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0. Introduction

The Iwasawa main conjecture, which predicts the mysterious relation between “arithmetic” char-
acteristic elements and “analytic” p-adic zeta functions, has been proven under many situations for
abelian extensions of number fields. However, it took many years even to formulate the main conjec-
ture for non-commutative extensions. In 2005, John Coates et al. [5] formulated the main conjecture
for elliptic curves without complex multiplication by using algebraic K -theory. Then Kazuya Kato [13]
has constructed the p-adic zeta functions and proven the main conjecture for certain specific p-adic
Lie extensions called “Heisenberg-type extensions” of totally real number fields. Mahesh Kakde [11]
has recently generalized Kato’s method and proven the main conjecture for another type of exten-
sion. On the other hand, Jürgen Ritter and Alfred Weiss had also formulated the main conjecture for
1-dimensional p-adic Lie extensions called “equivariant Iwasawa main conjecture” [19] in a little dif-
ferent way from the formulation of John Coates et al., and proven it for certain special cases [20–22].
In this paper, we will prove the Iwasawa main conjecture—the formulation of John Coates et al.—
for another type of non-commutative p-extensions of totally real number fields by generalizing the
method of Kazuya Kato [13].

Let p be a prime number, F a totally real number field and F ∞ a totally real p-adic Lie extension
of F containing the cyclotomic Zp-extension of F . Assume that only finitely many primes of F ramify
in F ∞ . For simplicity, also assume that Iwasawa’s μ = 0 conjecture is valid (see condition (�) in
Section 1.2 for more general condition). The aim of this paper is to prove the following theorem.

Theorem 0.1 (= Theorem 2.1). Assume the following two conditions:

(1) the Galois group G of F ∞/F is isomorphic to

( 1 Fp Fp Fp

0 1 Fp Fp

0 0 1 Fp

0 0 0 1

)
× Γ where Γ is a commutative p-adic Lie

group isomorphic to Zp ;
(2) the prime number p is not equal to either 2 or 3.

Then the p-adic zeta function ξF ∞/F for F ∞/F exists and the Iwasawa main conjecture is true for F ∞/F .

We will review the formulation of the non-commutative Iwasawa main conjecture in Section 1.2.
Now let us summarize how to prove the theorem. The basic strategy to construct the p-adic zeta
functions and prove the main conjecture for non-commutative extensions has been proposed by David
Burns, and Kazuya Kato applied it in his results [13]. We will also use their technique to prove our
main theorem (Theorem 0.1); precisely we first construct the family F consisting of pairs {(Ui, V i)}4

i=0
of subgroups of G such that each V i is normal in Ui and all Artin representations of G are obtained
as Z-linear combinations of representations induced by characters of the abelian groups {Ui/V i}4

i=0
(see Section 3.1 for details). Let Λ(G) (resp. Λ(Ui), Λ(Ui/V i)) denote the Iwasawa algebra of G (resp.
Ui , Ui/V i). Consider the composition

θS,i : K1
(
Λ(G)S

) Nri−−→ K1
(
Λ(Ui)S

) canonical−−−−−→ K1
(
Λ(Ui/V i)S

) = Λ(Ui/V i)
×
S

for each i where Λ(G)S (resp. Λ(Ui)S , Λ(Ui/V i)S ) denotes the canonical Ore localization of Λ(G) (resp.
Λ(Ui), Λ(Ui/V i)) introduced by John Coates et al. in [5, Section 2] (also refer to Section 1.2 of this
article) and Nri denotes the norm map. Set θS = (θS,i)

4
i=0. Then each Λ(Ui/V i)

×
S contains the p-adic

zeta pseudomeasure ξi for F V i /FUi constructed by Pierre Deligne, Kenneth A. Ribet and Jean-Pierre Serre
[6,24] (FUi and F V i denote the maximal intermediate fields of F ∞/F fixed by Ui and V i respectively).
Now suppose that there exists such an element ξ in K1(Λ(G)S ) as θS (ξ) coincides with (ξi)

4
i=0. Then

we may check that ξ satisfies the interpolation property which characterizes the p-adic zeta function
for F ∞/F (see Definition 1.5) by using Brauer induction, hence the element ξ is nothing but the p-
adic zeta function for F ∞/F . Moreover ξ satisfies “the main conjecture” ∂(ξ) = −[C F ∞/F ] because the
main conjecture for each abelian extension F V i /FUi holds by virtue of the deep results of Andrew
Wiles [29] (see Section 2.2 for details). Therefore we have only to verify that (ξi)

4
i=0 is contained in

the image of the map θS . However it is difficult to characterize the image of θS . On the other hand,
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we may characterize the image Ψ of θ = (θi)
4
i=0 by using theory on integral logarithms introduced by

Robert Oliver and Laurence R. Taylor [17,18] (see Section 3 and Section 4), where θi is the composition

θi : K1
(
Λ(G)

) Nri−−→ K1
(
Λ(Ui)

) canonical−−−−−→ K1
(
Λ(Ui/V i)

) = Λ(Ui/V i)
×.

By this fact and easy diagram chasing, we may conclude that (ξi)
4
i=0 is contained in the image of θS

if it is contained in a certain subgroup ΨS of
∏

i Λ(Ui/V i)
×
S (which contains the image of θS ) charac-

terized by certain norm relations and congruences (see Theorem 2.4 and Section 5 for details).
Now the proof of Theorem 0.1 reduces to the verification of norm relations and congruences for

(ξi)
4
i=0. We may easily verify the norm relations by formal calculation using the interpolation proper-

ties for {ξi}4
i=0. To study congruences among {ξi}4

i=0, we will use the q-expansion principle for Hilbert
modular forms proven by Pierre Deligne and Kenneth A. Ribet [6] (see Section 6). Kazuya Kato, Jür-
gen Ritter and Alfred Weiss also used the q-expansion principle and successfully derived congruences
among abelian p-adic zeta pseudomeasures which were necessary to verify their results [13,20–22].
Unfortunately it is difficult to derive all the desired congruences in our case by only using the tech-
nique of Kato, Ritter and Weiss. Therefore we will use the existence of the p-adic zeta function for
a certain non-commutative subextension F N/F of F ∞/F which is of Heisenberg type (note that the
existence of the p-adic zeta functions for Heisenberg-type extensions has already been proven by
Kazuya Kato [13]), and complete the proof of our Theorem 0.1 by using certain induction (see Sec-
tion 7 for details).

Notation
In this paper, p always denotes a positive prime number. We denote by N the set of natural

numbers (that is, the set of strictly positive integers), denote by Z (resp. Zp) the ring of integers
(resp. p-adic integers), and denote by Q (resp. Qp) the rational number field (resp. the p-adic number
field). For an arbitrary group G , we denote by Conj(G) the set of all conjugacy classes of G . For a pro-
finite group P , Λ(P ) denotes its Iwasawa algebra (that is, its completed group ring over Zp). We
denote by Γ a commutative p-adic Lie group isomorphic to Zp . Throughout this paper, we fix a
topological generator t of Γ (in other words, we fix an isomorphism Λ(Γ )

�−→ Zp �T �; t �→ 1 + T
where Zp �T � is the formal power series ring over Zp). For an arbitrary finite group 	, Zp[Conj(	)]
denotes the free Zp-module of finite rank with the free basis Conj(	). For an arbitrary pro-finite
group P , Zp �Conj(P )� denotes the projective limit of the free Zp-modules Zp[Conj(Pλ)] over finite
quotient groups Pλ of P . We always assume that all associative rings have unity. For an associative
ring R , we denote by Mn(R) the ring of n × n-matrices with entries in R and denote by GLn(R) the
multiplicative group of Mn(R). For a module M over a commutative ring R and a finite subset S
of M , [S]R denotes the R-submodule of M generated by S . In this article all Grothendieck groups
are regarded as additive abelian groups, whereas all Whitehead groups are regarded as multiplicative
abelian groups. Finally we fix embeddings of the algebraic closure of the rational number field Q into
the complex number field C and the algebraic closure of the p-adic number field Qp .

1. Preliminaries

1.1. Brief review on theory of integral logarithms

Integral logarithmic homomorphisms were first introduced by Robert Oliver and Laurence R. Taylor
[17,18] to study the structure of Whitehead groups of group rings of fundamental groups. We will use
these homomorphisms to translate “the additive theta map” into “the (multiplicative) theta map” (see
Section 4 for details). Jürgen Ritter and Alfred Weiss also used them to formulate their “equivariant
Iwasawa theory” [19]. We refer to [1,15,26] for basic results on (lower) algebraic K -theory.

Let R be an absolutely unramified complete discrete valuation ring with mixed characteristics
(0, p) and K its fractional field. In the following, we assume that p is odd for simplicity. Fix the
Frobenius endomorphism ϕ̃ : K → K on K if its residue field is not perfect. Let 	 be a finite p-
group and R[	] its group ring over R . Note that R[	] is a local ring whose maximal ideal mR[	]
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is the kernel of the canonical surjection R[	] → R/pR . We define R[Conj(	)] (resp. K [Conj(	)])
as the free R-module (resp. the K -vector space) with the free basis Conj(	). Then the logarithm
logp(1 + y) = ∑∞

j=1(−1) j−1(y j/ j) converges p-adically on the multiplicative group 1 + mR[	] and in-
duces a group homomorphism logp : K1(R[	],mR[	]) → K [Conj(	)]. It is known that we may extend
this homomorphism to logp : K1(R[	]) → K [Conj(	)] if R is the integer ring of a finite unramified
extension of Qp (see [17, Theorem 2.8]). Finally, we define the “Frobenius correspondence” ϕ on
K [Conj(	)] by the relation ϕ(

∑
[g]∈Conj(	) a[g][g]) = ∑

[g]∈Conj(	) ϕ̃(a[g])[g p].2

Proposition–Definition 1.1 (Integral logarithm, Oliver–Taylor). For an element x in K1(R[	],mR[	]), let
Γ	,m(x) denote the element in K [Conj(	)] defined as logp(x) − p−1ϕ(logp(x)). Then Γ	,m induces
a homomorphism of abelian groups Γ	,m : K1(R[	],mR[	]) −→ R[Conj(	)] which we call the integral
logarithmic homomorphism for R[	]. Moreover Γ	,m is extended uniquely to the group homomorphism
Γ	 : K1(R[	]) −→ R[Conj(	)] if R is the integer ring of a finite unramified extension K of Qp .

Proof. Apply the proof of [17, Theorem 6.2] replacing Zp and Qp by R and K respectively. �
When R is the p-adic integer ring Zp , we may derive further information about the kernel and

the cokernel of the integral logarithms [17, Theorem 6.6]:

Theorem 1.2. Let 	 be a finite p-group and 	ab its abelization. Then the following sequence is exact:

1 → K1
(
Zp[	])/K1

(
Zp[	])tors

Γ	−−→ Zp
[
Conj(	)

] ω	−−→ 	ab → 1

where K1(Zp[	])tors is the torsion part of K1(Zp[	]) and ω	 is the homomorphism defined by
ω	(

∑
[g]∈Conj(	) a[g][g]) = ∏

[g]∈Conj(	) ga[g] (g denotes the image of [g] in 	ab).

The torsion part K1(R[	])tors was well studied by Graham Higman [10] (for abelian 	) and Charles
Terence Clegg Wall [28] (for general 	):

Theorem 1.3. Let 	 be a finite p-group.

(1) The torsion part of K1(R[	]) is isomorphic to the multiplicative abelian group μ(R)×	ab × S K1(R[	])
where μ(R) is the multiplicative group generated by all roots of unity contained in R.

(2) The group S K1(R[	]) is finite if R is the integer ring of a number field K .
(3) The group S K1(R[	]) is trivial if 	 is abelian.

Proof. See [28, Theorem 4.1] for (1) and [28, Theorem 2.5] for (2) respectively. The claim of (3)
obviously follows from the definition of S K1(R[	]). �
1.2. Non-commutative Iwasawa theory for totally real fields

Now we review the formulation of the non-commutative Iwasawa main conjecture for totally real
p-adic Lie extensions of totally real number fields. Let p be an odd prime number, F a totally real
number field and F ∞/F a Galois extension of infinite degree satisfying the following three conditions:

1. the Galois group of F ∞/F is a compact p-adic Lie group;
2. only finitely many primes of F ramify in F ∞;
3. F ∞ is totally real and contains the cyclotomic Zp-extension F cyc of F .

Fix a finite set Σ of primes of F containing all primes which ramify in F ∞ . Let G be the Galois
group of F ∞/F , H that of F ∞/F cyc and Γ that of F cyc/F respectively. Note that H is a normal closed
subgroup of G and the quotient group Γ is isomorphic to Zp by definition. Let S denote a subset
of Λ(G) consisting of an element f such that the quotient module Λ(G)/Λ(G) f is finitely generated

2 ϕ is not necessarily induced by a group endomorphism because g �→ g p is not a group endomorphism in general.
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as a left Λ(H)-module. John Coates et al. showed that S was a left and right Ore set without zero
divisors [5, Theorem 2.4], which they called the canonical Ore set for the group G (see [14,25] for details
of Ore localization). Let Λ(G)S denote the left Ore localization of Λ(G) with respect to S (which
is canonically isomorphic to the right Ore localization). It is well known that Λ(G)S is a semi-local
ring [5, Theorem 4.2]. Now consider the Berrick–Keating’s localization exact sequence [2] for the Ore
localization Λ(G) → Λ(G)S :

K1
(
Λ(G)

) → K1
(
Λ(G)S

) ∂−→ K0
(
Λ(G),Λ(G)S

) → 0. (1.1)

The connecting homomorphism ∂ is surjective by [5, Proposition 3.4]. Let C Perf(Λ(G)) denote the
category of complexes of finitely generated left Λ(G)-modules quasi-isomorphic to bounded com-
plexes of finitely generated projective left Λ(G)-modules, and C Perf

S (Λ(G)) the full subcategory
of C Perf(Λ(G)) generated by all objects of C Perf(Λ(G)) with S-torsion cohomology groups. Then
the relative Grothendieck group K0(Λ(G),Λ(G)S ) is canonically identified with the Grothendieck
group K0(C

Perf
S (Λ(G)),qis) of the Waldhausen category C Perf

S (Λ(G)) with quasi-isomorphisms as
weak equivalences. Therefore for an arbitrary object K · of the category C Perf

S (Λ(G)), there exists
an element f K · in K1(Λ(G)S ) satisfying ∂( f K · ) = −[K ·]. We call such f K · the characteristic element
of K · . By the localization exact sequence (1.1), the characteristic element of K · is determined up to
multiplication by an element in K1(Λ(G)). Especially consider the complex

C = C F ∞/F = RHom
(

RΓét
(
Spec O F ∞[1/Σ],Qp/Zp

)
,Qp/Zp

)
(1.2)

where Γét is the global section functor for étale topology. The cohomology groups of C are calculated
as H0(C) = Zp , H−1(C) = Gal(MΣ/F ∞) where MΣ is the maximal abelian pro-p extension of F ∞ un-
ramified outside Σ , and Hq(C) = 0 for the other q. We denote Gal(MΣ/F ∞) by XΣ(F ∞/F ). Yoshitaka
Hachimori and Romyar T. Sharifi proved the following proposition [9, Lemma 3.4]:

Proposition 1.4. Let G ′ be a pro-p open subgroup of G and F ′ the maximal intermediate field of F ∞/F fixed
by G ′ . Then the followings are equivalent:

(1) the Galois group XΣ(F ∞/F ) is S-torsion as a Λ(G)-module;
(2) the Iwasawa μ-invariant of the cyclotomic Zp-extension (F ′)cyc/F ′ is zero.

In particular XΣ(F ∞/F ) is S-torsion if the following condition is satisfied:

(�) there exists a finite subextension F ′ of F ∞ such that the Galois group of F ∞/F ′ is pro-p and
μ((F ′)cyc/F ′) = 0.

Kenkichi Iwasawa conjectured that the Iwasawa μ-invariant of the cyclotomic Zp-extension of an
arbitrary number field is zero—Iwasawa’s μ = 0 conjecture—which implies that condition (�) should
be always satisfied. Famous Ferrero–Washington’s theorem [7] asserts that condition (�) is satisfied
if F/Q is a finite abelian extension. We always assume condition (�) in the rest of this article. This
assumption implies that C is an object of C Perf

S (Λ(G)), hence we may define the characteristic element
f F ∞/F for F ∞/F as that of the complex C .

Next we will define the “p-adic zeta function” as the element in K1(Λ(G)S ) satisfying certain in-
terpolation properties. Let ρ : G → GLd(Q) denote an Artin representation (that is, the kernel of ρ is
an open subgroup) and let κ : Gal(F (μp∞)/F ) → Z×

p denote the p-adic cyclotomic character. Since κr

factors through the group Γ for an arbitrary natural number r divisible by p − 1, ρκr induces a ring
homomorphism Λ(G) → Md(E) where E is a certain finite extension of Qp . This also induces a ho-
momorphism of Whitehead groups:

evρκr : K1
(
Λ(G)

) → K1
(
Md(E)

) �−→ K1(E) ∼= E×
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(the isomorphism K1(Md(E))
�−→ K1(E) is induced by the Morita equivalence between Md(E) and E).

Composing this with the natural inclusion E× → Q×
p , we obtain the map evρκr : K1(Λ(G)) → Q×

p . As
is discussed in [5, Section 2], this map can be extended (in a non-trivial way) to evρκr : K1(Λ(G)S ) →
Qp ∪ {∞}, which is called the evaluation map at ρκr . We denote by f (ρκr) the element evρκr ( f ) for
f in K1(Λ(G)S ).

Definition 1.5 (p-adic zeta function). If an element ξF ∞/F in K1(Λ(G)S ) satisfies the following interpo-
lation property

ξF ∞/F
(
ρκr) = LΣ

(
1 − r; F ∞/F ,ρ

)
(1.3)

for an arbitrary Artin representation ρ of G and an arbitrary natural number r divisible by p − 1, we
call it the p-adic zeta function for F ∞/F (here LΣ(s; F ∞/F ,ρ) denotes the complex Artin L-function
of ρ in which the Euler factors at Σ are removed).

The Iwasawa main conjecture is formulated as follows:

Conjecture 1.6. Let F and F ∞ be as above.

(1) (The existence of the p-adic zeta function)

The p-adic zeta function ξF ∞/F for F ∞/F exists.
(2) (The non-commutative Iwasawa main conjecture)

The p-adic zeta function ξF ∞/F satisfies ∂(ξF ∞/F ) = −[C F ∞/F ].

Remark 1.7 (The abelian case). Assume that G = Gal(F ∞/F ) is an abelian p-adic Lie group. In this case,
John Coates observed that if certain congruences among the special values of the partial zeta func-
tions were proven, we could construct the p-adic L-function for F ∞/F [4, Hypotheses (Hn) and (C0)].
These congruences were proven by Pierre Deligne and Kenneth A. Ribet [6] due to their deep re-
sults on Hilbert–Blumenthal modular varieties. Then by using Deligne–Ribet’s congruences, Jean-Pierre
Serre [24] constructed the element ξF ∞/F in the totally quotient ring of Λ(G)—Serre’s p-adic zeta pseu-
domeasure for F ∞/F —which satisfied the following two properties:

(1) the element (1 − g)ξF ∞/F is contained in Λ(G) for arbitrary g in G;
(2) the element ξF ∞/F satisfies the interpolation property (1.3).

Remark 1.8. The non-commutative Iwasawa main conjecture which we introduced here was first for-
mulated by John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha and Otmar Venjakob [5] for
elliptic curves without complex multiplication (the GL2-conjecture). Then Takako Fukaya and Kazuya
Kato [8] formulated the main conjecture for rather general cases and showed the compatibility of the
main conjecture with the equivariant Tamagawa number conjecture [3].

2. The main theorem and Burns’ technique

2.1. The main theorem

Consider the 1-dimensional pro-p-adic Lie group G which is the direct product of the finite p-
group G f defined as

G f =

⎛⎜⎜⎝
1 Fp Fp Fp

0 1 Fp Fp

0 0 1 Fp

⎞⎟⎟⎠

0 0 0 1
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and the commutative p-adic Lie group Γ isomorphic to Zp . In the following, we fix generators of G f

and denote them by

α =
⎛⎜⎝

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , β =
⎛⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , γ =
⎛⎜⎝

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞⎟⎠ ,

δ =
⎛⎜⎝

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , ε =
⎛⎜⎝

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞⎟⎠ , ζ =
⎛⎜⎝

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ .

The center of G f is the cyclic subgroup generated by ζ and there exist four non-trivial fundamental
relations

[α,β] = δ, [β,γ ] = ε, [α,ε] = ζ, [δ,γ ] = ζ

where [x, y] denotes the commutator xyx−1 y−1 of x and y. From now on we will assume that p is
not equal to either 2 or 3, then the exponent of the finite p-group G f coincides with p.

Theorem 2.1. Let p be a positive prime number not equal to either 2 or 3, F a totally real number field and
F ∞ a totally real Galois extension of F whose Galois group is isomorphic to G = G f × Γ . Assume that F ∞/F
satisfies conditions 2,3 and condition (�) in Section 1.2. Then the p-adic zeta function ξF ∞/F for F ∞/F exists
and the main conjecture (Conjecture 1.6(2)) is true for F ∞/F .

Remark 2.2. On the uniqueness of the p-adic zeta function, we may conclude by Theorem 2.1 and
Proposition 4.5 that the p-adic zeta function ξF ∞/F exists uniquely up to multiplication by an element
in S K1(Zp[G f ]). It is well known that S K1(Zp[	]) vanishes for many finite p-groups 	. For the p-
group G f , Otmar Venjakob announced to the author that he and Peter Schneider have recently proven
the vanishing of S K1(Zp[G f ]), hence the p-adic zeta function ξF ∞/F in Theorem 2.1 is determined
uniquely if we admit their results.

2.2. Burns’ technique

There exists a certain strategy to construct the p-adic zeta functions for non-commutative ex-
tensions of totally real fields, which was first observed by David Burns. We will summarize his
outstanding idea in this subsection.

Let F be a totally real number field and F ∞ a totally real p-adic Lie extension of F satisfying
conditions 1–3 and condition (�) in Section 1.2. Set G = Gal(F ∞/F ) (we do not have to assume that
G is isomorphic to G f × Γ in this subsection). Let F be a family consisting of a pair (U , V ) where
U is an open subgroup of G and V is an open subgroup of H respectively such that V is normal
in U and the quotient group U/V is commutative. Assume that the family F satisfies the following
hypothesis:

(�) an arbitrary Artin representation of G is isomorphic to a Z-linear combination of induced
representations IndG

U (χU ,V ) as a virtual representation, where each (U , V ) is an element in F and
χU ,V is a character of the abelian group U/V of finite order.

In the following, we assume that there exists a family F satisfying hypothesis (�) and fix such F.
For each pair (U , V ) in F, let θU ,V : K1(Λ(G)) → Λ(U/V )× denote the homomorphism defined
as the composition of the norm map NrΛ(G)/Λ(U ) and the canonical map K1(Λ(U )) → Λ(U/V )× .
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Similarly define the homomorphism θS,U ,V : K1(Λ(G)S ) → Λ(U/V )×S for the canonical Ore local-
ization Λ(G)S (we use the same symbol S for the canonical Ore set for U/V by abuse of no-
tation). Set θ = (θU ,V )(U ,V )∈F and θS = (θS,U ,V )(U ,V )∈F respectively. Let ΨS be a certain subgroup
of

∏
(U ,V )∈F Λ(U/V )×S and let Ψ be the intersection of ΨS and

∏
(U ,V )∈F Λ(U/V )× .

Definition 2.3 (The theta map). (See [13, Section 2.4].) Let G , F, θ , θS , Ψ and ΨS be as above. Suppose
that θ , θS , Ψ and ΨS satisfy the following conditions:

(θ -1) the group Ψ coincides with the image of the map θ ;
(θ -2) the group ΨS contains the image of the map θS .

Then we call the induced surjection θ : K1(Λ(G)) → Ψ the theta map for the family F, and call the
induced homomorphism θS : K1(Λ(G)S ) → ΨS the localized theta map for the family F.

For each pair (U , V ) in F, let FU (resp. F V ) be the maximal subfield of F ∞ fixed by U (resp. V ).
Since the Galois group of F V /FU is abelian by assumption, the p-adic zeta pseudomeasure ξU ,V

for F V /FU exists uniquely as an invertible element in the totally quotient ring of Λ(U/V ) (see Re-
mark 1.7).

Theorem 2.4 (David Burns). (See [13, Proposition 2.5].) Let F , F ∞ and G be as above. Assume that there
exist a family F of pairs (U , V ) satisfying hypothesis (�), the theta map θ and the localized theta map θS for
F. Also assume that (ξU ,V )(U ,V )∈F is contained in ΨS . Then the p-adic zeta function ξF ∞/F for F ∞/F exists
uniquely up to multiplication by the element in the kernel of θ . Moreover, the Iwasawa main conjecture is true
for F ∞/F .

Proof. Let f be an arbitrary characteristic element for F ∞/F (that is, an element in K1(Λ(G)S ) sat-
isfying ∂( f ) = −[C F ∞/F ]). Let uU ,V be the element defined as ξU ,V θS,U ,V ( f )−1 for each pair (U , V )

in F. Then ∂(uU ,V ) = 0 holds by the functoriality of the connected homomorphism ∂ and the main
conjecture ∂(ξU ,V ) = −[C F V /FU ] for the abelian extension F V /FU proven by Wiles [29]. Hence uU ,V

is contained in Λ(U/V )× by the exact sequence (1.1). On the other hand (uU ,V )(U ,V )∈F is contained
in ΨS by (θ -2) and the assumption on (ξU ,V )(U ,V )∈F . Therefore (uU ,V )(U ,V )∈F is contained in the
intersection of

∏
(U ,V )∈F Λ(U/V )× and ΨS , which coincides with Ψ by definition. Then there ex-

ists an element u in K1(Λ(G)) satisfying θ(u) = (uU ,V )(U ,V )∈F by condition (θ -1). Put ξF ∞/F = u f
(we denote the image of u in K1(Λ(G)S ) by the same symbol u). By construction ξF ∞/F satisfies
∂(ξF ∞/F ) = −[C F ∞/F ] and θS (ξF ∞/F ) = (ξU ,V )(U ,V )∈F . We may verify the interpolation property (1.3)
by formal calculation, using the equation θS (ξF ∞/F ) = (ξU ,V )(U ,V )∈F , hypothesis (�) and the induc-

tivity of Artin L-functions. Finally suppose that ξ
(i)
F ∞/F is an element in K1(Λ(G)S ) which satisfies

equations ∂(ξ
(i)
F ∞/F ) = −[C F ∞/F ] and θS (ξ

(i)
F ∞/F ) = (ξU ,V )(U ,V )∈F for i = 1,2. Then the element w de-

fined as ξ
(1)
F ∞/F (ξ

(2)
F ∞/F )−1 is identified with an element in K1(Λ(G)) by the localization exact sequence

(1.1), and the equation θ(w) = 1 holds by construction. �
We remark that Kazuya Kato constructed the theta maps for p-adic Lie groups of Heisenberg

type [13] and for certain open subgroups of Z×
p � Zp [12].

3. The additive theta map

The following three sections are devoted to the construction of the theta map θ and the lo-
calized theta map θS under the settings of Theorem 2.1. In this section, we construct a family
F = {(Ui, V i)}4

i=0 satisfying hypothesis (�), define a Zp-module homomorphism θ+ : Zp �Conj(G)� →∏4
i=0 Zp �Ui/V i � and characterize its image Ω . We will show that θ+ induces an isomorphism be-

tween Zp �Conj(G)� and Ω , which we call the additive theta map for the family F.
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3.1. Construction of the family F

Consider the family F consisting of the following five pairs of subgroups {(Ui, V i)}4
i=0 of G:

U0 = G, V 0 =

⎛⎜⎜⎝
1 0 Fp Fp

0 1 0 Fp

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ × {1},

U1 =
⎛⎜⎝

1 Fp Fp Fp

0 1 0 Fp

0 0 1 Fp

0 0 0 1

⎞⎟⎠ × Γ, V 1 =
⎛⎜⎝

1 0 0 Fp

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ × {1},

U2 =
⎛⎜⎝

1 0 Fp Fp

0 1 Fp Fp

0 0 1 Fp

0 0 0 1

⎞⎟⎠ × Γ, V 2 =
⎛⎜⎝

1 0 0 Fp

0 1 0 Fp

0 0 1 0
0 0 0 1

⎞⎟⎠ × {1},

U3 =
⎛⎜⎝

1 0 0 Fp

0 1 Fp Fp

0 0 1 Fp

0 0 0 1

⎞⎟⎠ × Γ, V 3 =
⎛⎜⎝

1 0 0 0
0 1 0 Fp

0 0 1 0
0 0 0 1

⎞⎟⎠ × {1},

U4 =
⎛⎜⎝

1 0 0 Fp

0 1 0 Fp

0 0 1 Fp

0 0 0 1

⎞⎟⎠ × Γ, V 4 = {id} × {1}.

Note that V i is the commutator subgroup of Ui for each i (thus the quotient group Ui/V i is abelian).

Proposition 3.1. The family F satisfies hypothesis (�) in Section 2.2.

Before the proof, note that G f is regarded as the semi-direct product

(1 Fp Fp

0 1 Fp

0 0 1

)
�

(
Fp

Fp

Fp

)⎛⎜⎝∼=

⎛⎜⎝
1 Fp Fp 0
0 1 Fp 0
0 0 1 0
0 0 0 1

⎞⎟⎠ �

⎛⎜⎝
1 0 0 Fp

0 1 0 Fp

0 0 1 Fp

0 0 0 1

⎞⎟⎠
⎞⎟⎠

by the obvious manner which we denote by H � N . The subgroup H acts on N from the left as
ordinary product of matrices. We will identify the group N with the 3-dimensional Fp-vector space,
and choose such a basis {v�}3

�=1 of N as x1 v1 + x2 v2 + x3 v3 corresponds to t(x1, x2, x3). Set N� = Fp v�

for each �. To show Proposition 3.1, it suffices to check that F f = {(U f
i , V f

i )}4
i=0 satisfies hypothesis (�)

for the finite p-group G f where U f
i and V f

i denote the first factors (“finite parts”) of Ui and V i
respectively. We use representation theory of semi-direct products of finite groups [23, Chapitre 9.2].

Proof of Proposition 3.1. Let X(N) denote the character group of the abelian group N . It consists of
a character χi, j,k for 0 � i, j,k � p − 1 which is defined by χi jk(

t(x1, x2, x3)) =
exp(2π

√−1(x1i + x2 j + x3k)/p). The left action of H on N naturally induces the right action of H on
X(N)). It is easy to see that

⋃3
�=1 X(N�) forms a set of representatives of the orbital decomposition

X(N)/H . Let H� denote the isotropic subgroup of H at a character in X(N�) \ {χ0,0,0} for each �. Then
H� has the following explicit description:
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H1 =
(1 0 0

0 1 Fp

0 0 1

)
, H2 =

(1 Fp Fp

0 1 0
0 0 1

)
, H3 = H .

By using representation theory on semi-direct products, an arbitrary irreducible representation of G f

is isomorphic to one of the following representations [23, Chapitre 9.2, Théorème 17]:

• IndG f

H1�N (ρ1 ⊗χ1) where ρ1 is a character of H1 and χ1 is an element in X(N1)\{χ0,0,0} (namely
χ1 coincides with χi,0,0 for certain i except for 0).

• IndG f

H2�N (ρ2 ⊗χ2) where ρ2 is a character of H2 and χ2 is an element in X(N2)\{χ0,0,0} (namely
χ2 coincides with χ0, j,0 for certain i except for 0).

• ρ3 ⊗ χ3 where ρ3 is an irreducible representation of H3 and χ3 is an element in X(N3) (namely
χ3 coincides with χ0,0,k for certain k).

Note that ρ1 ⊗ χ1 (resp. ρ2 ⊗ χ2) is regarded as a character of the abelian group U f
3 /V f

3 (resp.

U f
1 /V f

1 ). By applying the similar argument to the semi-direct product

H =
(1 Fp Fp

0 1 Fp

0 0 1

)
∼=

(1 Fp Fp

0 1 0
0 0 1

)
�

(1 0 0
0 1 Fp

0 0 1

)

(which we will denote by N ′ � H ′), we may prove that an arbitrary irreducible representation of H
(= H3) is isomorphic to either a character of the abelization of H3 or the induced representation
of a character of the abelian subgroup N ′ . Hence each ρ3 ⊗ χ3 is isomorphic to the induced repre-
sentation of a character of either U f

0 /V f
0 or U f

1 /V f
1 . Consequently the family F f = {(U f

i , V f
i )}i=0,1,3

satisfies hypothesis (�) for the group G f . We will add (U f
2 , V f

2 ) and (U f
4 , V f

4 ) to our family F f for
certain technical reasons. �
3.2. Construction of the isomorphism θ+

Take a system of representatives {a1,a2, . . . ,ari } of the left coset decomposition G/Ui for each i.
Set Tri([g]) = ∑ri

j=1 τ j([g]) for each i and for a conjugacy class [g] of G , where τ j([g]) is defined as

the conjugacy class of a−1
j ga j in Ui if a−1

j ga j is contained in Ui and 0 otherwise. It is easy to see

that Tri([g]) is independent of the choice of representatives {a j}ri
j=1, thus Tri induces a well-defined

Zp-module homomorphism Zp �Conj(G)� → Zp �Conj(Ui)� which we call the trace homomorphism from
Zp �Conj(G)� to Zp �Conj(Ui)�. Now we define the homomorphism θ+

i as the composition of the trace
map Tri and the natural surjection Zp �Conj(Ui)� → Zp �Ui/V i �. Set θ+ = (θ+

i )4
i=0. The value θ+([g])

for each conjugacy class [g] of G f is given in Table 1. There we use the notation [a,b, c,d, e, f ] for

the conjugacy class containing

( 1 a d f
0 1 b e
0 0 1 c
0 0 0 1

)
and the notation hui for the element 1 + ui + · · · + up−1

i

where ui is an element in Ui/V i .
Let I f

i be the image of the map θ
+, f
i : Zp[Conj(G f )] → Zp[U f /V f ] induced by θ+

i for each i except

for 0. Then by Table 1, we easily see that each I f
i is described as in Table 2. Note that generators of

each I f
i given in Table 2 are linearly independent over Zp except for i = 3; those of I f

3 have one

non-trivial relation
∑p−1

f =0 p2ζ f = p · phζ . For each natural number n, let G(n) denote the finite p-

group G f ×Γ/Γ pn
and U (n)

i the finite p-group U f
i ×Γ/Γ pn

respectively. Set I(n)
i = I f

i ⊗Zp Zp[Γ/Γ pn ]
(regarded as a Zp-submodule of Zp[U (n)

i /V i]). Obviously the projective system {I(n)
i }n∈N has the limit

Ii which coincides with the image of θ+
i .
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Table 1
Calculation of θ+([g]) for [g] in Conj(G f ).

Conjugacy class θ+ = (θ+
0 , θ+

1 , θ+
2 , θ+

3 , θ+
4 )

c
(a,b,c)
I = [a,b, c,d, e, f ]
(a 
= 0,b 
= 0)

(αaβbγ c,0,0,0,0)

c
(a,c,d,e)
II = [a,0, c,d, e, f ]
(a 
= 0, c 
= 0)

(αaγ c , αaγ cδdεehεcδ−a ,0,0,0)

c
(a,e)
III = [a,0,0,d, e, f ]
(a 
= 0)

(αa, αaεehδ ,0,0,0)

c
(b,c)
IV = [0,b, c,d, e, f ]
(b 
= 0, c 
= 0)

(βbγ c , 0, βbγ chδ , βbγ chζ ,0)

c
(b, f )
V = [0,b,0,d, e, f ]
(b 
= 0)

(βb, 0, βbhδ , pβbζ f −e· d
b ,0)

c
(c,d)
VI = [0,0, c,d, e, f ]
(c 
= 0,d 
= 0)

(γ c , γ cδdhε, pγ cδd,0,0)

c
(c)
VII = [0,0, c,0, e, f ]
(c 
= 0)

(γ c , γ chε, pγ c, pγ chζ , pγ chεhζ )

c
(d,e)
VIII = [0,0,0,d, e, f ]
(d 
= 0)

(1, pδdεe, pδd,0,0)

c
(e)
IX = [0,0,0,0, e, f ]
(e 
= 0)

(1, pεe, p, phζ , p2εehζ )

c
( f )
X = [0,0,0,0,0, f ] (1, p, p, p2ζ f , p3ζ f )

Table 2
Calculation of I f

i for each i.

I f
1 = [αaγ cδdεehεcδ−a ]Zp , I f

2 = [βbγ chδ (b 
= 0), pγ cδd]Zp ,

I f
3 = [p2ζ f , pγ chζ , βbγ chζ (b 
= 0, c 
= 0), pβbζ f (b 
= 0)]Zp ,

I f
4 = [p3ζ f , p2εehζ (e 
= 0), pγ chεhζ (c 
= 0)]Zp .

Definition 3.2. We define Ω to be the Zp-submodule of
∏4

i=0 Zp �Ui/V i � consisting of an element
(yi)

4
i=0 such that

1. (trace relations) the following equations hold:
(rel-1) TrZp �U0/V 0 �/Zp �U1/V 0 �(y0) ≡ y1,
(rel-2) TrZp �U0/V 0 �/Zp �U2/V 0 �(y0) ≡ y2,
(rel-3) TrZp �U2/V 2 �/Zp �U3/V 2 �(y2) ≡ y3,
(rel-4) TrZp �U1/V 2 �/Zp �U1∩U2/V 2 �(y1) ≡ TrZp �U2/V 2 �/Zp �U1∩U2/V 2 �(y2),
(rel-5) TrZp �U1/V 1 �/Zp �U4/V 1 �(y1) ≡ y4,
(rel-6) TrZp �U3/V 3 �/Zp �U4/V 3 �(y3) ≡ y4
(see Fig. 1);

2. the element yi is contained in Ii for each i except for 0.

Proposition–Definition 3.3. The homomorphism θ+ induces an isomorphism between Zp �Conj(G)� and Ω ,
which we call the additive theta map for F.

Proof. It is clear by construction that Ω contains the image of θ+ , hence we will prove the injectivity
and surjectivity of the induced map θ+ : Zp �Conj(G)� → Ω . It suffices to show that the homomor-
phism θ+,(n) : Zp[Conj(G(n))] → Ω(n) induced by θ+ is isomorphic for each natural number n, where

Ω(n) is defined to be the Zp-submodule of
∏4

i=0 Zp[U (n)
i /V i] satisfying the conditions corresponding

to those in Definition 3.2.
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Fig. 1. Trace and norm relations.

Injectivity. Let y = ∑
[g]∈Conj(G(n)) m[g][g] be an element contained in the kernel of θ+,(n) . To prove

that y is equal to zero, we will show that ρ̃(y) vanishes for an arbitrary class function ρ̃ on the
group G(n) . By hypothesis (�), it suffices to prove that χ̃i(y) vanishes for each i where χ̃i is the
associated character to the representation IndG(n)

U (n)
i

(χi) induced by an arbitrary character χi of the
abelian group U (n)

i /V i . Then we have

χ̃i(y) =
∑

[g]∈Conj(G(n))

m[g]
∑

j,a−1
j ga j∈U (n)

i

χi
(
a−1

j ga j
) = χi ◦ θ

+,(n)
i (y)

by the definition of χ̃i (where {a1, . . . ,ari } is a system of representatives of the left coset decomposi-

tion G(n)/U (n)
i ). Therefore the proof is done because θ

+,(n)
i (y) vanishes for each i by assumption.

Surjectivity. Let (yi)
4
i=0 be an arbitrary element in Ω(n) . Then each yi is described as a Zp[Γ/Γ pn ]-

linear combination of generators of I(n)
i :

y0 =
∑
a,b,c

κabcα
aβbγ c,

y1 =
∑
d,e

λ
(1)

de δdεe +
∑

a 
=0,e

λ
(2)
ae αaεehδ

+
∑

c 
=0,d

λ
(3)

cd γ cδdhε +
∑

a 
=0,c 
=0,d,e

λ
(4)

acdeα
aγ cδdεehεcδ−a ,

y2 =
∑

b 
=0,c

μ
(1)

bc βbγ chδ +
∑
c,d

pμ
(2)

cd γ cδd,

y3 =
∑

f

p2ν
(1)

f ζ f +
∑

c

pν
(2)
c γ chζ +

∑
b 
=0,c 
=0

ν
(3)

bc βbγ chζ +
∑

b 
=0, f

pν
(4)

bf βbζ f ,

y4 =
∑

f

p3σ
(1)

f ζ f +
∑
e 
=0

p2σ
(2)
e εehζ +

∑
c 
=0

pσ
(3)
c γ chεhζ .

Note that ν
(1)

f (0 � f � p − 1) and ν
(2)
0 are not determined uniquely because of the relation∑p−1

f =0 p2ζ f = p · phζ . The trace relations in Definition 3.2 give constraints among coefficients above,
which are described explicitly as follows:
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(rel-1) κ000 =
∑
d,e

λ
(1)

de , κa00 =
∑

e

λ
(2)
ae (a 
= 0),

κ00c =
∑

d

λ
(3)

cd (c 
= 0), κa0c =
∑
d,e

λ
(4)

acde (a 
= 0, c 
= 0),

(rel-2) κ00c =
∑

d

μ
(2)

cd , κ0bc = μ
(1)

bc (b 
= 0),

(rel-3) μ
(1)

bc = ν
(3)

bc (b 
= 0, c 
= 0), μ
(1)

b0 =
∑

f

ν
(4)

bf (b 
= 0),

μ
(2)
c0 = ν

(2)
c (c 
= 0), μ

(2)
00 =

∑
f

ν
(1)

f + ν
(2)
0 ,

(rel-4)
∑

e

λ
(1)

de = μ
(2)

0d , λ
(3)

cd = μ
(2)

cd (c 
= 0),

(rel-5) λ
(1)
00 =

∑
f

σ
(1)

f , λ
(1)
0e = σ

(2)
e (e 
= 0), λ

(3)
c0 = σ

(3)
c (c 
= 0),

(rel-6) ν
(1)

f = σ
(1)

f , ν
(2)
0 =

∑
e 
=0

σ
(2)
e , ν

(2)
c = σ

(3)
c (c 
= 0).

We remark that in order to derive the relations ν
(1)

f = σ
(1)

f and ν
(2)
0 = ∑

e 
=0 σ
(2)
e in (rel-6), we have to

replace ν
(1)

f and ν
(2)
0 appropriately by using the relation

∑p−1
f =0 p2ζ f = p · phζ . Then we may calculate

directly that the element y in Zp[Conj(G(n))] defined as

y =
∑

a 
=0,b 
=0,c

κabcc
(a,b,c)
I +

∑
a 
=0,c 
=0,d,e

λ
(4)

acdec
(a,c,d,e)
II +

∑
a 
=0,e

λ
(2)
ae c

(a,e)
III

+
∑

b 
=0,c 
=0

μ
(1)

bc c
(b,c)
IV +

∑
b 
=0, f

ν
(4)

bf c
(b, f )
V +

∑
c 
=0,d 
=0

μ
(2)

cd c
(c,d)
VI +

∑
c 
=0

ν
(2)
c c

(c)
VII

+
∑

d 
=0,e

λ
(1)

de c
(d,e)
VIII +

∑
e 
=0

σ
(2)
e c

(e)
IX +

∑
f

ν
(1)

f c
( f )
X

satisfies θ+,(n)(y) = (yi)
4
i=0 by using the explicit trace relations above. �

4. Translation into the multiplicative theta map

In this section we will translate the additive theta map θ+ constructed in the previous subsection
into the multiplicative theta map θ . The main tool is the integral logarithmic homomorphism introduced
in Section 1.1. Let θi denote the composition of the norm map Nri and the canonical homomorphism
K1(Λ(Ui)) → Λ(Ui/V i)

× for each i, as in Section 0. Set θ = (θi)
4
i=0.

Proposition–Definition 4.1 (Frobenius homomorphism). Set ϕ(g) = g p for arbitrary g in G. Then ϕ induces
a group homomorphism ϕ : G → Γ , which we call the Frobenius homomorphism. We denote the induced ring
homomorphism Λ(G) → Λ(Γ ) by the same symbol ϕ , and also call it the Frobenius homomorphism.
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Proof. Since the exponent of G f is p, ϕ coincides with ϕΓ ◦ πG where ϕΓ :Γ → Γ is the Frobenius
endomorphism on Γ induced by t �→ t p and πG is the canonical projection G → Γ , hence ϕ is clearly
a group homomorphism. �
Remark 4.2. The correspondence g �→ g p does not induce a group endomorphism ϕ : G → G in gen-
eral.

In the following, we also denote by the same symbol ϕ the induced ring homomorphism
Λ(Ui/V i) → Λ(Γ ).

Lemma 4.3. Let G f
1 and G f

2 be arbitrary subgroups of G f . For � = 1,2, set G� = G f
� × Γ . Suppose that G1

contains G2 . Then the Verlagerung homomorphism VerG1
G2

: Gab
1 → Gab

2 coincides with the composition of the

e-th power of the Frobenius homomorphism ϕe : Gab
1 → Γ and the canonical injection Γ → Gab

2 where we
denote the index of G2 in G1 by pe .

Proof. By the transitivity of the Verlagerung homomorphism, it suffices to prove the claim when the
index of G2 in G1 is p. In this case it is well known that G2 is normal in G1. Let σ be an element
in G f

1 which generates G1/G2. Then {σ j}p−1
j=0 is a set of representatives of G1/G2. Suppose that an

element g in G1 satisfies gG2 = σ j(g)G2. Then by the definition of the Verlagerung homomorphisms,
we have VerG1

G2
(g) = ∏p−1

j=0 σ−( j+ j(g)) gσ j = g p = ϕ(g). �
Hence in our special case (more generally, in the case when the exponent of the finite part G f

is p), we may identify every Verlagerung homomorphism with the several power of the Frobenius
homomorphism.

Definition 4.4. We define Ψ to be the subgroup of
∏4

i=0 Λ(Ui/V i)
× consisting of an element (ηi)

4
i=0

such that

1. (norm relations) the following equations hold:
(rel-1) NrΛ(U0/V 0)/Λ(U1/V 0)(η0) ≡ η1,
(rel-2) NrΛ(U0/V 0)/Λ(U2/V 0)(η0) ≡ η2,
(rel-3) NrΛ(U2/V 2)/Λ(U3/V 2)(η2) ≡ η3,
(rel-4) NrΛ(U1/V 2)/Λ(U1∩U2/V 2)(η1) ≡ NrΛ(U2/V 2)/Λ(U1∩U2/V 2)(η2),
(rel-5) NrΛ(U1/V 1)/Λ(U4/V 1)(η1) ≡ η4,
(rel-6) NrΛ(U3/V 3)/Λ(U4/V 3)(η3) ≡ η4
(see Fig. 1);

2. (congruences) the congruence ηi ≡ ϕ(η0)
(G:Ui)/p mod Ii holds for each i except for 0.

Proposition 4.5. The homomorphism θ induces a surjection from K1(Λ(G)) onto Ψ with kernel S K1(Zp[G f ]).
In other words, θ induces the theta map for the family F (in the sense of Definition 2.3).

In the rest of this section, we prove Proposition 4.5 by using the additive theta map θ+ and
the integral logarithmic homomorphisms. Since the integral logarithmic homomorphisms are defined
only for group rings of finite groups, we fix a natural number n and prove the isomorphy for finite
quotients θ(n) : K1(Zp[G(n)])/S K1(Zp[G f ]) �−→ Ψ (n)(⊆ ∏

i Zp[U (n)
i /V i]×) where Ψ (n) is the subgroup

of
∏

i Zp[U (n)
i /V i]× defined by the same conditions as in Definition 4.4. Then we may obtain the

desired surjection by taking the projective limit.

4.1. Logarithmic isomorphisms

In the following three subsections, we fix a natural number n.
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Lemma 4.6. For each i except for 0, 1 + I(n)
i is a multiplicative subgroup of Zp[U (n)

i /V i]× and the p-adic

logarithmic homomorphism induces an isomorphism between 1 + I(n)
i and I(n)

i .

Proof. By direct calculation, we have

(
I(n)
1

)2 = [
pαaγ cδdεehεcδ−a , pδdεehεcδ−a ,αaγ chε,δ

(
(a, c) 
= (0,0)

)]
Zp [Γ/Γ pn ],(

I(n)
2

)2 = [
pβbγ chδ, p2γ cδd]

Zp[Γ/Γ pn ],
(

I(n)
3

)2 = [
pβbγ chζ , p2βbζ f ]

Zp [Γ/Γ pn ],(
I(n)
4

)2 = [
p6ζ f , p5εehζ , p4γ chεhζ

]
Zp[Γ/Γ pn ]

where hδ,ε is defined as
∑

0�d,e�p−1 δdεe . This calculation implies that (I(n)
i )2 is contained in I(n)

i ,

thus each 1 + I(n)
i is stable under multiplication. Moreover we may calculate directly that (I(n)

i )4

coincides with p(I(n)
i )3 for i = 1 and (I(n)

i )3 coincides with p(I(n)
i )2 for other i. Set N = 3 if i is equal

to 1 and N = 2 otherwise. Note that the topology on (I(n)
i )N induced by the filtration {(I(n)

i )N+m}m∈N

coincides with the p-adic topology by the calculation above.

The existence of inverse elements. By the argument above, ym is contained in pm−N (I(n)
i )N for an

arbitrary element y in I(n)
i and for an arbitrary natural number m larger than N . Hence (1 + y)−1 =∑

m�0(−1)m ym converges in I(n)
i with respect to the p-adic topology.

Convergence of logarithms. Take an arbitrary element y in I(n)
i . Then by simple calculation ym/m

is contained in I(n)
i for m less than N (use the assumption p 
= 2,3) and in (pm−N/m)I(n)

i for m
strictly larger than N . Therefore the logarithm log(1 + y) = ∑

m�1(−1)m−1(ym/m) converges p-

adically in I(n)
i .

Logarithmic isomorphisms. Let m be a natural number. Since {(I(n)
i )m}N+1 is contained in pm(I(n)

i )mN ,

we may show that 1 + (I(n)
i )m is a subgroup of 1 + I(n)

i and the logarithm on 1 + (I(n)
i )m converges

p-adically in (I(n)
i )m by the same argument as above. Since {(I(n)

i )N+m}m∈N gives the p-adic topology

on (I(n)
i )N , it is sufficient to show that the logarithm induces an isomorphism

(
1 + (

I(n)
i

)m)/(
1 + (

I(n)
i

)m+1) �−→ (
I(n)
i

)m/(
I(n)
i

)m+1; 1 + y �→ y.

To prove it, we have only to verify that ypk
/pk is contained in (I(n)

i )m+1 for an arbitrary element

1 + y in 1 + (I(n)
i )m and for an arbitrary natural number k. By direct calculation, ypk

is contained in

ppk−3(I(n)
1 )2 if both i and m are equal to 1 and contained in pmpk−m−1(I(n)

i )m+1 otherwise. Then it is

easy to see that both ppk−3/pk and pmpk−m−1/pk are integers (use the assumption p 
= 2,3). �
For the later use, we now introduce the Zp-submodule J3 of Zp �U3/V 3 �, which is defined as the

image of the composition of TrZp �Conj(U2)�/Zp �Conj(U3)� and the canonical surjection Zp �Conj(U3)� →
Zp �U3/V 3 �. Then J3 has the explicit description [βbγ chζ (c 
= 0), pβbζ f ]Zp ⊗Zp Λ(Γ ), which we

denote by J f
3 ⊗Zp Λ(Γ ). Set J (n)

3 = J f
3 ⊗Zp Zp[Γ/Γ pn ]. Since ( J (n)

3 )3 = p( J (n)
3 )2 holds by simple cal-

culation, we may prove that 1 + J (n)
3 is a multiplicative subgroup of Zp[U (n)

3 /V 3]× and the p-adic

logarithm induces an isomorphism between 1 + J (n)
3 and J (n)

3 by the same argument as Lemma 4.6.

Note that J (n)
3 contains I(n)

3 by construction.
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4.2. Ψ (n) contains the image of θ(n)

Lemma 4.7. The following diagram commutes for each i:

K1(Zp[G(n)])
Nr

Zp [G(n)]/Zp [U (n)
i ]

log
Qp[Conj(G(n))]

Tr
Qp [Conj(G(n))]/Qp [Conj(U

(n)
i )]

K1(Zp[U (n)
i ])

log
Qp[Conj(U (n)

i )]

Proof. By the proof of [18, Theorem 1.4], the following diagram commutes

K1(Zp[G(n)])
Nr

Zp [G(n)]/Zp [U (n)
i ]

log
Qp[Conj(G(n))]

R ′

K1(Zp[U (n)
i ])

log
Qp[Conj(U (n)

i )]

where R ′ : Zp[Conj(G(n))] → Zp[Conj(U (n)
i )] is defined as follows: for an arbitrary element x in G(n) ,

take a set of representatives {a′
1, . . . ,a′

si
} of the double coset decomposition 〈x〉\G(n)/U (n)

i , and let J

be the finite set consisting of such j as a′
j
−1xa′

j is contained in U (n)
i . Then R ′(x) is defined as an

element
∑

j∈J a′
j
−1xa′

j . Obviously it suffices to show that R ′ coincides with the trace.

(Case-1). Assume that {a′
j}1� j�si represents the left coset decomposition G(n)/U (n)

i . Then R ′ coincides
with the trace map by definition.

(Case-2). Assume that {xka′
j}0�k�p−1,1� j�si represents the left coset decomposition G(n)/U (n)

i . In this

case R ′(x) is equal to p−1 Tr(x) by definition. Note that j is contained in J if and only if xa′
j is

contained in a′
j U

(n)
i . This is impossible because {xka′

j}0�k�p−1,1� j�si represents the left coset decom-

position G(n)/U (n)
i . Therefore J is empty and Tr(x) = R ′(x) = 0 holds. �

Proposition 4.8. The image of an element η in K1(Zp[G(n)]) under the composite map θ
+,(n)
i ◦ ΓG(n) is de-

scribed as log(ϕ(θ
(n)
0 (η))−(G:Ui )/pθ

(n)
i (η)) for each i except for 0, where ΓG(n) is the integral logarithm for G(n)

(see Proposition–Definition 1.1).

Proof. The claim follows from Lemma 4.7 and the relation

(G : Ui)

p
ϕ ◦ θ

+,(n)
0 = θ

+,(n)
i ◦ 1

p
ϕ,

which is easy to verify for each g in G(n) . �
Proposition 4.9. The following congruences hold for arbitrary η in K1(Zp[G(n)]):

(1) θ
(n)
i (η) ≡ ϕ(θ

(n)
0 (η)) mod I(n)

i for i = 1,2;

(2) θ
(n)
3 (η) ≡ ϕ(θ

(n)
0 (η))p mod J (n)

3 ;

(3) θ
(n)
4 (η) ≡ ϕ(θ

(n)
0 (η))p2

mod pZp[U (n)
4 /V 4].
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Proof. We may verify the congruence (1) by the calculation similar to the proof of [27, Lemma 1.7],
hence we will give the proof only for the congruences (2) and (3). Note that pZp[U (n)

4 /V 4] obviously

contains I(n)
4 (see Table 2).

The congruence (2). Let η = ∑
0�i, j,k�p−1(η

(k)
i, j β

k)αiδ j be an arbitrary element in Zp[G(n)] where

each ciefficient η
(k)
i, j is an element in Zp[U (n)

4 ]. Then we may easily calculate that α�δmη is

equal to
∑

0�i, j�p−1(
∑p−1

k=0 ν�,m(η
(k)

i−�, j−m−�k)β
k)αiδ j where ν�,m(x) is the element defined as

(α�δm)x(α�δm)−1 for each 0 � �,m � p − 1 (we regard the sub-indices i, j of η
(k)
i, j as an element

in (Z/pZ)⊕2 and the upper-index (k) as an element in Z/pZ). Then we may calculate θ
(n)
3 (η) as

follows (we use the same notation ν�,m(η
(k)

i−�, j−m−�k) for its image in Zp[U (n)
3 /V 3]):

θ
(n)
3 (η) = det

( p−1∑
k=0

ν�,m
(
η

(k)

(i, j)−(�,m)−(0,�k)

)
βk

)
(i, j),(�,m)

=
∑

σ∈S(p2)

sgn(σ )
∏

(�,m)∈(Z/pZ)⊕2

( p−1∑
k=0

ν�,m
(
η

(k)

σ (�,m)−(�,m)−(0,�k)

)
βk

)

where S(p2) is the permutation group of the finite set {(�,m) | 0 � �,m � p − 1}. We denote by Pσ

the σ -component of θ
(n)
3 (η). Since the commutator [β, δ] is trivial, the equation

ν0,μ(Pσ ) = sgn(σ )
∏

0��,m�p−1

( p−1∑
k=0

ν�,m+μ

(
η

(k)

σ (�,m)−(�,m)−(0,�k)

)
βk

)

= sgn(σ )
∏

0��,m�p−1

( p−1∑
k=0

ν�,m
(
η

(k)

(σ (�,m−μ)+(0,μ))−(�,m)−(0,�k)

)
βk

)
(4.1)

holds for each μ in Z/pZ. First suppose that σ does not satisfy

σ(�,m) = σ(�,m − μ) + (0,μ) (4.2)

for certain μ in Z/pZ, then the right-hand side of (4.1) coincides with Pτμ where τμ is the per-
mutation defined by τμ(�,m) = σ(�,m − μ) + (0,μ).3 Each τμ is distinct by assumption, hence∑p−1

μ=0 Pτμ is contained in
∑p−1

μ=0 ν0,μ(Zp[U (n)
3 /V 3]) which is no other than the image of the trace

map from Zp[Conj(U (n)
2 )] to Zp[U (n)

3 /V 3]. In other words,
∑p−1

μ=0 Pτμ is contained in J (n)
3 by defini-

tion.
Next suppose that σ satisfies the relation (4.2) for an arbitrary μ in Zp/pZp . Set σ(�,0) =

(a�,b�), then σ(�,−μ) = (a�,b� − μ) holds for each μ in Z/pZ by (4.2). This implies that all
permutations satisfying (4.2) are described as cs,h(�,m) = (s(�),h� + m), where s is a permuta-
tion of the set {0,1, . . . , p − 1} and h = (h�)� is an element in (Z/pZ)⊕p . We may calculate Pcs,h

as

3 Note that sgn(σ ) is equal to sgn(τμ) because τμ coincides with a composition cμ ◦σ ◦c−μ , where cμ is a cyclic permutation
of degree p defined as (�,m) �→ (�,m + μ).
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Pcs,h = sgn(cs,h)
∏

0��,m�p−1

( p−1∑
k=0

ν�,m
(
η

(k)

cs,h(�,m)−(�,m)−(0,�k)

)
βk

)

= sgn(s)
∏

0��,m�p−1

( p−1∑
k=0

ν�,m
(
η

(k)

(s(�)−�,h�−�k)

)
βk

)

(we use the relation sgn(cs,h) = sgn(s)p ). Set Q s,h;� = ∑p−1
k=0 η

(k)

(s(�)−�,h�−�k)
βk . We claim that the

congruence
∏p−1

m=0 ν0,m(Q s,h;�) ≡ ϕ(Q s,h;�) mod J (n)
3 holds; in general, let x = ∑

u∈U f
3 /V f

3
xuu be an

element in Zp[U (n)
3 /V 3] (where each xu is in Zp[Γ/Γ pn ]). Then

p−1∏
m=0

ν0,m(x) ≡
∑

u∈U f
3 /V f

3

p−1∏
m=0

ν0,m(xu)ν0,m(u) mod J (n)
3

≡
∑

u∈U f
3 /V f

3

xp
u Ver

U (n)
2

U (n)
3

(u) mod J (n)
3

holds by [27, Chapter 5, Lemma 1.9]. Recall that Ver
U (n)

2

U (n)
3

(u) is equal to ϕ(u) = 1 by Lemma 4.3,

thus the claim follows because xp
u is congruent to ϕ(xu) modulo pZp[Γ/Γ pn ] (recall that J (n)

3 con-
tains pZp[Γ/Γ pn ]). Now we obtain

∑
s,h

Pcs,h ≡
∑
s,h

sgn(s)

( p−1∏
�=0

ν�,0(ϕ(Q s,h;�))
)

mod J (n)
3

≡
∑
s,h

sgn(s)

( ∑
0�k0,...,kp−1�p−1

p−1∏
�=0

ϕ
(
η

(k�)

(s(�)−�,h�−�k�)

))
mod J (n)

3 (4.3)

(we use the obvious relation ν�,0 ◦ ϕ = ϕ for the second congruence). We denote the right-
hand side of (4.3) by

∑
s,h,(k�)�

Rs,h;k0,...,kp−1 . First suppose that s(�) − � (resp. k� , h� − �k�) is
equal to a certain constant λ (resp. κ , μ) determined independent of �. Such s and h are de-
scribed as sλ;� �→ � + λ and (hμ,κ )� = �κ + μ for each λ,κ and μ respectively, and the equa-

tion Rsλ,hμ,κ ;κ,...,κ = ϕ(η
(κ)
λ,μ)p holds (note that sgn(sλ) is 1 because sλ is a cyclic permutation

of degree p). Otherwise set k(w)
� = k�+w , s(w)(�) = s(� + w) − w and h(w)

� = h�+w − wk�+w for
each w in Z/pZ respectively. Then each R

s(w),h(w);k(w)
0 ,...,k(w)

p−1
is a distinct term in the expansion

(4.3) but has the same value by construction. Hence the element
∑p−1

w=0 R
s(w),h(w);k(w)

0 ,...,k(w)
p−1

is con-

tained in J (n)
3 because J (n)

3 contains pZp[Γ/Γ pn ]. Consequently the element θ
(n)
3 (η) is congruent

to

∑
0�λ,μ,κ�p−1

Rsλ,hμ,κ ;κ,κ,...,κ =
∑

0�λ,μ,κ�p−1

ϕ
(
η

(κ)
λ,μ

)p ≡ ϕ(η)p mod J (n)
3 .



1086 T. Hara / Journal of Number Theory 130 (2010) 1068–1097
The congruence (3). Similarly to the argument in the proof of (2), we may calculate θ4(η) for an
element η = ∑

k,�,m ηk,�,mαkβ�δm in Zp[G(n)] (each ηk,�,m is in Zp[U (n)
4 ]) as

θ4(η) =
∑

σ∈S(p3)

sgn(σ )
∏

0�k,�,m�p−1

νk,�,m(ησ(k,�,m)−(k,�,m))

where S(p3) is the permutation group of (Z/pZ)⊕3. Let Pσ denote the σ -component of the
right-hand side of the equation above. First suppose that the permutation τκ,λ,μ defined by
(k, �,m) �→ σ(k − κ, � − λ,m − μ) + (κ,λ,μ) is distinct for each (κ,λ,μ) in (Zp/pZp)⊕3. Then∑

κ,λ,μ Pτκ,λ,μ is contained in I(n)
4 (hence also contained in pZp[U (n)

4 /V 4]) by the similar argu-
ment to the proof of (2). On the other hand, suppose that σ is the permutation cκ,λ,μ for
(κ,λ,μ) in (Zp/pZp)⊕3 defined by (k, �,m) �→ (k + κ, � + λ,m + μ). Then we obtain the congru-

ence Pcκ,λ,η ≡ ϕ(ηκ,λ,μ)p2
mod pZp[U (n)

4 /V 4] similarly to the proof of (2).4 �
Since each θ

(n)
i is essentially a norm map, it is clear that (θ

(n)
i (η))4

i=0 satisfies the desired norm
relations for Ψ (n) . Note that the congruences in Proposition 4.9(1) are the desired ones for i = 1,2.
Now set J (n)

4 = pZp[U (n)
4 /V 4]. Then we may define the element yi = log(ϕ(θ

(n)
0 (η))−(G:Ui)/pθ

(n)
i (η))

in J (n)
i for i = 3,4 by the congruences (2) and (3) in Proposition 4.9. On the other hand, yi is an

element in I(n)
i by Proposition 4.8. Hence ϕ(θ

(n)
0 (η))−(G:Ui)/pθ

(n)
i (η) is contained in 1 + I(n)

i because

the p-adic logarithm induces an injection on 1 + J (n)
i and an isomorphism between 1 + I(n)

i and I(n)
i .5

This implies the desired congruence for i = 3,4, thus (θ
(n)
i (η))4

i=0 is contained in Ψ (n) .

4.3. Surjectivity for finite quotients

Let (ηi)
4
i=0 be an arbitrary element in Ψ (n) . Then for each i except for 0, the multiplicative group

1 + Ii contains an element ϕ(η0)
−(G:Ui)/pηi by the congruences in Definition 4.4. Hence the element

yi defined as log(ϕ(η0)
−(G:Ui)/pηi) is contained in I(n)

i by Lemma 4.6. For i = 0, set y0 = Γ
U (n)

0 /V 0
(η0).

Then (yi)
4
i=0 satisfies the trace relations for Ω(n) by using Lemma 4.7, thus (yi)

4
i=0 is an element

in Ω(n) . By the additive theta isomorphism (Proposition–Definition 3.3), there exists a unique ele-
ment y in Zp[Conj(G(n))] corresponding to (yi)

4
i=0.

Proposition 4.10. Let y be as above. Then ωG(n) (y) vanishes where ωG(n) is the group homomorphism intro-
duced in Theorem 1.2. In other words, y is contained in the image of the integral logarithm ΓG(n) .

Proof. The homomorphism ωG(n) coincides with ω
U (n)

0 /V 0
◦ θ

+,(n)
0 by definition where θ

+,(n)
0 is the

canonical abelization G(n) → U (n)
0 /V 0, thus we obtain the equation ωG(n) (y) = ω

U (n)
0 /V 0

(y0) = 1 be-

cause y0 is contained in the image of Γ
U (n)

0 /V 0
(see Theorem 1.2). �

Let η′ be an element in K1(Zp[G(n)]) satisfying ΓG(n) (η′) = y. Then η′ is determined up to multi-
plication by a torsion element in K1(Zp[G(n)]) by Theorem 1.2. Note that θ+,(n) ◦ ΓG(n) (η′) coincides
with (yi)

4
i=0 by construction. Combining with Proposition 4.8, we obtain the following equations:

4 Here we use the congruence η
p
κ,λ,μ ≡ ϕ(ηκ,λ,μ) mod pZp[U (n)

4 /V 4]. This is the reason why we have to replace I(n)
4 by

pZp [U (n)
4 /V 4].

5 For i = 4, the p-adic logarithm induces an isomorphism between 1 + pZp[U (n)
4 /V 4] and pZp [U (n)

4 /V 4] since p is an odd
prime number. For i = 3, see the last paragraph of Section 4.1.
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y0 = Γ
U (n)

0 /V 0
(η0) = Γ

U (n)
0 /V 0

(
θ

(n)
0

(
η′)), (4.4)

yi = log
ηi

ϕ(η0)(G:Ui)/p
= log

θ
(n)
i (η′)

ϕ(θ
(n)
0 (η′))(G:Ui)/p

for 1 � i � 4. (4.5)

From Eq. (4.4) and the fact that the integral logarithmic homomorphism is injective on
K1(Zp[U (n)

0 /V 0]) modulo torsion elements, there exists a unique element τ in K1(Zp[U (n)
0 /V 0])tors

satisfying η0 = τθ
(n)
0 (η′). The element τ is identified with an element in μp−1(Zp) × (U (n)

0 /V 0) by

Higman–Wall’s Theorem 1.3, thus the equation θ
(n)
0 (η′τ ) = θ

(n)
0 (η′)τ = η0 holds. Set η = η′τ . Then

Eq. (4.5) holds when we replace η′ by η (recall that τ is contained in the kernel of ΓG(n) ). There-

fore we obtain θ
(n)
i (η) = ηi for each i by Lemma 4.6, which implies that θ(n) induces an surjection

onto Ψ (n) .

4.4. Taking the projective limit

Consider the following diagram with exact rows and an injective left vertical arrow:

0 ker(θ(n)) K1(Zp[G(n)]) θ(n)

Ψ

Log

0

0 ker(ΓG(n) ) K1(Zp[G(n)])
θ+,(n)◦ΓG(n)

Im(θ+,(n) ◦ ΓG(n) ) 0,

where Log is defined by the formula Log((ηi)
4
i=0) = (log(ϕ(η0)

−(G:Ui )/pηi))
4
i=0 (we denote Γ

U (n)
0 /V 0

(η)

by log(ϕ(η0)
−1/pη0) by abuse of notation). It is easy to see that the kernel of Log is coincides with

the image of θ(n)|ker(ΓG(n) ) , which is isomorphic to μp−1(Zp) × U (n)
0 /V 0 by Higman–Wall’s Theo-

rem 1.3. Hence the kernel of θ(n) is isomorphic S K1(Zp[G(n)]) by the snake lemma. We remark that
S K1(Zp[G(n)]) is decomposed as the direct sum of S K1(Zp[G f ]) and S K1(Zp[Γ/Γ pn ]) by Oliver’s
theorem [16, Proposition 25], and S K1(Zp[Γ/Γ pn ]) is trivial since Γ/Γ pn

is abelian. Therefore we
obtain the following exact sequence of projective systems of abelian groups:

1 S K1(Zp[G f ]) K1(Zp[G(n)]) θ(n)

Ψ (n) 1. (4.6)

The projective system {S K1(Zp[G f ])}n∈N obviously satisfies the Mittag–Leffler condition, hence we
obtain the exact sequence

1 → S K1(Zp[G f ]) → lim←−
n∈N

K1(Zp[G(n)]) (θ(n))n−−−−→ Ψ → 1 (4.7)

by taking the projective limit of (4.6). The kernel of Λ(G) → Zp[G(n)] satisfies the condition (∗) in
[8, Section 1.4.1], hence by the same argument as the proof of [8, Proposition 1.5.1], we may prove
that lim←−n∈N

K1(Zp[G(n)]) is isomorphic to K1(Λ(G)). The proof of Proposition 4.5 is now finished.

5. Localized theta map

First note that the canonical Ore set S for a 1-dimensional p-adic Lie group G coincides
with the multiplicative closed set Λ(G) \ mG where mG is the kernel of the augmentation map
Λ(G) → Λ(Γ )/pΛ(Γ ) (use [5, Lemma 2.1 (3) or (4)] for H = G f ). Especially for G = G f × Γ ,
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Λ(G)S (resp. Λ(Ui/V i)S ) is isomorphic to Λ(Γ )(p)[G f ] (resp. Λ(Γ )(p)[U f /V f ]) where Λ(Γ )(p) is
the localization of Λ(Γ ) with respect to the prime ideal pΛ(Γ ). Let R = Λ(Γ )̂(p) denote the p-

adic completion of Λ(Γ )(p) and let ΨS be the subgroup of
∏

i Λ(Ui/V i)
×
S consisting of an element

(ηS,i)
4
i=0 such that

1. (norm relations) the following equations hold:
(rel-1) NrΛ(U0/V 0)S /Λ(U1/V 0)S (ηS,0) ≡ ηS,1,
(rel-2) NrΛ(U0/V 0)S /Λ(U2/V 0)S (ηS,0) ≡ ηS,2,
(rel-3) NrΛ(U2/V 2)S /Λ(U3/V 2)S (ηS,2) ≡ ηS,3,
(rel-4) NrΛ(U1/V 2)S /Λ(U1∩U2/V 2)S (ηS,1) ≡ NrΛ(U2/V 2)S /Λ(U1∩U2/V 2)S (ηS,2),
(rel-5) NrΛ(U1/V 1)S /Λ(U4/V 1)S (ηS,1) ≡ ηS,4,
(rel-6) NrΛ(U3/V 3)S /Λ(U4/V 3)S (ηS,3) ≡ ηS,4
(See Fig. 1);

2. (congruences) the congruence ηS,i ≡ ϕ(ηS,0)
(G:Ui)/p mod I S,i holds for each i except for 0 where

I S,i is defined as I f
i ⊗Zp Λ(Γ )(p) .

Let θS = (θS,i)
4
i=0 be the family of the homomorphisms θS,i which is defined as the composition

of the norm map NrΛ(G)S /Λ(Ui)S and the canonical homomorphism K1(Λ(Ui)S ) → Λ(Ui/V i)
×
S (see

Section 0).

Proposition 5.1. The image of θS is contained in ΨS .

Proof. It suffices to show that (θS,i(ηS ))
4
i=0 satisfies the norm relations and congruences above for

ηS in K1(Λ(G)S ). Norm relations are obviously satisfied by the definition of θS . The congruences for
i = 1,2 are obtained by the argument similar to the proof of [27, Lemma 1.7]. For i = 3,4, we obtain
the congruence θS,i(ηS ) ≡ θS,0(ηS )

(G:Ui)/p mod J S,i by the same argument as Proposition 4.9 where

J S,i is defined as J f
i ⊗Zp Λ(Γ )(p) . Set Î i = I f

i ⊗Zp R and Ĵ i = J f
i ⊗Zp R respectively. Then we obtain

the logarithmic isomorphism 1+ Î i
∼−→ Î i and 1+ Ĵ i

∼−→ Ĵ i for i = 3,4 by the argument similar to the
proof of Lemma 4.6. Therefore we obtain the congruence θS,i(ηS ) ≡ θS,0(ηS )

(G:Ui)/p mod Î i similarly
to the argument following the proof of Proposition 4.9 by using the generalized integral logarithm
ΓR,G(n) (see the following Remark 5.2). The proof is now finished since the intersection of Î i and
Λ(Ui/V i)S coincides with I S,i . (We may easily check that for an arbitrary element in Î i ∩ Λ(Ui/V i)S ,

its coefficient of each generator of I f
i in Table 2 has to be contained in Λ(Γ )[p−1] ∩ R = Λ(Γ )(p) .

Also refer the argument in the proof of Proposition 5.3.) �
Remark 5.2. The integral logarithm Γ	,m for R(	) is also extended to a group homomorphism ΓR,	:
K1(R[	]) → R[Conj(	)] if R is the completion of the localized Iwasawa algebra Λ(Γ )̂(p); let x be an

element in K1(R[	]) and x̃ its lift to R[	]× . There exist an element r̃ in R× and ỹ in 1 + mR[	] such
that x̃ = r̃ ỹ holds. Then put ΓR,	(x) = ΓR(r̃) + Γ	,m(y) where ΓR : R× → R is the integral logarithm
for R (regarded as a group ring of the trivial group) and y is the image of ỹ in K1(R[	],mR[	]).

Proposition 5.3. The intersection of ΨS and
∏

i Λ(Ui/V i)
× coincides with Ψ .

Proof. It suffices to prove that I S,i ∩Λ(Ui/V i) coincides with Ii for each i except for 0. The Zp-module

Ii is clearly contained in I S,i ∩Λ(Ui/V i). Note that all monomials which appear in the generators of I f
i

in Table 2 are of the form of pkui for ui in U f
i /V f

i and they are distinct except for i = 3. First sup-
pose that i is not equal to 3. Then for an arbitrary element in I S,i ∩ Λ(Ui/V i), the coefficient of each

generator in I f
i has to be contained in Λ(Γ )[p−1] ∩ Λ(Γ )(p) , which coincides with Λ(Γ ). Hence the

intersection I S,i ∩ Λ(Ui/V i) is contained in Ii . Next consider the case i = 3. Take an arbitrary ele-

ment in I S,3 ∩ Λ(U3/V 3) and let ν
(1)

f (resp. ν
(2)
0 ) denote its coefficient of p2ζ f (resp. phζ ), which is
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contained in Λ(Γ )(p) . Then the coefficient of ζ f is p2ν
(1)

f + pν
(2)
0 for each f , which is contained in

Λ(Γ ) by definition. Replace ν
(2)
0 by ν̃

(2)
0 = ν

(2)
0 + pν

(1)
0 and ν

(1)

f by ν̃
(1)

f = ν
(1)

f − ν
(1)
0 using the rela-

tion
∑p−1

f =0 p2ζ f = p · phζ . Then ν̃
(2)
0 is contained in Λ(Γ )[p−1] ∩ Λ(Γ )(p)(= Λ(Γ )) by construction,

thus each ν̃
(2)

f is also contained in Λ(Γ ) automatically. This implies that the intersection of I S,3 and
Λ(U3/V 3) is also contained in I3. �

Hence we obtain the localized theta map θS : K1(Λ(G)S ) → ΨS for F.

6. Congruences among abelian p-adic zeta pseudomeasures

Let FUi (resp. F V i ) be the maximal subfield of F ∞ fixed by Ui (resp. V i ). In the previous sections
we have constructed the theta map θ and the localized theta map θS for the family F. If we may
apply Theorem 2.4 to our case G = G f × Γ , the element (ξi)

4
i=0 is expected to be contained in ΨS

where ξi is the p-adic zeta pseudomeasure for F V i /FUi . In order to show it, we have to verify that
ξi ’s satisfy the norm relations and the congruences in the definition of ΨS . The norm relations among
ξi ’s are easily verified by formal calculation using their interpolation properties, hence what is the
most difficult is to derive the desired congruences among abelian p-adic zeta pseudomeasures.

6.1. Congruences

Now let us study the congruences among ξi ’s.

Proposition 6.1 (Congruences among ξi ’s). The p-adic zeta pseudomeasures {ξi}4
i=0 satisfy the following con-

gruences:

(1) ξi ≡ ϕ(ξ0) mod I S,i for i = 1,2;
(2) ξ3 ≡ c3 mod J S,3 where c3 is a certain element in Λ(Γ )(p);
(3) ξ4 ≡ c4 mod I S,4 where c4 is a certain element in Λ(Γ )(p) .

Remark 6.2. These congruences are not sufficient to prove that (ξi)
4
i=0 is contained in ΨS . Hence

we have to modify Burns’ technique 2.4 to prove our main theorem (Theorem 2.1), which will be
discussed in the next section.

Remark 6.3. We may replace ci by an element in Λ(Γ ) for i = 3 and 4 because c3 (resp. c4) is
determined modulo pΛ(Γ )(p) (resp. p3Λ(Γ )(p)). Note that the intersection of J S,3 (resp. I S,4) and
Λ(Γ )(p) coincides with pΛ(Γ )(p) (resp. p3Λ(Γ )(p)).

The congruence (1) is just the Ritter–Weiss’ congruence [21] for the extensions F V i /FUi /F . They
derived such a kind of congruences by using Deligne–Ribet’s theory on Hilbert modular forms [6].
Kazuya Kato also obtained similar kinds of congruences in [13, Section 4]. In the following, we will
prove Proposition 6.1 (2) and (3) by mimicking the method of Ritter–Weiss and Kato.

6.2. Approximation of abelian p-adic zeta pseudomeasures

Suppose that i is equal to either 3 or 4 in this subsection. To simplify the notation, we de-
note Ui/V i by W i and U f

i /V f
i by W f

i respectively. For an arbitrary open subgroup U of W i ,
let m(U ) be the non-negative integer defined by the relation κ p−1(U ) = 1 + pm(U )Zp where κ is
the p-adic cyclotomic character. Then we obtain the canonical isomorphism between Zp �W i � and
lim←−U ⊆W i :open

Zp[W i/U ]/pm(U )Zp[W i/U ] (see [21, Lemma 1]). Let ε denote a C-valued locally con-

stant function on W i . Then there exists an open subgroup U of W i such that ε is constant on
each coset of W i/U , hence we may describe ε as

∑
x∈W i/U ε(x)δ(x) where δ(x) is the characteristic

function with respect to a coset x, that is, δ(x)(w) is equal to 1 if w is contained in x and 0 other-
wise.
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Definition 6.4 (Partial zeta function). Let x be an arbitrary coset of W i/U . Then we define the partial
zeta function for δ(x) as the function

ζF V i /FUi

(
s, δ(x)) =

∑
0 
=a⊆O FUi

δ(x)(((F V i /FUi ),a))

(N a)s

where ((F V i /FUi ),−) is the Artin symbol for F V i /FUi and N a is the absolute norm of an ideal a.
This function has analytic continuation to the whole complex plane except for a simple pole at 1,
and it is known that ζF Vi /FUi

(1 − k, δ(x)) is a rational number for an arbitrary natural number k. We
also define the partial zeta function ζF Vi /FUi

(s, ε) for a locally constant function ε on W i as the function∑
x∈W i/U ε(x)ζF Vi /FUi

(s, δ(x)), where ε = ∑
x∈W i/U ε(x)δ(x) is the decomposition as above.

For an arbitrary element w in W i , an arbitrary Qp-valued locally constant function ε on W i and
an arbitrary natural number k divisible by p − 1, we define a p-adic rational number 	w

i (1 − k, ε) by

	w
i (1 − k, ε) = ζF V i /FUi

(1 − k, ε) − κ(w)kζF V i /FUi
(1 − k, εw)

where εw is the locally constant function on W i defined by εw(w ′) = ε(w w ′) for w ′ in W i . Pierre
Deligne and Kenneth A. Ribet showed [6, Théorème (0.4)] that 	w

i (1 − k, δ(x)) is a p-adic integer
for an arbitrary element w in W i and an arbitrary coset x of W i/U (also refer to [4, Hypothesis
(Hn−1)]). Jürgen Ritter and Alfred Weiss showed the following proposition [21, Proposition 2] which
approximated the p-adic zeta pseudomeasure by the value 	w

i (1 − k, δ(x)):

Proposition 6.5 (Approximation lemma, Ritter–Weiss). Let U be an arbitrary open subgroup of W i . Then for
an arbitrary natural number k divisible by p − 1 and an arbitrary element w in W i , (1 − w)ξi maps to∑

x∈W i/U
	w

i

(
1 − k, δ(x))κ(x)−kx mod pm(U )Zp[W i/U ] (6.1)

under the canonical surjection Zp �W i � → Zp[W i/U ]/pm(U )Zp[W i/U ] (note that κ(x)−k is well defined by
the definition of m(U )).

6.3. Sufficient conditions

In this subsection, we will reduce the congruences among pseudomeasures to those among special
values of partial zeta functions by using the approximation lemma (Proposition 6.5), and derive the
sufficient conditions for Proposition 6.1 (2) and (3). Let NUi denote the normalizer of Ui in G . Obvi-
ously NUi coincides with U2 if i is equal to 3 and with G otherwise. The quotient group NUi/Ui acts
on the set of locally constant functions on W i by εσ (w) = ε(σ−1 wσ) where ε is a locally constant
function on W i and σ is an element in NUi/Ui .

Proposition 6.6. The following (2)′ and (3)′ are the sufficient conditions for the congruences in Proposition 6.1
(2) and (3) to hold respectively:

(2)′ the congruence 	w
3 (1 − k, δ(y)) ≡ 0 mod pZp holds for an arbitrary element w in Γ and for each coset

y of W3/Γ
p j

( j is a natural number) which is not contained in Γ and fixed by NU3/U3 (= U2/U3);
(3)′ the congruence 	w

4 (1 − k, δ(y)) ≡ 0 mod pmy Zp holds for an arbitrary element w in Γ and for each

coset y of W4/Γ
p j

( j is a natural number) not contained in Γ . Here pmy is the order of (NU4/U4)y =
(G/U4)y , the isotropic subgroup of G/U4 at y.
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Proof. Apply the approximation lemma (Proposition 6.5) to (1 − w)ξi :

(1 − w)ξi ≡
∑

y∈W i/Γ
p j

	w
i

(
1 − k, δ(y)

)
κ(y)−k y mod pm(Γ p j

). (6.2)

Then by the condition (2)′ and (3)′ , we may calculate as∑
σ∈(NUi/Ui)/(NUi/Ui)y

	w
i

(
1 − k, δ(σ−1 yσ )

)
κ
(
σ−1 yσ

)−k
σ−1 yσ

= 	w
i

(
1 − k, δ(y)

)
κ(y)−k

∑
σ∈(NUi/Ui)/(NUi/Ui)y

σ−1 yσ

≡ pmy
∑

σ∈(NUi/Ui)/(NUi/Ui)y

σ−1 yσ mod pm(Γ p j
)Zp

[
W i/Γ

p j ]

for each coset y of W i/Γ
p j

not contained in Γ . The right-hand side of the equation above is
no other than the image of y under the trace map from Zp �Conj(NUi)� to Zp �Ui/V i �, hence

the right-hand side of the congruence (6.2) is contained in (Zp[Γ/Γ p j ] + J ( j)
3 )/pm(Γ p j

) (resp.

(Zp[Γ/Γ p j ] + I( j)
4 )/pm(Γ p j

)). By taking the projective limit, we obtain congruences (1 − w)ξ3 ≡
cw,3 mod J3 and (1 − w)ξ4 ≡ cw,4 mod I4 where both cw,3 and cw,4 are certain elements in Λ(Γ ).
Since 1 − w is invertible in Λ(Γ )(p) , we obtain the congruences (2) and (3) in Proposition 6.1 by
setting ci = (1 − w)−1cw,i . �
6.4. Hilbert modular forms and Hilbert–Eisenstein series

In this subsection, we will review Deligne–Ribet’s theory on Hilbert modular forms (especially the
q-expansion principle). See [6] and [21, Section 3] for details. Let K be a totally real number field of
degree r, K ∞/K an abelian totally real p-adic Lie extension and Σ a fixed finite set of primes of K
containing all primes which ramify in K ∞ . Let hK denote the Hilbert upper-half plane associated to
K defined as {τ ∈ K ⊗ C | Im(τ ) � 0}. For an even non-negative integer k, we define the action of
GL2(K ⊗ R)+ (the group generated by matrices with totally positive determinants) on the set of all
C-valued functions on hK by(

F |k
(

a b
c d

))
(τ ) = N (ad − bc)k/2 N (cτ + d)−k F

(
aτ + b

cτ + d

)
where N : K ⊗ C → C is the usual norm map.

Definition 6.7 (Hilbert modular forms). Take a non-zero integral ideal f of O K with all prime factors in
Σ and set

Γ00(f) =
{(

a b
c d

)
∈ SL2(K )

∣∣∣ a,d ∈ 1 + f, b ∈ D−1, c ∈ fD

}
where D is the differential of K . A Hilbert modular form F of weight k on Γ00(f) is a holomorphic
function6 F :hK → C satisfying F |k M = F for an arbitrary element M in Γ00(f).

6 If K is the rational number field Q, we also assume that F is holomorphic at ∞.
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A Hilbert modular form F has a Fourier series expansion called the standard q-expansion:
c(0) + ∑

μ∈O K ,
μ�0

c(μ)qμ
K (qμ

K is a complex number defined as exp(2π
√−1TrK/Q(μτ))). Deligne and

Ribet [6, Theorem (6.1)] constructed the Hilbert–Eisenstein series attached to a locally constant func-
tion ε.

Theorem–Definition 6.8 (Hilbert–Eisenstein series). Let ε be a locally constant function on Gal(K ∞/K ) and k
an even non-negative integer. Then there exist an integral ideal f of O K with its all prime factors in Σ and
a Hilbert modular form Gk,ε of weight k on Γ00(f) characterized by the following standard q-expansion:

2−rζK ∞/K (1 − k, ε) +
∑

μ∈O K
μ�0

( ∑
μ∈a⊆O K

prime to Σ

ε(a)κ(a)k−1
)

qμ
K

where ζK ∞/K (s, ε) is the partial zeta function for ε defined in the same manner as Definition 6.4 (ε(a) and
κ(a) denote ε(((K ∞/K ),a)) and κ(((K ∞/K ),a)) respectively, where ((K ∞/K ),−) is the Artin symbol for
K ∞/K ). The Hilbert modular form Gk,ε is called the Hilbert–Eisenstein series of weight k attached to ε.

Next let us discuss the q-expansion of Hilbert modular forms at cusps. Let Afin
K denote the finite

adèle ring of K . By the strong approximation theorem SL2(A
fin
K ) = Γ̂00(f) · SL2(K ), each element M in

SL2(A
fin
K ) is decomposed as M = M1M2 where M1 is an element in Γ̂00(f)—the topological closure of

Γ00(f) in SL2(A
fin
K )—and M2 is that in SL2(K ). For such M , we define F |k M as F |k M2. Let Fα denote

F |k
(

α 0
0 α−1

)
for a finite idèle α. The Fourier series expansion of Fα is called the q-expansion of F at the cusp deter-
mined by α. Deligne and Ribet [6, Theorem (6.1)] determined the q-expansion of the Hilbert–Eisenstein
series Gk,ε at cusps:

Proposition 6.9. Let k be an even non-negative integer and ε a locally constant function on Gal(K ∞/K ). Then
the q-expansion of Gk,ε at the cusp determined by a finite idèle α is given by

N ((α))k
{

2−rζK ∞/K (1 − k, εa) +
∑

μ∈O K
μ�0

( ∑
μ∈a⊆O K

prime to Σ

εa(a)κ(a)k−1
)

qμ
K

}

where (α) is the ideal generated by α and a is defined as ((K ∞/K ), (α)α−1).

Now we introduce the Deligne–Ribet’s deep q-expansion principle [6, Theorem (0.2) and Corol-
lary (0.3)]:

Theorem 6.10 (q-expansion principle, Deligne–Ribet). Let Fk denote a rational Hilbert modular form of weight
k on Γ00(f) (that is, all coefficients of the q-expansion of Fk at an arbitrary cusp are rational numbers), and
suppose that Fk is equal to zero for all but finitely many k. Let α be a finite idèle of K and αp the p-th compo-
nent of α. Set S(α) = ∑

k�0 N αp Fk,α .
Assume that there exists a finite idèle γ such that all non-constant coefficients of S(γ ) are contained in

p jZ(p) for a certain integer j. Then the difference between the constant terms of the q-expansions of S(α) and
S(β) is also contained in p jZ(p) for arbitrary two distinct finite idèles α and β .
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6.5. Proof of the sufficient conditions

Now we prove the sufficient conditions (2)′ and (3)′ in Proposition 6.6.

Proof of Proposition 6.1. Suppose that i is equal to either 3 or 4 in the following. Let j be a suffi-
ciently large integer and y a coset of W i/Γ

p j
not contained in Γ . Let Gk,δ(y) be the Hilbert–Eisenstein

series of weight k attached to δ(y) and let Ek,δ(y) be the restriction of Gk,δ(x) to F . Then the standard
q-expansion of Ek,δ(y) is given by

2−[FUi :Q]ζF V i /FUi

(
1 − k, δ(y)

) +
∑

ν∈O FUi
ν�0

( ∑
ν∈b⊆O FUi
prime to Σ

δ(y)(b)κ(b)k−1
)

q
TrFUi

/F (ν)

F (6.3)

where qν
FUi

is defined as exp(2π
√−1TrFUi /Q(ντ )). Let Pi denote the set of all pairs (b, ν) where b is

a non-zero integral ideal of O FUi
prime to Σ and ν is a totally real element in b. Then Pi enjoys the

natural action of NUi and NUi/Ui .

(Case-1). Suppose that the isotropic subgroup (NUi/Ui)(b,ν) at an element (b, ν) in Pi is trivial. Then
we may easily calculate the sum of non-constant terms in (6.3) containing (NUi/Ui)-orbit of (b, ν)-
part:

∑
σ∈NUi/Ui

δ(y)
(
bσ

)
κ
(
bσ

)k−1
q

TrFUi
/F (νσ )

F =
∑

σ∈NUi/Ui

δ(σ yσ−1)(b)κ(b)k−1q
TrFUi

/F (ν)

F

= pmy
∑

σ∈(NUi/Ui)/(NUi/Ui)y

δ(σ yσ−1)(b)κ(b)k−1q
TrFUi

/F (ν)

F .

(Case-2). Suppose that the isotropy subgroup (NUi/Ui)(b,ν) is not trivial. Let F(b,ν) denote the max-
imal intermediate field of FUi /F fixed by (NUi/Ui)(b,ν) and F ′

(b,ν)
that of F ∞/F fixed by the com-

mutator subgroup of (NUi)(b,ν) . Then there exist a unique integral ideal a of O F(b,ν)
and a unique

element μ in a which satisfy (b, ν) = (aO FUi
,μ). For such a and μ, the equation

δ(y)(b) = δ(y)
((

(F V i /FUi ),aO FUi

)) = δ(y) ◦ Ver
(((

F ′
(b,ν)/F(b,ν)

)
,a

)) = 0

holds since the image of the Verlagerung homomorphism is contained in Γ by Lemma 4.3 but y is
not contained in Γ by assumption.

Therefore Ek,δ(y) has all non-constant coefficients in pmy Z(p) by (Case-1) and (Case-2). Take a fi-
nite idèle γ satisfying ((F V i /FUi ), (γ )γ −1) = w . Then the constant term of Ek,δ(y) − Ek,δ(y) (γ ) is also
contained in pmy Z(p) by q-expansion principle of Deligne and Ribet (Theorem 6.10), which is nothing
but 2−[FUi :Q]	w

i (1 − k, δ(y)). Note that 2 is invertible since p is an odd prime number. �
7. Proof of the main theorem

In the previous section, we obtained congruences among the abelian p-adic zeta peudomeasures
(Proposition 6.1). Unfortunately, these congruences are not sufficient to prove that (ξi)

4
i=0 is contained

in ΨS , therefore we may not apply Burns’ technique 2.4 directly to (ξi)
4
i=0. In this section we will

modify the proof of Theorem 2.4 and prove our main theorem (Theorem 2.1) by using certain induc-
tion.
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7.1. Kato’s p-adic zeta function for F N/F

Let N be a (closed) normal subgroup of G as was defined in Section 3.1. Set G = G/N, U i = Ui/N
and V i = V i N/N respectively. Note that the p-adic Lie group

G =
( 1 Fp Fp

0 1 Fp

0 0 1

)
× Γ

is a group “of Heisenberg type.” Kazuya Kato [13, Theorem 4.1] has already proven the existence and
the uniqueness of the p-adic zeta function for every totally real Galois extension of Heisenberg type,
hence we obtain the following:

Theorem 7.1 (K. Kato). The p-adic zeta function ξ̄ for F N/F exists uniquely and the Iwasawa main conjecture
(Conjecture 1.6(2)) is true for F N/F .

Note that there exists a splitting exact sequence

1 N G
π

G 1

with a section s defined as

s : G → G;
(( 1 a d

0 1 b
0 0 1

)
, tz

)
�→

⎛⎜⎝
⎛⎜⎝

1 a d 0
0 1 b 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , tz

⎞⎟⎠ .

Let C = C F ∞/F denote the complex defined as (1.2), which is an object of C Perf
S (Λ(G)) by hypothe-

sis (�). Let [C] denote the norm image of [C] in K0(C
Perf
S (Λ(G)),qis). Note that Kato’s p-adic zeta

function ξ̄ satisfies the main conjecture ∂(ξ̄ ) = −[C] by Theorem 7.1.

Proposition 7.2. There exists a characteristic element f for F ∞/F whose image in K1(Λ(G)S ) coincides with
the Kato’s p-adic zeta function ξ̄ .

Proof. For an arbitrary element x in K1(Λ(G)S ), let x̄ denote its image in K1(Λ(G)S ). Take an ar-
bitrary characteristic element f ′ for F ∞/F . Then ∂(ξ̄ ( f̄ ′)−1) vanishes by the functoriality of the
connecting homomorphism ∂ and the main conjecture for F N/F . The localization exact sequence
(1.1) implies that ξ̄ ( f̄ ′)−1 is the image of an element in K1(Λ(G)), which we denote by ū. Then the
element f in K1(Λ(G)S ) defined as f ′s(ū) satisfies the assertion of the proposition where s denotes
the homomorphism K1(Λ(G)) → K1(Λ(G)) induced by s. �
7.2. Completion of the proof

Let f be a characteristic element for F ∞/F whose image in K1(Λ(G)S ) coincides with ξ and f i its
image under the map θS,i . Set ui = ξi f −1

i . Then ∂(ui) vanishes by construction, thus ui is contained
in Λ(Ui/V i)

× by the localization sequence (1.1). To prove Theorem 2.1, it suffices to show that (ui)
4
i=0

is contained in Ψ by the proof of Burns’ technique (Theorem 2.4). Note that (ui)
4
i=0 obviously satisfies

the norm relations for Ψ since both ( f i)
4
i=0 and (ξi)

4
i=0 satisfy them.

Proposition 7.3. Each ui satisfies the following congruences:
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u1 ≡ ϕ(u0) mod I1, u2 ≡ ϕ(u0) mod I2,

u3 ≡ d3 mod J3, u4 ≡ d4 mod I4

where both d3 and d4 are certain elements in Λ(Γ ).

Recall that J3 contains I3 (see the last paragraph of Section 4.1).

Proof. Each f i satisfies the congruences in the definition of ΨS since ( f i)
4
i=0 is contained in ΨS .

Hence ϕ( f0)
−(G:Ui)/p fi is contained in 1 + I S,i for each i except for 0. On the other hand, each ξi

satisfies the congruences in Proposition 6.1, thus ϕ(ξ0)ξ
−1
i is an element in 1 + I S,i for i = 1,2, c3ξ

−1
3

is in 1 + J S,3 and c4ξ
−1
4 is in 1 + I S,4 respectively. Then we may obtain the desired congruences by

multiplying them appropriately since we may replace ciϕ(ξ0)
−(G:Ui)/p by an element di in Λ(Γ ) for

i = 3 and 4 (refer to Remark 6.3). �
Lemma 7.4. The element (ui)

4
i=0 is contained in the kernel of the canonical surjection π× :

∏
i Λ(Ui/V i)

× →∏
i Λ(Ui/V i)

× .

Proof. The claim follows from the construction of f (Proposition 7.2) and the compatibility between
π× and θi . �
Lemma 7.5. The Zp-module J3 contains s ◦ π( J3) and the Zp-module I4 contains s ◦ π(I4) respectively.

Proof. Just simple calculation. �
Lemma 7.6. The element ϕ(ui) is equal to 1 for each i.

Proof. The Frobenius homomorphism ϕ :Λ(Ui/V i) → Λ(Γ ) factors as s◦ ϕ̄ ◦π where ϕ̄ :Λ(U i/V i) →
Λ(Γ ) is the Frobenius homomorphism on Λ(U i/V i) and π is the canonical surjection Λ(Ui/V i) →
Λ(U i/V i). Hence the claim holds since (ui)

4
i=0 is contained in the kernel of π× by Lemma 7.4. �

Proof of Theorem 2.1. It is sufficient to verify that (ui)
4
i=0 satisfies the desired congruences for Ψ .

The congruence for i = 1 and 2 has been already proven in Proposition 7.3, hence we will verify the
congruence ui ≡ ϕ(u0)

(G:Ui)/p mod Ii for i = 3,4 as follows. By operating s ◦ π to the congruences in
Proposition 7.3, we obtain the following congruences:

s ◦ π(u3) ≡ d3 mod s ◦ π( J3), s ◦ π(u4) ≡ d4 mod s ◦ π(I4).

Both s ◦ π(u3) and s ◦ π(u4) are equal to 1 by Lemma 7.4, thus the congruences

u3 ≡ d3 ≡ 1 = ϕ(u0)
p mod J3, u4 ≡ d4 ≡ 1 = ϕ(u0)

p2
mod I4 (7.1)

hold by Lemmas 7.5 and 7.6. Hence we have only to verify the congruence

u3 ≡ 1
(= ϕ(u0)

p)
mod I3. (7.2)

We remark that u3 is contained in 1 + J3 and u4 is contained in 1 + I4 respectively by (7.1), thus
log u3 is contained in J3 and log u4 is contained in I4 by logarithmic isomorphisms (Lemma 4.6). We
may describe log u3 and log u4 as Λ(Γ )-linear combinations of generators of J3 and I4 which we
denote by
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log u3 =
∑

b,c 
=0

ν̃
(3)

bc βbγ chζ +
∑
b, f

pν̃
(4)

bf βbζ f ,

log u4 =
∑

f

p3σ
(1)

f ζ f +
∑
e 
=0

p2σ
(2)
e εehζ +

∑
c 
=0

pσ
(3)
c γ chεhζ .

Then we may calculate that TrZp �U3/V 3 �/Zp �U4/V 3 �(log u3) is equal to an element defined as∑
c 
=0 pν̃

(3)
0c γ chζ +∑

f p2ν̃
(4)

0 f hζ and the image of log u4 in Zp �U4/V 3 � is equal to the element defined

as
∑

f p2(pσ
(1)

f + ∑
e 
=0 σ

(2)
e )ζ f + ∑

c 
=0 p2σ
(3)
c γ chζ . Since (ui)

4
i=0 satisfies the norm relations for Ψ ,

we obtain the following relations among coefficients by the corresponding trace relation (rel-6):

ν̃
(4)

0 f = pσ
(1)

f +
∑
e 
=0

σ
(2)
e , ν̃

(3)
0c = pσ

(3)
c (c 
= 0).

Therefore if we set

ν
(1)

f = σ
(1)

f , ν
(2)
c =

{∑
e 
=0 σ

(2)
e if c = 0,

σ
(3)
c if c 
= 0,

ν
(3)

bc = ν̃
(3)

bc (b 
= 0, c 
= 0), ν
(4)

bf = ν̃
(4)

bf (b 
= 0),

the element log u3 is written as

∑
f

p2ν
(1)

f ζ f +
∑

c

pν
(2)
c γ chζ +

∑
b 
=0,c 
=0

ν
(3)

bc βbγ chζ +
∑

b 
=0, f

pν
(4)

bf βbζ f ,

which implies that log u3 is contained in I3. Since the logarithm is injective on 1 + J3 and induces
an isomorphism between 1 + I3 and I3, u3 is contained in 1 + I3. Therefore the congruence (7.2)
holds. �
Remark 7.7. The element ξ = u f constructed as above satisfies θS (ξ) = (ξi)

4
i=0. Since ΨS contains the

image of θS , we especially obtain the following non-trivial congruences among abelian p-adic zeta
pseudomeasures:

ξ3 ≡ ϕ(ξ0)
p mod I S,3, ξ4 ≡ ϕ(ξ0)

p2
mod I S,4.

It seems to be almost impossible to derive such congruences by using only q-expansion principle.
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