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On the complexity of curve fitting algorithms
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Abstract

We study a popular algorithm for fitting polynomial curves to scattered data based on the

least squares with gradient weights. We show that sometimes this algorithm admits a

substantial reduction of complexity, and, furthermore, find precise conditions under which this

is possible. It turns out that this is, indeed, possible when one fits circles but not ellipses or

hyperbolas.

r 2004 Elsevier Inc. All rights reserved.
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In many applications one needs to fit a curve described by a polynomial equation

Pðx; y;YÞ ¼ 0

(here Y denotes the vector of unknown parameters) to experimental data ðxi; yiÞ; i ¼
1;y; n: In this equation P is a polynomial in x and y; and its coefficients are either
unknown parameters or functions of unknown parameters. For example, a number

of recent publications [5,6,9] are devoted to the problem of fitting quadrics Ax2 þ
Bxy þ Cy2 þ Dx þ Ey þ F ¼ 0; in which case Y ¼ ðA;B;C;D;E;FÞ is the para-
meter vector. The problem of fitting circles, given by equation ðx � aÞ2 þ ðy � bÞ2 �
R2 ¼ 0 with three parameters a; b;R; also arises in practice [4,8].
It is standard to assume that the data ðxi; yiÞ are noisy measurements of some true

(but unknown) points ð %xi; %yiÞ on the curve, see [1,3,7,8] for details. The noise vectors
ei ¼ ðxi � %xi; yi � %yiÞ are then assumed to be independent Gaussian vectors with zero
mean and a scalar covariance matrix, s2I : In this case the maximum likelihood
estimate of Y is given by the orthogonal least-squares fit (OLSF), which is based on
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the minimization of the function

FðYÞ ¼
Xn

i¼1
d2i ; ð1Þ

where di denotes the distance from the point ðxi; yiÞ to the curve Pðx; y;YÞ ¼ 0:
Under these assumptions the OLSF is statistically optimal—it provides estimates

of Y whose covariance matrix attains its Rao–Cramer lower bound [3,7,8]. The
OLSF is widely used in practice, especially when one fits simple curves such as lines
or circles. However, for more general curves the OLSF becomes intractable, because
the precise distance di is hard to compute. In those cases one resorts to various
alternatives, and the most popular one is the algebraic fit (AF) based on the
minimization of

FaðYÞ ¼
Xn

i¼1
wi ½Pðxi; yi;YÞ�2; ð2Þ

where wi ¼ wðxi; yi;YÞ are suitably defined weights. The choice of the weight
function wðx; y;YÞ is important. The AF is known [3] to provide a statistically
optimal stimate of Y (in the sense that the covariance matrix will attain its Rao–
Cramer lower bound) if and only if the weight function satisfies

wðx; y;YÞ ¼ aðYÞ=jjrPðx; y;YÞjj2 ð3Þ

for all points x; y on the curve, i.e. such that Pðx; y;YÞ ¼ 0: Here rP ¼
ð@P=@x; @P=@yÞ is the gradient vector of the polynomial P; and aðYÞ40 may be
an arbitrary function of Y (in practice, one simply sets aðYÞ ¼ 1). Any other choice
of w will result in the loss of accuracy, see [3]. We call wðx; y;YÞ a gradient weight

function if it satisfies (3) for all x; y on the curve Pðx; y;YÞ ¼ 0: The AF (2) with a
gradient weight function wðx; y;YÞ is commonly referred to as the gradient weighted

algebraic fit (GRAF). It was introduced in the mid-1970s [14] and recently became
standard for polynomial curve fitting, see, for example, [5,9,13].
Even though the GRAF is much cheaper than the OLSF, it is still a nonlinear

problem requiring iterative methods. For example, in a popular reweight procedure

[11,13] one uses the kth approximation YðkÞ to compute the weights wi ¼
wðxi; yi;YðkÞÞ and then finds Yðkþ1Þ by minimizing (2) regarding the just computed
wi’s as constants. Note that if the parameters Y are the coefficients of P; then (2),
with fixed weights, becomes a quadratic function inY; and its minimum can be easily
found. Another algorithm is based on solving the equation rYFaðYÞ ¼ 0; i.e.X

P2i rYwi þ 2
X

wiPirYPi ¼ 0 ð4Þ

for which various iterative schemes could be used. In the case of fitting quadrics, for
example, the most advanced algorithms are the renormalization method [7], the
heteroscedastic error-in-variables method [9] and the fundamental numerical scheme
[5]. In all these algorithms, one needs to evaluate OðnÞ terms at each iteration.
Therefore, the complexity of those algorithms is OðknÞ; where k is the number of
iterations. Moreover, each algorithm requires access to individual coordinates xi; yi
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of the data points at each iteration. These difficulties can be sometimes avoided in a
remarkable way, as we show next.
Suppose, we need to fit circles given by equation

Pðx; yÞ ¼ ðx � aÞ2 þ ðy � bÞ2 � R2 ¼ 0:

Then, we have

jjrPðx; y;YÞjj2 ¼ 4ðx � aÞ2 þ 4ðy � bÞ2 ¼ 4Pðx; yÞ þ 4R2 ð5Þ

hence jjrPðx; y;YÞjj2 ¼ 4R2 for all the points ðx; yÞ lying on the circle Pðx; yÞ ¼ 0;
and we can set wðx; y;YÞ ¼ 1=R2: Therefore

Faða; b;RÞ ¼
Xn

i¼1
R�2½x2i þ y2i � 2axi � 2byi þ a2 þ b2 � R2�2

¼R�2½z1 þ az2 þ bz3 þ a2z4 þ b2z5 þ abz6 þ cz7 þ acz8

þ bcz9 þ c2n�; ð6Þ

where we denoted c ¼ a2 þ b2 � R2 for brevity, and

z1 ¼
X

ðx2i þ y2i Þ
2; z2 ¼ �4

X
xiðx2i þ y2i Þ;y

are some expressions involving xi and yi only.
The minimization of (6) is still a nonlinear problem requiring iterative methods

[4,2,10], but it has obvious advantages over the reweight procedure described
above and other generic methods for solving Eq. (4). First of all, the values of
z1;y; z9 only need to be computed once, and then the cost of minimization of (6)
will not depend on n anymore. Thus, the complexity of this algorithm is OðnÞ þ OðkÞ;
where OðnÞ is the cost of evaluation of z1;y; z9 and OðkÞ is the cost of some k

iterations spent on the subsequent minimization of Faða; b;RÞ: Moreover, once the
values of z1;y; z9 are computed and stored, the coordinates xi; yi can be destroyed.
Practically, z1;y; z9 can be computed ‘‘on-line’’, when the data are collected. The
minimization procedure per se can be implemented ‘‘off-line’’, without storage of (or
access to) the data points. The quantities z1;y; z9 here play the role of sufficient
statistics.
This improvement is essential for applications where one fits circular arc to data

on a mass scale (often on-line) so that the speed of fitting algorithms is a factor. Such
are, for example, modern experiments in high-energy physics (charged particles move
along circular arcs in a homogeneous magnetic field, and computing the particle’s
energy requires estimation of the radius of the arc). Physicists process millions of
images from nuclear accelerators on-line in a search of rare collisions (events), hence
speedy fitting procedures are in high demand. For other experiments involving circle
fitting see [2] and references therein.
Inspired by the above example, we might say that the problem of fitting a

polynomial curve Pðx; y;YÞ ¼ 0 admits a reduction of complexity if there are c
functions zjðx1; y1;y; xn; ynÞ; 1pjpc; with c being independent of n and Y; and a
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gradient weight function wðx; y;YÞ such that
Fa ¼ f ðz1;y; zc;YÞ ð7Þ

i.e. Fa is a function of z1;y; zc and Y only.
This definition does not suggest how to find the functions z1;y; zc in practical

terms, though. SinceFa is given by (2) with Pðxi; yi;YÞ being a polynomial in xi; yi;
then the most natural (if not the only) way to construct the functions z1;y; zc is to
express the gradient weight function (3) in the form

wðx; y;YÞ ¼
XK

k¼1
CkðYÞ Dkðx; yÞ; ð8Þ

where Ck are functions of the parameter vector Y alone, and Dk are functions of x

and y only (here the number of terms, K ; must be independent of Y). Indeed,
suppose that representation (8) is found. Since P2 is a polynomial in x; y; we can
expand it as

P2ðx; yÞ ¼
X
p;q

cp;qxpyq;

where cp;q ¼ cp;qðYÞ denote its coefficients. Now the functionFa can be evaluated as

Fa ¼
XK

k¼1

X
p;q

CkðYÞcp;qðYÞ
Xn

i¼1
x

p
i y

q
i Dkðxi; yiÞ

¼
XK

k¼1

X
p;q

CkðYÞcp;qðYÞzk;p;q;

where

zk;p;q ¼
Xn

i¼1
x

p
i y

q
i Dkðxi; yiÞ:

The values of zk;p;q depend on the data xi; yi only, hence we obtain the desired

representation (7). Therefore, (8) implies (7). We believe that the converse is also
true, i.e. the conditions (7) and (8) are actually equivalent, but we do not attempt to
prove that.
Motivated by the above considerations, we adopt the following definition: the

problem of fitting a polynomial curve Pðx; y;YÞ ¼ 0 admits a reduction of complexity

if the gradient weight function (3) can be expressed in form (8).
As we have seen, the problem of fitting circles admits a reduction of complexity

(and so does the simpler problem of fitting lines). Now if the problem of fitting
ellipses and/or hyperbolas admitted a reduction of complexity as defined above, we
would be able to dramatically improve the known GRAF algorithms [5,7,9].
Unfortunately, this is impossible—there are deep mathematical reasons which
prevent a reduction of complexity in the case of ellipses, hyperbolas, and parabolas.
In this paper, we find general conditions on the polynomial Pðx; y;YÞ under which

the problem of fitting the curve Pðx; y;YÞ ¼ 0 allows a reduction of complexity. It
turns out that lines and circles satisfy these conditions, but ellipses, hyperbolas, and
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parabolas do not. Our results thus demonstrate (in a rigorous mathematical way)
that fitting noncircular conics is an intrinsically more complicated problem than
fitting circles or lines.
We will assume here that P is an irreducible polynomial, i.e. it cannot be expressed

as a product P ¼ P1ðx; y;YÞP2ðx; y;YÞ of polynomials of lower degrees (because
otherwise fitting the curve P ¼ 0 can be reduced to fitting simpler curves P1 ¼ 0 and
P2 ¼ 0).
For convenience, let us denote

Qðx; y;YÞ :¼ jjrPðx; y;YÞjj2 ¼ ð@P=@xÞ2 þ ð@P=@yÞ2:

Clearly, Qðx; y;YÞ is itself a polynomial in x and y: Our subsequent arguments will
involve some facts from complex analysis. We will treat x and y as complex, rather
than real, variables.

Theorem. The problem of fitting curves Pðx; y;YÞ ¼ 0 admits a reduction of

complexity (as defined above) under the condition that the system of polynomial

equations

Pðx; yÞ ¼ 0;
Qðx; yÞ ¼ 0;

ð9Þ

has no solutions, real or complex, for any Y:

Before we prove our theorem, we shall show how to use it. For the problem of

fitting circles, we have already computed Q ¼ 4P þ 4R2; see (5), hence system (9) has
indeed no solutions for nondegenerate circles (for which Ra0).
When using the theorem, the following invariance property will be helpful. Let

ðx; yÞ/ðx̃; ỹÞ be a transformation of the xy plane that is a composition of
translations, rotations, mirror reflections and similarities (the latter are defined by

ðx; yÞ/ðcx; cyÞ for some ca0). Denote by P̃ðx̃; ỹÞ the polynomial P in the new
coordinates x̃; ỹ: Then system (9) has a solution (real or complex) if and only if the
corresponding system

P̃ðx̃; ỹÞ ¼ 0;
Q̃ðx̃; ỹÞ ¼ 0;

has a solution, real or complex. Here Q̃ ¼ jjrP̃jj2: This simple fact, which can be
verified directly by the reader, allows us to simplify the polynomial Pðx; yÞ before
applying the theorem.
Consider the problem of fitting ellipses and hyperbolas. By using a translation and

rotation of the xy plane we can always reduce the polynomial P to a canonical form

ax2 þ by2 þ c ¼ 0 (with aab and abca0). Then Q ¼ 4a2x2 þ 4b2y2 and we arrive at
a system of equations

ax2 þ by2 þ c ¼ 0;
a2x2 þ b2y2 ¼ 0:
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It is easy to see that it always has a solution

x ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc

aða � bÞ

s
; y ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ac

bða � bÞ

r

(note that x or y may be an imaginary number, which is allowed by our theorem).
Therefore, the problem does not admit a reduction of complexity.

If our curve is a parabola, then we can use its canonical equation y ¼ cx2 for c40;
hence P ¼ y � cx2 and Q ¼ 4c2x2 þ 1: Here again we have a common zero of P and
Q at the point x ¼ i=2c and y ¼ �1=4c: Thus, no conic sections (except circles)
satisfy the conditions of our theorem.
We now prove our theorem. Since wðx; y;YÞ must be a gradient weight function,

the requirement (8) is equivalent to

1

Qðx; yÞ ¼
XK

k¼1
CkðYÞ Dkðx; yÞ whenever Pðx; yÞ ¼ 0 ð10Þ

(here we incorporated the factor aðYÞ into the coefficients CkðYÞ; for convenience).
We emphasize that the left identity in (10) does not have to hold on the entire xy

plane, it only has to hold on the curve Pðx; yÞ ¼ 0: If we denote that curve byL; then
(10) can be restated as

1

Qðx; yÞ ¼
XK

k¼1
CkðYÞDkðx; yÞ whenever ðx; yÞAL: ð11Þ

The functions Dkðx; yÞ in (10) cannot be arbitrary, they must be easily computable,
i.e. available in the machine arithmetics. That is, they must be combinations of
elementary functions—polynomials, exponentials, logarithms, trigonometric func-
tions, etc. In that case Dkðx; yÞ are analytic functions of x and y: Therefore, they

have analytic extensions to the two-dimensional complex plane C2: We note that

they do not need be entire functions, i.e. analytic everywhere in C2; they may have

some singularities. For example, the function ð1þ x2 þ y2Þ�1 is analytic in R2 but

has singularities in C2; e.g. the point x ¼ i and y ¼ 0 is its singularity. Also, those
extensions maybe multivalued functions (examples are ln x or

ffiffiffi
x

p
).

Now, the following function will also be analytic in C2:

Gðx; yÞ ¼ 1� Qðx; yÞ
XK

k¼1
CkðYÞ Dkðx; yÞ

since it is a combination of analytic functions. By (11), it vanishes on the curveL in

the real xy plane. Consider the subset ZjCC2 defined by the equation Pðx; yÞ ¼ 0;
where x and y are treated as complex variables. Note that L is a curve on the two-
dimensional manifold Z: We will prove that the function Gðx; yÞ vanishes on the
entire Z:
Since Pðx; yÞ is an irreducible polynomial, Z is a connected algebraic variety (a

Riemann surface), hence it admits a complex parameterization (a complex
coordinate, z), and the restriction of the function G onto Z will be an analytic
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function of z: It is known in complex analysis that if an analytic function GðzÞ; zAC;
vanishes on an infinite set having an accumulation point (in particular, on a one-
dimensional curve in C), then it is identically zero on C; hence GðzÞ � 0 for all zAZ:
In our case, the curve on which G vanishes isL (and we assume, of course, that it is
a nondegenerate curve for all the relevant values of the parameter Y). Hence, G

vanishes on the entire Z; and therefore

Gðx; yÞ ¼ 0 whenever ðx; yÞAZ: ð12Þ
On the other hand, if the system of Eq. (9) has a complex solution ðx; yÞ; then (12)
would be impossible, since any solution of (9) lies on the manifold Z (because
Pðx; yÞ ¼ 0), and at the same time Qðx; yÞ ¼ 0 implies Gðx; yÞ ¼ 1: Therefore, if
system (9) has a solution (real or complex), then representation (8) cannot possibly
exist.
It remains to show that if system (9) has no solutions, then the representation (8) is

possible, and hence our problem indeed admits a reduction of complexity. Assuming
that (9) has no solutions, we will construct the representation (8) in the simplest,
polynomial form

wðx; y;YÞ ¼
X
p;q

wp;qðYÞxpyq ð13Þ

the degree of this polynomial being independent of the parameter Y: Consider a
polynomial equation

Pðx; yÞUðx; yÞ þ Qðx; yÞ Wðx; yÞ ¼ 1; ð14Þ
here Uðx; yÞ and Wðx; yÞ are unknown polynomials. A classical mathematical
theorem, Hilbert’s Nullstellensatz [15], says that Eq. (14) has polynomial solutions

Uðx; yÞ andWðx; yÞ if and only if Pðx; yÞ and Qðx; yÞ have no common zeroes in C2;
i.e. whenever system (9) has no complex solutions, which is exactly what we have
assumed. Note that since P and Q depend on Y; then so do U and W ; but we
suppress this dependence in Eq. (14).
Now the polynomialWðx; yÞ solving (14) gives us the weight function wðx; y;YÞ ¼

Wðx; yÞ; and it is easy to see that
Wðx; yÞ ¼ 1=Qðx; yÞ whenever Pðx; yÞ ¼ 0

Technically, the theorem is proved, but we make a further practical remark. Suppose
we know that system (9) has no solutions, so that the problem admits a reduction of
complexity. In this case, we need to find the polynomial Wðx; yÞ solving (14) in an
explicit form, in order to determine the weight function wðx; y;YÞ: To this end, we
describe a finite and relatively simple algorithm for computing the coefficients wpq of

the polynomial W : We substitute the expansions

Wðx; yÞ ¼
X
p;q

wp;qx
p
i y

q
i and Uðx; yÞ ¼

X
p;q

up;qx
p
i y

q
i

into identity (14) and then equate the terms on the left-hand side and those on the
right-hand side with the same degrees of the variables x; y: This gives a linear system
of equations for the unknown coefficients wpq and upq: This might be a large system
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(its size depends on the degrees of U andW ), but it is a linear system whose solution
can be found by routine matrix methods. If the assumed degrees of U and V are high
enough, then the above system is always solvable by the so called effective

Nullstellensatz, see [12]. By solving that system we can obtain explicit formulas for
the coefficients wpq and upq: In fact, we only need the coefficients of W ; not U ; and

those coefficients will be rational functions of the coefficients of the polynomial
Pðx; yÞ; hence they will be easily computable. Lastly, we remark that solving this
system, however complex, is not a part of the fitting algorithm—the system needs to
be solved only once for every type of curves, and then its solution can be
incorporated in the algorithm.

Fitting in 3D. Even though we only discussed here the problem of fitting 2D curves
to planar data, our analysis easily generalizes to fitting algebraic surfaces
Pðx; y; z;YÞ ¼ 0; where P is a polynomial in x; y; z; to three-dimensional data points
ðxi; yi; ziÞ: The conclusion is similar: the reduction of complexity is possible if and
only if the system of equations

Pðx; y; zÞ ¼ 0;
Qðx; y; zÞ ¼ 0;

ð15Þ

with

Qðx; y; zÞ :¼ jjrPðx; y; zÞjj2 ¼ ð@P=@xÞ2 þ ð@P=@yÞ2 þ ð@P=@zÞ2

has no solutions, real or complex, for any Y: For example, if we fit quadratic

surfaces, then in a properly chosen coordinate frame, Pðx; y; zÞ ¼ ax2 þ by2 þ cy2 þ
d (we require that da0 and at least two of the coefficients a; b; c do not vanish). Then
(15) takes form

ax2 þ by2 þ cy2 þ d ¼ 0;
a2x2 þ b2y2 þ c2y2 ¼ 0:

This system has no solutions (thus allowing a reduction of complexity) in only two
cases: a ¼ b ¼ c (a sphere) and (up to a permutation of variables) a ¼ b; c ¼ 0 (a
cylinder).

N. Chernov is partially supported by NSF Grant DMS-0098788 and N. Simányi is
partially supported by NSF Grant DMS-0098773.
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