= E(x(t)) n(t) dt 
> 

(x(t) E M). (1) 
~4 ~~ x 

Let M, ( = J,N’J,,,,) be the basic extension of Mg N, and E, 
(= (Ind E))’ J,E-‘(J,.J,) J,): M, -+ M be the dual expectation. 
Repeating the argument so far for E,: 44, + M, we also obtain 
(M,)’ = ML x1, I$! relative to the modular automorphisms associated with 
+oE, and E,: (M,)’ +fi. 

To identify (M,)” with the basic extension of fiz fl, we use the next 
lemma. 

LEMMA 1. Let F be a normal conditional expectation from a von 
Neumann algebra B onto its subalgebras C. Assume that A( 2 B) is a von 
Neumann algebra with a projection e whose central support is 1 and that 
there exists a bounded faithful normal operator-valued weight G : A + B such 
that 

G(e) = 1 

G(xe)e = xe, x E A, 

exe= F(x)e, XE B. 

Then there exists an isomorphism II: A -+ (B, e,), the basic extension of 
B 2 C, such that 

7c(e)=e,,, 

n(x) = x, x E B, 

zoG07t-‘= JBFp’(JB.JB) JB 

Proof. This can be proved by the obvious modification of arguments in 
[6, proof of Theorem 81. We just point out that the 71 constructed there is 
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injective even if the involved algebras are not necessarily factors. In fact, 
let us assume n(x) = 0 (XE A). Recall that one can find a family 
{xi}i= 1,2,... (5 B) satisfying 

0 = n(x) A(xi) = A(G(xx, e)) 

and G(xx, e) = 0 since A is injective. We thus get 

xxi ex,f+ = G(xxi e) ex* = 0. 

Summing over i, we conclude 

o=f xxiex*=x. 1 
i=l 

We apply Lemma 1 for (M, ) - ( 2 fi) and (Ind E) ,!?, . Let e be the 
Jones projection of A42 N (e E M, 5 (M,)- ). The central support of e in 
M, (hence in (M,)“) is oviously 1. 

We easily check 

(Ind E) &i(e) = 1, 

(Ind E) g,(xe)e = xe, XE (Jf,)--, 

exe = &x)e, XEfi. 

In fact, since E, is known to satisfy similar properties, the above 
formulas can be checked by “component-wise calculation” thanks to (1) 
(for l?, ). Therefore, (M, ) - can be identified with the basic extension of 
fi 2 fl, and e = rc(e) is precisely the Jones projection for $! 2 fi. 

We also have 

J,&&‘(JR ..Io) Jti = (Ind E) 8,. 

In particular, we get 

(&‘(l)=(Ind E)l 

(even if fi is not necessarily a factor). 
Finally we remark that the above argument works for general crossed 

products Mxa, G 2 NM, G as long as c(* leaves N invariant and 
cigOE= Eoa,(gEG). 

2.2. It is well known that a:=” leaves the relative cornmutant 
Mn N’ invariant and a;PCEIMnN, does not depend on the choice of cp (so 
that the restriction can be denoted by 0:). Using the facts 
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one sees that 

a! = Ad E.(t), 

C&=fJf (=afonMnN’), 

(fi), = M 

(An N’), = (Mn N’)E, the fixed point algebra of {a:}. 

Let p be a projection in this algebra. Then the index (i.e., the local index) 
of E,:xepMp -+ E(p)-’ E(x)pc N, is given by 

Ind E, = E(p) E - ‘(p). (2) 

(see Proposition 4.2 in [ 121) We consider the (local) index of (,!?), =n,p,: 
pfip 4 np. Notice that $ = cp 0 E satisfies 

VW,(X)) = E(P)-~’ $(E(x)P) 

= E(P) ’ cp(Eb) E(P)) 

= ‘b(x) 

for each x ~pMp. This E, is determined by cp lpMp (i.e., II/ 1 ,vp 0 E, = t,b IpMp). 
Since af’(p)=p, the modular actions of t,lpMp and $INp are just the 
restrictions of gf to the relevant algebras. Consequently, the associated 
inclusion of II, algebras (see the first part of 2.1) is simply 

(NJ” =fv& (pIup)- =piiip. 

Since E is just the restriction of J!? to E, we have k(p) = E(p) and from (1) 
one easily checks (E,) A = (E),. Therefore, we have 

Ind(,?), = Ind( E,,) * = Ind E, (3) 

(when fi is a factor). 

2.3. When M n N’ # Cl, there are many normal conditional expec- 
tations E: M --, N and the index Ind E does depend on the choice of E. 
However, the canonical choice of E is possible. In fact, it was shown in 
[7, 8, 151 that there exists a unique normal conditional expectation 
E,: M+ N satisfying Ind E,= Min,(Ind E). Tn what follows, this unique 
E, will be called the minimal conditional expectation. (For II,- factors 
M 2 N, the minimal E, may not be the same as the expectation E, deter- 
mined by the II,- trace.) In the non-factor case see [9]. As was shown in 
[S], this E. is tracial on Mn N’ and characterized by the property 

E;’ = (Ind E,) E. on MnN’. (4) 
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When E = EO, for a projection p in MA N’ ( = A4 n N’)E) we get 

Ind Ep = (Ind E) E(p)’ (5) 

because of (2) and (4). Hence we obtain “additivity of the square roots of 
indices” (see [ 15]), 

i (ind EpI)“* = i (Ind E)“* E(p;) = (Ind E)“’ 
i=l i= I 

for any partition {pi},, 1,2,...,n ( 5 (Mn N’),,,) of the unit. This additivity 
turns out to be a very useful characterization of the minimal expectation 
Eo. 

THEOREM 2 [7, 151. A normal conditional expectation E is minimal (i.e., 
E = E,) if and only if there is a partition (pi},, 1,2,,,.,n of the unit consisting 
of minimal projections in Mn N’ such that 

PiE (MnN’),, Ind E,, = (Ind E) Ed, 

for i = 1, 2, . . . . n. 

In the next section, this characterization will be used to reduce the proof 
of our main result to the corresponding result for II,- factors. 

3. MAIN RESULT 

Starting from E: A4 + N, Ind E < + co, as usual we obtain a sequence of 
the dual expectations E, : M1 -+ M, E,: M, -+ M,, and so on, where 
N5M5M,sM25... is the Jones tower of factors. 

THEOREM 3. Zf E: M -+ N is minimal, then for each k = 1,2, . . . the 
composition E 0 E, 0 . . . 0 EI, : M, -+ N is also minimal. 

Proof: Let A be a factor of type III r . We consider 

E@Zd,:M@A+NQA. 

The basic extensions are obviously M&A with the dual expectations 
E, @ ZdA. The characterization (4) (as well as the condition in Theorem 2) 
is not effected by this “trivial tensoring procedure.” Since M@ A (and 
NO A) is of type III,, we may and do assume that A4 2 N are factors of 
type III, (so that the fi;s are factors of type II,). 

We can choose a partition {pi},, 1,2,..,,n of the unit consisting of minimal 
projections in fin fi’ and satisfying O,(p,) =pi. In fact, being finite dimen- 
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sional, &n R’ is of the form Cl= r @ M”,(C). The connectedness of R 
shows that each central minimal projection m fin &‘ is fixed by 8,. Hence, 
8, sends each M,(C) into itself, and f3,( Mn,(C) = Ad Hy for some positive 
n, x ni-matrix H,. By using eigenvectors for H,, one can choose n, rank-l 
projections fixed by Ad HF. 

First we claim that E: fi + N is minimal. The above minimal projections 
{ p,} satisfy 

p,E(finm'),=(MnN').=MnN' (since E is minimal), 

&J =P, (since E comes from the trace). 

Then (3) and (5) guarantee 

Ind (E),, = Ind E,, 

=(Ind E)E(P;)~ 

= (Ind E) ,!?(P~)~, 

and E is minimal thanks to Theorem 2. 
Choose a projection p in m satisfying try = 1. Then one can choose 

a partition { pi}i= ,,?,, ( s flp,,) of the unit such that p, =p, each pi is 
equivalent to p (in N), and the p;s are mutually orthogonal. 

Using partial isometries (in fl) realizing equivalence between the pi’s and 
p, we can construct the conjugacy between 

fig and ,LJII$@B(H)~@OB(H) 

(in the usual way). Under this conjugacy, E corresponds to 

a p.up 0 Id,,,,. 

Note that ElpMp:pfi~ + RJJ arises from the unique II,- trace frfilpmp on 
pfip (since 6 arises from trW, see 2.1). Obviously, E 1 pfip is minimal (recall 
the characterization (4)). Hence, by the Pimsner-Popa theorem [22] (see 
the final remark in [7]), 20 E, 0 . . . 0 8, : 2, + fl is minimal. 

Choose a partition (qj}j= ,,2, ,.,m of the unit consisting of minimal projec- 
tions in M, n N' and satisfying qj E (Mk n N’)E E,, ,, Ek (by repeating 
similar arguments as above). 

We now compute 

Ind(E0 E, 0 ... oE,),=Ind(EoE,o ... oE~), (by (3)) 

= Ind(EoE, 0 . oE,)(EoE, 0 ... o&)(q,)’ 

(by (5): EO 8,o . . . o E.k is minimal) 

= Ind(E0 E, o . . . 0 E,)(Eo E, o . . . o Ek)(qi)‘. 
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Therefore, the composition E 0 E, 0 . . o Ek is minimal thanks to Theorem 2 
again. 1 

It is an interesting problem to characterize the minimal expectation by 
a condition similar to that in Corollary 4.5(iii) in [21], which might give 
us a much more natural proof of Theorem 3. 

Remark 4 (Converse of the Pimsner-Popa Inequality). Let M 2 N be 
II,-factors. Assume that the expection EN arising from the II ,-trace satisfies 
E(x)Lm, XEM,, for some E>O. It was shown in [21] that we get 
[M: N] ( = Ind EN) < +CD. (If the above e > 0 is the best constant, then 
we get &K1= [M: N] ... which is easily seen by considering the Jones 
projection associated with a downward basic construction.) The converse 
of the Pimsner-Popa inequality for general factors has been considered by 
several authors (see [l] and also see [lS] for a partial result). We would 
like to point out that the “tensoring trick” in the above proof gives us a 
slick proof of the converse of the Pimsner-Popa inequality. Assume that 
E: M + N satisfies 

E(x) 2_ EX, XEM+(E>O). (6) 

For simplicity, let us assume that Mz N are properly infinite factors. (For 
example, in the finite dimensional case one has to assume the complete 
positivity of the map x E A4 + E(x) - EX E M.) Properly infiniteness 
guarantees that 

(E@Zd)(x) 2 EX, XEWO4W)+. (7) 

In fact, M 2 N is conjugate to M@ B(H) 2 N @ B(H) by the standard 
argument, and via this conjugacy E corresponds to E @ Id. Now let A be 
a factor of type III 1. Then E@ Id, : MO A + N @ A satisfies (6) thanks to 
(7) and we have Ind(E@ Id,) = Ind E. Therefore, as in the proof of 
Theorem 3, we may and do assume $hat M 2 N are factors of type III i. We 
then consider dhe “second dual” E: fix, R + fix0 R determined by the 
bidual weight ~9. By the Takesaki duality fi xl0 Iw 2 fl X, R can be identified 
with M@ B(H) 2 N @ B(H). Through this identiI$ation E obviously 
corresponds to E@Zd. (Hence Ind E = Ind E.) Thus, E satisfies (6) due to 
(7). The expectation I? being the restriction of E, E also satisfies (6). As in 
the proof of Theorem 3 one can reduce the situation to the III-factor case 
and use the abovementioned III-result due to Pimsner and Popa. We thus 
conclude Ind E < +co and 

IndE=Indi 

=Indl? (see the last paragraph of 2.1) 

< +a. 

580:10712-I6 
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4. CONSEQUENCES OF THE MAIN RESULT 

In the next two corollaries we assume Ind E < +a. 

COROLLARY 5. If M n N’ = Cl (or more generally if E is minimal), then 
the modular action on M, n N’ associated with Ea E, 0 . . 0 Ek is trivial. 

Proof: Since E 0 E, 0 0 E, is minimal (Theorem 3), it is tracial on 
M,nN’. 4 

According to [20], having an irreducible (M n N’ = @ 1) factor-subfactor 
pair means that one has a “group-like” object (quantized group). Thus the 
above corollary means that a quantized group of finite “order” is always 
“unimodular”. Is a discrete quantized group (E: M + N exists and 
Mn N’ = 1) “unimodular”? For a non-discrete inclusion the result is 
false [2]. 

COROLLARY 6. Under the same assumptions as in Corollary 5, the 
relative commutant M, n N’ is the fixed point algebra of “II,-relative 
commutant” fi, n fl’ under the dual action (i.e., M, n N’ = ( fi, n fl’),). 

ProoJ: As remarked in 2.2 we have (I@, n m’), = (Mk n N’),,, E, ,, ,, Ek. 
Thus the result follow Corollary 5. 1 

This result gives us a practical method for computing the higher relative 
cornmutant M, n N’ of an inclusion Mz N of type III factors. 

COROLLARY 7. If M 2 N are factors of type III, and Ind E < 4, then we 
have M,nNN’=fiknfl’, k= I,2 ,.... 

Proof: The intertwining property 0,o E, = Eke 8, means that the Jones 
projections {ek)k=0,1,2,... are fixed under 8,. The group R being connected, 
8, also acts trivially for central minimal projections (in each A, n m’). The 
assumption Ind E < 4 means (see [3]) that { fi, n fl’ }, is described by one 
of the Coxeter-Dynkin diagrams of types A, D, E. (More precisely, the 
principal graph (see [3]) of the Bratteli diagram describing { fik n fl’jk is 
one of the above Coxeter-Dynkin diagrams.) In each case one easily 
observes that fi, n m’ is the direct sum of the part generated by 
e=eo, el, . . . . ekp, (i.e., the “reflection of the previous step”) and a certain 
subalgebra in z(fik n m’) (i.e., the “rest”). Therefore, we conclude that 
O,=Idon i@,nfl’. 1 

For factors of type III, (0 5 I < 1) one can consider the discrete decom- 
position so that we have a single automorphism 8, (action of Z) instead of 
the one parameter automorphism group { 0, > ,E R. Assume that both of M 
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and N are AFD type III, (0 < A < 1). If the “type III relative commutants” 
coincide with “the type II relative commutants,” then Mg N is a trivial 
inclusion (in the sense that M 2 N comes from an inclusion of II ,-factors 
together the trivial tensoring) as was shown in [ll, 191. It is a very 
interesting problem to see if the same conclusion follows from Corollary 7 
in the type III, setting. 

Recall that the connectedness of [w was crucial in the proof of 
Corollary 7. For type III, (0 5 L < 1) factors, considering a Z-action is rele- 
vant as was pointed out above. The situation completely changes and in 
fact, in the following, based on Corollary 6, we will construct an inclusion 
M 2 N of factors of type III, (0 5 1< 1) such that { Mk n N’ lk and 
{ fi, n R’ jk are different. In particular, M 2 N is not a trivial inclusion. 
A similar phenomenon for type III, (0 < I < 1) factors was explained in 
c191. 

We start from the coupling system [ZO] corresponding to the Dynkin 
diagram D,, (n = 2, 3, . ..) 

1 
V 

3 

2 

2 

A 1’ 3’ 

k-3 2n-1 2n 

. . . 
LUL 

.., w 

(?n- 3)’ (2n - 1)’ (2n)’ 

Define the (period 2) graph automorphism n by 

n(i)=i, n(i’)=i’, i= 1,2, . . . . 2n-2, 

n(2n- 1)=2n, n(2n)=2n-I, 

n((2n-1)‘)=(2n)‘, n((2n)‘)=(2n-1)‘. 

The map rc is compatible with contragredient maps, and from the table 
in [20] we can easily check that TC preserves connections (of cells). (Hence 
7c is a period 2 automorphism in the sense of Ocneanu’s coupling system.) 
From this coupling system we get the AFD II,-factors Bg C such that 
the principal graph of {B, n C’}, ( associated with the Jones tower 
CEB&B,~B,S ...) is D,,. 

Then, rc gives rise to the period 2 automorphism (still denoted by n) in 
Aut(B, C). The canonical extensions (still denoted by n) to B, (uniquely 
determined by the property 7c(ek) = ek) act on Bk n C’ as in 
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Namely, rr switches the “last two vertices” of Dzn. 
Let A xlg, E be a discrete decomposition of a factor of type III, 

(0 5 1. < 1) such that 13; is ergodic on the center Z(A). (This assumption is 
automatic for a factor of type III,, 0 < A < 1, since A is a factor of type II, 
in this case.) Let us consider the inclusion 

Let F be the unique expectation from B onto C (coming from the 
II, -trace rB). Then F@Zd, commutes with n@Bo so that it “extends” to 
the expectation E: M -+ N (Ind E = [I?: C] = 4 cos2 x/(4n - 2)), see 2.1). 
We will show that this M 2 N is a non-trivial inclusion. 

Notice that rc 0 8, scales the traces rB 63 rA = (TV 0 F) @ rA and rc @ zA in 
the same way (because of 7c 0 F= FO 7~). Therefore (recall the relationship 
between continuous crossed product decomposition and discrete crossed 
product decomposition for a type III factor) the continuous crossed 
products fi, fl are given by the discrete systems (BOA, n 0 0,) and 
(CO A, rc @ 0,) together with the common ceiling function (determined by 
how 13, scales ra). In particular, M and N (and A xeo Z) have the same flow 
of weights (and Mz N is of the form M= Cu 123 = N in the sense of [ 141). 
The basic extensions of A4 2 N are Mk = (Bk 0 A),,,0 Z by Lemma 1 (as 
in 2.1). Hence it is easy to see 

b@,nm8= {(whwwxbw.,,, 

= {(BknC’)OZ(A)).,o,. 
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Due to x2 = Id and the ergodicity of 13: on Z(A), this algebra is included 
in B, n C’. Since (fi, n m’), = Mk n N’ (Corollary 6), we conclude that 

MknN’=(B,nC’),. 

From the description of 7~ (on B, n C’) given before, one easily checks 
that the principal graph of (M, n N’}k is the Dynkin diagram A,,- 3 (note 
that the principal graph of {M, n N’jk has to be one with index = 
4 cos* (7c/(4n - 2))). 

On the other hand, fi 2 R (having the same center) gives us a field of 
inclusions of II,-factors by looking at the common central decomposition. 
This gives us a field of “type II relative commutants” and hence that of 
principal graphs. Notice that all inclusions of II,-factors look like 
BOA(o) 2 CBA(o). Here, A = i? A(o) do is the central decomposition 
and X is the base space of the flow of weights (represented with the ceiling 
function). Hence the field of principal graphs is constant, and we get the 
Dynkin diagram D,,. 

Therefore, we have seen that the “type II principal graph” D2,, shrinks to 
the “type III principal graph” A,,- 3 since we have to look at the fixed 
point algebras under the symmetry 7~. Consequently, the inclusion Mz N 
is not trivial. 

Remark 8. The central ergodicity of 8: in the above discussion is essen- 
tial. For example, assume that 0: is not ergodic on Z(A) and n = 2. Then 
the principal graph of {Mk n N’}k is D4 (not A,) so that we get 
M = N x1, Z, by [ 131. Since M and N have the same flow of weights, one 
easily sees that the ag’s are approximately pointwise inner and c(~, g # e, are 
not pointwise inner (in the sense of [4, 53). Therefore, if the factors are 
further assumed to be AFD, then by [24] we conclude that M 2 N is 
conjugate to (RxZ,)@M=,R@M. 
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