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Let X1 , ..., Xn be i.i.d. random d-vectors, d�1, with sample mean X� and sample
covariance matrix S. For testing the hypothesis Hd that the law of X1 is some non-
degenerate normal distribution, there is a whole class of practicable affine invariant
and universally consistent tests. These procedures are based on weighted integrals
of the squared modulus of the difference between the empirical characteristic func-
tion of the scaled residuals Yj=S &1�2(Xj&X� ) and its almost sure pointwise limit
exp(&&t&2�2) under Hd . The test statistics have an alternative interpretation in
terms of L2-distances between a nonparametric kernel density estimator and the
parametric density estimator under Hd , applied to Y1 , ..., Yn . By working in the
Fre� chet space of continuous functions on Rd, we obtain a new representation of
the limiting null distributions of the test statistics and show that the tests have
asymptotic power against sequences of contiguous alternatives converging to Hd at
the rate n&1�2, independent of d. � 1997 Academic Press

1. INTRODUCTION

There is a continued interest in the problem of testing for multivariate
normality, as evidenced by the recent papers of Ahn [1], Bowman and
Foster [5], Henze [12], Horswell and Looney [14], Kariya and George
[16], Koziol [17], Mudholkar, McDermott, and Srivastava [20],
Mudholkar, Srivastava, and Lin [21], Naito [22], Ozturk and Romeu
[23], Rayner, Best, and Matthews [24], Romeu and Ozturk [25], Singh
[26], Versluis [27], and Zhu, Wong, and Fang [29] on this subject.

The purpose of this paper is not to review the huge literature on tests for
multivariate normality (for short; MVN tests), but to present a new
approach to a whole class of MVN tests studied by Baringhaus and Henze
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[3] and Henze and Zirkler [11]. These tests have the desirable properties
of

v affine invariance,

v consistency against each fixed nonnormal alternative distribution,

v asymptotic power against contiguous alternatives of order n&1�2,

v feasibility for any dimension and any sample size,

which no other MVN test shares, at least to our knowledge.
To state the testing problem and the tests under discussion, let X1 , X2 , . . .

be a sequence of independent copies of a random d-dimensional column
vector X, where d�1 is a fixed integer. The distribution of X will be
denoted by PX. The problem is to test, on the basis of X1 , ..., Xn , the
hypothesis

Hd : PX # Nd ,

where Nd is the class of all nondegenerate d-variate normal distributions.
Since Nd is closed with respect to full rank affine transformations and the
alternatives to Hd are rarely known or given in practice, we are interested
in (affine) invariant and consistent tests. Such a test may be based on the
test statistic

Tn, ; :=n(4 1[Sn is singular]+Wn, ; 1[Sn is nonsingular]). (1.1)

Here, ;>0 is a parameter (the role of which is discussed later), 1[ } ]
stands for the indicator function and

Sn :=
1
n

:
n

j=1

(Xj&X� n)(Xj&X� n)$

is the empirical covariance matrix of X1 , ..., Xn , where X� n :=n&1 �n
j=1 Xj

and the prime denotes transpose. Wn, ; is the weighted L2-distance

Wn, ; :=|
Rd }9n(t)&exp \&

&t&2

2 +}
2

.;(t) dt (1.2)

between the empirical characteristic function

9n(t) :=
1
n

:
n

k=1

exp(it$Yk) (i2=&1)

of the scaled residuals

Yk :=S &1�2
n (Xk&X� n) (k=1, ..., n)
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and the characteristic function exp(&&t&2�2) of the standard d-variate nor-
mal distribution. S &1�2

n is the symmetric positive definite square root of
S &1

n . Note that Yk and, hence, Wn, ; are only defined if Sn is nonsingular.
According to (1.1), Wn, ; is replaced by its maximum possible value 4 in the
case when Sn is not invertible (this suggestion is due to Cso� rgo� [7]). The
weight function .; figuring in (1.2) is

.;(t) :=(2?;2)&d�2 exp \&
&t&2

2;2 + .

The extremely appealing feature of this choice is that Wn, ; takes the simple
form

Wn, ;=
1
n2 :

n

j, k=1

exp \&
;2

2
&Yj&Yk&2+

&2(1+;2)&d�2 1
n

:
n

j=1

exp \&
;2 &Yj&2

2(1+;2)++(1+2;2)&d�2.

This representation shows that Tn, ; is invariant; i.e., we have

Tn, ;(AX1+b, ..., AXn+b)=Tn, ;(X1 , ..., Xn)

for each nonsingular A # Rd_d and each b # Rd. Moreover, since the com-
putation of &Yj&Yk &2 and &Yj &2 involves only S &1

n , not even the square
root S &1�2

n of S &1
n is needed.

The statistic Wn, ; was proposed by Epps and Pulley [9] in the special
case d=1. Baringhaus and Henze [3] extended the approach of Epps and
Pulley to the case d>1 and obtained the limit distribution of n } Wn, ;

under Hd for the case ;=1. S. Cso� rgo� [7] coined the term BHEP test with
reference to these four authors.

Using a theorem of de Wet and Randles [8], Henze and Zirkler
[11] proved that the limiting distribution of Tn, ; under Hd is that of
�j�1 $j (;) N 2

j , where N1 , N2 , . . . are i.i.d. standard normal random
variables and ($j (;)) j�1 is the sequence of eigenvalues associated with an
integral operator given in Theorem 3.1 of Henze and Zirkler [11]. If the
distribution of X is not in Nd we have

lim inf
n � �

n&1Tn, ;�C(PX, ;)>0, almost surely

for some constant C(PX, ;) (Cso� rgo� [7]). This shows that rejecting Hd for
large values of Tn, ; yields an affine invariant and universally consistent
MVN test (cf. the first two bullets).

3NEW APPROACH TO THE BHEP TESTS
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That the role of ; figuring in the weight function .; is that of a smooth-
ing parameter may be seen from the representation

Wn, ;=(2?)d�2 ;&d |
Rd _gn, ;(x)&(2?{2)&d�2 exp \&

&x&2

2{2 +&
2

dx, (1.3)

where {2=(2;2+1)�(2;2), and

gn, ;(x)=
1

nhd :
n

k=1

(2?)&d�2 exp \&
&x&Yk &2

2h2 +
is a nonparametric kernel density estimator, applied to Y1 , ..., Yn , with a
standard Gaussian kernel and bandwidth h=1�(; - 2) (see Henze and
Zirkler [8, p. 3600]). In the spirit of density estimation, Bowman and
Foster [4, p. 1535] proposed to base a MVN test on

BFn :=;d
n(2?)&d�2 Wn, ;n ,

where ;n :=(hn - 2)&1 and hn :=[4�(n(d+2))]1�(d+4). We conjecture that,
in contrast to the case of fixed ; (see Section 3), the MVN test based on
BFn is not able to discriminate between H0 and alternatives which are
n&1�2-apart.

Interestingly, the class of MVN tests based on Tn, ; is ``closed at the
boundaries ; � 0 and ; � �'' which correspond to ``infinite and zero
smoothing,'' respectively. More precisely, we have (Henze [13])

lim
; � 0

;&6Wn, ;= 1
6 } b1, d+ 1

4 } b� 1, d , (1.4)

where

b1, d=
1
n2 :

n

j, k=1

(Y $jYk)3

is Mardia's time-honored measure of multivariate sample skewness
(Mardia [18]) and

b� 1, d=
1
n2 :

n

j, k=1

Y $j Yk &Yj &2 &Yk&2

is the sample version of the population skewness measure ;� 1, d=
&E[&X&2 X]&2 (this notation assumes X to be standardized), introduced by
Mo� ri, Rohatgi, and Sze� kely [19]. On the other hand, we have

lim
; � �

;d \Wn, ;&
1
n+=2&d�2&

2
n

:
n

j=1

exp \&
&Yj&2

2 + (1.5)
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which shows that, in the limit ; � �, rejection of Hd is equivalent to rejec-
ting Hd for small values of n&1 �n

j=1 exp(& 1
2&Yj &2). Note that this statistic

is similar to Mardia's measure n&1 �n
j=1 &Yj &4 of multivariate kurtosis

(Mardia [18]) in the sense that it investigates an aspect of the ``radial
part'' of the standardized underlying distribution.

In view of the four properties featured at the beginning of this section,
we stress that standard MVN tests based on multivariate skewness and
kurtosis in the sense of Mardia lack the property of universal consistency
(see Baringhaus and Henze [4] and Henze [12]).

The purpose of this paper is to provide a new approach to the class of
BHEP tests. The reasoning utilizes the theory of weak convergence in the
Fre� chet space C(Rd) of continuous functions on Rd and is presented in
Section 2. By means of this approach, we obtain

v a new representation of the limiting null distribution of Tn, ; in
terms of a Gaussian process in C(Rd)

v the joint limiting null distribution of Tn, ; for several values of ;

v the asymptotic power of the test based on Tn, ; against contiguous
alternatives.

Interestingly, the MVN test based on Tn, ; is able to detect contiguous
alternatives which converge to the normal distribution at the rate n&1�2 (see
Section 3). The final section presents some empirical results and concluding
discussion.

2. THE LIMIT DISTRIBUTION OF Tn, ; UNDER Hd

Throughout this section, we assume that the distribution of X is a cen-
tered d-variate normal with unit covariance matrix Id , for short,
XtNd (0, Id). Since Tn, ; is affine invariant, this assumption means no loss
of generality when studying the distribution of Tn, ; under Hd . Our starting
point is the observation that for n�d+1,

Tn, ;=|
Rd

Z2
n(t) .;(t) dt, (2.1)

where

Zn(t)=
1

- n
:
n

j=1
_cos(t$Yj)+sin(t$Yj)&exp \&

&t&2

2 +& , (2.2)

5NEW APPROACH TO THE BHEP TESTS
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t # Rd. Note that Zn is a random element in the Fre� chet space C(Rd) of
continuous functions on Rd, endowed with the metric

\(x, y)= :
�

k=1

2&k }
\k(x, y)

1+\k(x, y)
,

where

\k(x, y)= max
&t&�k

|x(t)& y(t)|.

Theorem 2.1. Let X1 , X2 , . . . be a sequence of i.i.d. Nd (0, Id) distributed
random d-vectors, and let Zn be defined in (2.2). There exists a centered
Gaussian process Z in C(Rd) having covariance kernel

K(s, t)=exp \&
&s&t&2

2 +&{1+s$t+
(s$t)2

2 = exp \&
&s&2+&t&2

2 + (2.3)

(s, t # Rd) such that

Zn w�D Z in C(Rd),

where `` w�D '' denotes convergence in distribution.

Theorem 2.2. Under the conditions of Theorem 2.1, we have

|
Rd

Z2
n(t) .;(t) dt w�D |

Rd
Z2(t) .;(t) dt.

Note that this result is not trivial since the functional

x [ |[x]|2 :=| x2(t) .;(t) dt (2.4)

is not continuous on C(Rd) (it is not even defined on C(Rd) but only on
the subset of square-integrable functions with respect to .;). Here and in
what follows, an unspecified integral denotes integration over the whole
space Rd.

Remark. There seems to be a connection between Z(t) and a limiting
process Z� (t) obtained by Cso� rgo� [6] in the context of MVN testing via the
empirical characteristic function (see Theorem 2.2 of [6]). Both Z(t) and
Z� (t) have the property that their values are independent at orthogonal vec-
tors. Whereas the process Z� is a simple transform of a complex-valued
Gaussian process Y (see formula (2.5) of [6]), it is not clear whether the

6 HENZE AND WAGNER
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process Z is a transform of that same Y. If the underlying distribution is
Nd (0, Id), the covariance kernel *(s, t) of Y given in (2.2) of [6] is related
to the kernel K(s, t) by the formula

K(s, t)=*(s, &t)&(s$t) exp \&
&s&2+&t&2

2 + .

Proof of Theorem 2.1. Let

Zn*(t) :=
1

- n
:
n

j=1
_cos(t$Xj)+sin(t$Xj)&exp \&

&t&2

2 +
+{1

2
(t$Xj)

2&
&t&2

2
&t$Xj= exp \&

&t&2

2 +& (2.5)

and

Z� n(t) :=
1

- n
:
n

j=1
_cos(t$Xj)+sin(t$Xj)&exp \&

&t&2

2 +
+[cos(t$Xj)&sin(t$Xj)] t$2j& , (2.6)

where

2j=(S &1�2
n &Id) Xj&S &1�2

n X� n . (2.7)

The main steps of the proof are to show that

Zn* w�D Z in C(Rd), (2.8)

\(Zn , Z� n) w�P 0, (2.9)

and

\(Z� n , Z n*) w�P 0. (2.10)

To prove (2.8), use elementary trigonometric identities and the formulae

E cos(t$X)=exp(&&t&2�2),

E sin(t$X)=0,

E(s$Xt$X)=s$t,

E(t$X sin(s$X))=s$t exp(&&s&2�2),

E((s$X)2 (t$X)2)=&s&2 &t&2+2(s$t)2,

E((s$X)2 cos(t$X))=(&s&2&(s$t)2) exp(&&t&2�2)

7NEW APPROACH TO THE BHEP TESTS
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to obtain EZn*(t)=0 and E(Zn*(s) Zn*(t))=K(s, t), where K(s, t) is given
in (2.3). By the multivariate central limit theorem, the finite dimensional
distributions of Zn* converge to centered multivariate normal distributions
with covariances determined by the kernel K. To prove that the sequence
(Zn*)n�1 is tight, it suffices to show that for each k�1 the sequence Zn* ,
restricted to Rd

k=[t # Rd : &t&�k], is tight in the Banach space C(Rd
k)

(adapt the reasoning given in Karatzas and Shreve [15, p. 62f.], to the pre-
sent case). To this end, let N(Rd

k , !) denote the smallest number m such
that Rd

k can be covered with m spheres of radius !. Since

N(Rd
k , !)�\1+2 }

k+1
! +

d

is a (crude) bound for N(Rd
k , !), the metric entropy condition

|
1

0
[log N(Rd

k , !)]1�2 d!<�

holds. Moreover, letting

g(x, t) :=cos(t$x)+sin(t$x)&exp \&
&t&2

2 +
+{1

2
(t$x)2&

&t&2

2
&t$x= exp \&

&t&2

2 + , (2.11)

straightforward calculations yield the estimate

| g(X, s)& g(X, t)|�M } &s&t& (&s&, &t&�k),

where M=(2k+k3�2)(1+&X&2)+(3+k2) &X&. Since M�0 and
EM2<�, (2.8) now follows from Corollary 7.17 of Araujo and Gine� [2].

To prove (2.9), note that Yj=Xj+2j with 2j given in (2.7). Using tri-
gonometric formulae, we have

cos(t$Yj)=cos(t$Xj)&t$2j sin(t$Xj)+=n, j (t)

sin(t$Yj)=sin(t$Xj)+t$2j cos(t$Xj)+'n, j (t),

where |=n, j (t)|�&t&2 &2j &2, |'n, j (t)|�&t&2 &2j&2. Since

Zn(t)&Z� n(t)=
1

- n
:
n

j=1

[=n, j (t)+'n, j (t)],

8 HENZE AND WAGNER
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it follows that

max
&t&�k

|Zn(t)&Z� n(t)|�
2k2

- n
} :

n

j=1

&2j&2. (2.12)

From

- n(S &1
n &Id)=&

1

- n
:
n

j=1

(XjX$j&Id)+OP(n&1�2)

and - n(S &1
n &Id)=- n(S &1�2

n &Id)(S &1�2
n +Id) we obtain

- n(S &1�2
n &Id)=&

1

2 - n
:
n

j=1

(XjX $j&Id)+OP(n&1�2). (2.13)

Writing tr( } ) for trace, a simple calculation shows that

&2j &2=X$j (S &1�2
n &Id)2 Xj&2X $jS &1�2

n (S &1�2
n &Id) X� n+X� $nS &1

n X� n

and, thus,

1

- n
:
n

j=1

&2j&2=- n tr \(S &1�2
n &Id)2 1

n
:
n

j=1

XjX $j+
&2X� $nS &1�2

n - n(S &1�2
n &Id) X� n+- n X� $n S &1

n X� n .

In view of X� n=OP(n&1�2), n&1 �n
j=1 XjX $j=Id+OP(n&1�2), (2.12), (2.13)

and the definition of the metric \, (2.9) follows.
To verify (2.10), note that

max
&t&�k

|Z� n(t)&Zn*(t)|

= max
&t&�k }Un(t)&

1

- n
:
n

j=1
\(t$Xj)

2

2
&

&t&2

2
&t$Xj+ exp \&

&t&2

2 +} , (2.14)

where

Un(t)=
1

- n
:
n

j=1

t$2j (cos(t$Xj)&sin(t$Xj))

=t$ - n(S &1�2
n &Id)(An(t)&X� n Bn(t))&t$

1

- n
:
n

j=1

Xj Bn(t)

9NEW APPROACH TO THE BHEP TESTS
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and

An(t)=
1
n

:
n

j=1

Xj (cos(t$Xj)&sin(t$Xj)), (2.15)

Bn(t)=
1
n

:
n

j=1

(cos(t$Xj)&sin(t$Xj)). (2.16)

From the compactness of [t : &t&�k], the continuity of An( } ) and Bn( } )
and the strong law of large numbers, it is straightforward (although a little
tedious) to show that

max
&t&�k "An(t)+t exp \&

&t&2

2 +" ww�
n � �

0 almost surely

and

max
&t&�k }Bn(t)&exp \&

&t&2

2 +} ww�
n � �

0 almost surely.

On combining (2.15), (2.16) with (2.13) and plugging into (2.14), we obtain

max
&t&�k

|Z� n(t)&Zn*(t)| w�P 0.

This proves (2.10) and concludes the proof of Theorem 2.1. K

Proof of Theorem 2.2. Use � K(t, t) .;(t) dt<� and Tonellis theorem
to conclude that � Z2(t) .;(t) dt is finite almost surely. The main steps of
the proof are to show that

|[Zn*]| 2 w�D |[Z]|2 (2.17)

and

|[Z� n&Zn*]|2 w�P 0 (2.18)

(recall the notation |[x]|2 from (2.4)). Note that, from (2.17) and the con-
tinuous mapping theorem (CMT), we have |[Zn*]| w�D |[Z]], which, in
view of the triangle inequality | |[Zn*]|&|[Z� n]| |�|[Zn*&Z� n]| and
(2.18), implies |[Z� n]| w�D |[Z]| and, thus,

|[Z� n]|2 w�D |[Z]|2. (2.19)

10 HENZE AND WAGNER
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From the proof of Theorem 2.1 (cf. (2.12)) we obtain

|Zn(t)&Z� n(t)|�
2 &t&2

- n
:
n

j=1

&2j&2

=&t&2 } oP(1)

which, in turn, implies |[Z� n&Zn]|2 w�P 0. The assertion of Theorem 2.2
now follows from (2.19), the CMT and the inequality | |[Z� n]|&|[Zn]| |�
|[Z� n&Zn]|.

To prove (2.17), recall that Zn* and Z have the same covariance kernel
K defined in (2.3). For fixed =>0, we may thus choose a compact set C
such that

E(Vn, 1)=E(V1)�=2, (2.20)

where

Vn, 1=|
Rd"C

Z n*(t)2 .;(t) dt, n�1,

V1=|
Rd"C

Z2(t) .;(t) dt.

Put

Vn, 2=|
C

Zn*(t)2 .;(t) dt, V2=|
C

Z2(t) .;(t) dt,

and write Fn and F for the distribution functions of |[Zn*]| 2

(=Vn, 1+Vn, 2) and |[Z]| 2 (=V1+V2), respectively. Using

[Vn, 1+Vn, 2�t]�[Vn, 2�t],

[V2�t]�[V1+V2�t+=] _ [V1�=],

[Vn, 1+Vn, 2�t] _ [Vn, 1�=]$[Vn, 2�t&=],

[V2�t&=]$[V1+V2�t&=],

together with Vn, 2 w�D V2 , (2.20), and the continuity of the distribution
function of V2 , we have

11NEW APPROACH TO THE BHEP TESTS
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F(t&=)&=�P(V2�t&=)&=

= lim
n � �

P(Vn, 2�t&=)&=

�lim inf
n � �

Fn(t)

�lim sup
n � �

Fn(t)

� lim
n � �

P(Vn, 2�t)

=P(V2�t)

�F(t+=)+=

and, thus, (2.17) by letting = tend to zero.
To prove (2.18), we deduce from the proof of Theorem 2.1 (cf. the

reasoning following (2.14)) that

(Z� n(t)&Zn*(t))2�_&t&
2 "n&1�2 :

n

j=1

(XjX$j&Id)" "An(t)+t exp \&
&t&2

2 +"
+&t& &An(t)& oP(1)

+&t& - n &X� n & }Bn(t)&exp \&
&t&2

2 +}
+&t& &- n(S &1�2

n &Id)& &X� n& |Bn(t)|&
2

, (2.21)

where An(t) and Bn(t) are given in (2.15) and (2.16), respectively. Letting

Wn :=| \Bn(t)&exp \&
&t&2

2 ++
2

&t&2 .;(t) dt,

Tonellis theorem and some algebra give

E(Wn)=
1
n | (1&exp(&&t&2)) &t&2 .;(t) dt

and, thus,

Wn=oP(1). (2.22)

12 HENZE AND WAGNER
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In the same way, straightforward calculations yield

E(Wn
t

)=
1
n | (1&&t&2 exp(&&t&2)) &t&2 .;(t) dt

and, thus,

Wn
t

=oP(1), (2.23)

where

Wn
t

:=| "An(t)+t exp \&
&t&2

2 +"
2

&t&2 .;(t) dt.

Since by (2.21), we have

|[Z� n&Z n*]|2�OP(1) } | &t&2 "An(t)+t exp \&
&t&2

2 +"
2

.;(t) dt

+oP(1) } | &t&2 &An(t)&2 .;(t) dt

+OP(1) } | &t&2 \Bn(t)&exp \&
&t&2

2 ++
2

.;(t) dt

+oP(1) } | &t&2 Bn(t)2 .;(t) dt,

the proof now follows from (2.22), (2.23), and the fact that both the second
and the last integral form a tight sequence (we have convergence of expec-
tations). K

It is well known that the distribution of

T;(d ) :=| Z2(t) .;(t) dt

is that of 7j�1 *j (;) N 2
j , where N1 , N2 , . . . is a sequence of independent unit

normal random variables, and (*j (;)) j�1 is the sequence of nonzero eigen-
values of the integral operator A defined by

Aq(s)=| K(s, t) q(t) .;(t) dt.

Although K given in (2.3) looks much simpler than the kernel h*; figuring
in Theorem 3.1 of Henze and Zirkler [11], we did not succeed in solving
the equation Aq(s)=*q(s) and thus getting an explicit form for *j (;).

13NEW APPROACH TO THE BHEP TESTS
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However, some valuable information on the distribution of T;(d ) may be
obtained from the relations

E(T;(d ))=| K(t, t) .;(t) dt,

Var(T;(d ))=2 || K2(s, t) .;(s) .;(t) ds dt,

and

E(T;(d )&ET;(d ))3

=8 || | K(s, t) K(t, u) K(u, s) .;(s) .;(t) .;(u) ds dt du.

By tedious manipulations of integrals we obtain the following result (for
ET;(d ) and Var(T;(d )); see also Theorem 3.2 of Henze and Zirkler [11]):

Theorem 2.3. We have

E(T;(d ))=1&#&d�2 _1+
d;2

#
+

d(d+2) ;4

2#2 & ,

Var(T;(d ))=2(1+4;2)&d�2+2#&d _1+
2d;4

#2 +
3d(d+2) ;8

4#4 &
&4$&d�2 _1+

3d;4

2$
+

d(d+2) ;8

2$2 & ,

E(T;(d )&ET;(d ))3

=8(1+3;2)&d&12(#|)&d�2 _2+
d;4

#2 +
2d;6

#|
+

2d;8

#2|
+

d(d+2) ;12

#2|2 &
+6(#$)&d�2 _4+

4d;4

$
+

4d;6

#$
+

d(d+2) ;8

#2$
+

3d(d+2) ;12

#2$2 &
&#&3d�2 _8+

12d;4

#2 +
8d;6

#3 +
6d(d+2) ;8

#4 +
d(d+2)(d+8) ;12

#6 & ,

14 HENZE AND WAGNER
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where

#=#(;)=1+2;2,

$=$(;)=1+4;2+3;4,

|=|(;)=1+4;2+2;4.

3. CONTIGUOUS ALTERNATIVES

In this section, we consider a triangular array Xn1 , ..., Xnn , n�d+1, of
rowwise independent and identically distributed random vectors having
Lebesgue density,

fn(x)=.(x) } (1+n&1�2h(x)),

where .=.1 is the density of Nd (0, Id) and h is a bounded measurable
function such that � h(x) .(x) dx=0. To guarantee that fn is nonnegative,
we tacitly assume n to be large enough.

In what follows, we retain the notation adopted in the previous sections;
i.e., we write X� n=n&1 �n

j=1 Xnj , Sn=n&1 �n
j=1 (Xnj&X� n)(Xnj&X� n)$,

Yj :=S &1�2
n (Xnj&X� n), etc.

Theorem 3.1. Under the triangular array Xn1 , ..., Xnn and the standing
assumptions, we have

Zn w�D Z+c

in C(Rd), where Zn is defined in (2.2), Z is the Gaussian process figuring in
Theorem 2.1 and the shift function c is given by

c(t)=| g(x, t) h(x) .(x) dx,

where g(x, t) is defined in (2.11).

Theorem 3.2. Under the conditions of Theorem 3.1, we have

| Z2
n(t) .;(t) dt w�D | (Z(t)+c(t))2 .;(t) dt.

From Theorem 3.1 and Theorem 3.2, we conclude that the BHEP tests
are able to detect alternatives which converge to the normal distribution at
the rate n&1�2, irrespective of the underlying dimension d.

15NEW APPROACH TO THE BHEP TESTS
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Proof of Theorem 3.1. Consider the probability measures

P(n) := }
n

j=1

(.*d), Q(n) := }
n

j=1

( fn *d)

on the measurable space (Xn , Bn) :=}n
j=1 (Rd, Bd), where *d is Lebesgue

measure on the Borel sets Bd of Rd. Putting Ln :=dQ(n)�dP(n), we have

log Ln(Xn1 , ..., Xnn)= :
n

j=1

log(1+n&1�2h(Xnj))

= :
n

j=1
\n&1�2h(Xnj)&

h2(Xnj)
2n ++oP(n)(1)

and thus, by the Lindeberg�Feller theorem and the law of large numbers,

log Ln ww�D

n � �
N \&

_2

2
, _2+ under P(n),

where _2 :=� h2(x) .(x) dx<�. By LeCam's first lemma (see, e.g., Witting
and Mu� ller�Funk [28, p. 311]) the sequence Q(n) is contiguous to P(n).
Noting that, under P(n),

lim
n � �

Cov(Zn*(t), log Ln)=c(t),

where Zn* is the auxiliary process introduced in (2.5), it is straightforward
to show that, for fixed k and t1 , ..., tk # Rd, the joint limiting distribution of
Zn*(t1), ..., Zn*(tk) and log Ln under P(n) is the (k+1)-variate normal dis-
tribution

Nk+1 __
0
b
0

&_2�2& , \7
c$

c
_2+& ,

where 7=(K(tl , tm))1�l, m�k and c=(c(t1), ..., c(tk))$ (recall K(s, t) from
(2.3)). Invoking LeCam's third lemma (see, e.g., Witting and Mu� ller�Funk
[28, p. 329]), we thus obtain that, under Q(n), the finite dimensional
distributions of Zn* converge to the finite dimensional distributions of the
shifted Gaussian process Z+c. Since tightness of Zn* under P(n) and the
contiguity of Q(n) to P(n) imply tightness of Zn* under Q(n), we have

Zn* w�D Z+c under Q(n).

16 HENZE AND WAGNER
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Since, by (2.9) and (2.10), \(Zn , Zn*) tends to zero stochastically under P(n)

and thus also under Q(n) (because of contiguity), the assertion of
Theorem 3.1 follows. K

Proof of Theorem 3.2. Since the proof follows the reasoning given in the
proof of Theorem 2.2, it will only be sketched. First, from the boundedness
of h and the fact that | g(x, t)|�3+&t&2 &x&2�2+&t&2�2+&t& &x&, we have
|c(t)|�#(1+&t&2) for some constant # which ensures that � (Z(t)+
c(t))2 .;(t) dt is finite almost surely. To prove

|[Zn*]| 2 w�D |[Z+c]| 2 under Q(n), (3.1)

note that, under Q(n), we have

E | Zn*(t)2 .;(t) dt=| \K(t, t)+
n&1

n
c2(t)+ .;(t) dt+o(1).

This shows that, for fixed =>0, there is a compact set C such that, under
Q(n), E(V1)�=2 and E(Vn, 1)�=2, n�1, where Vn, 1 , V1 are given in the
proof of Theorem 2.2 with the only exception that Z is replaced by the
shifted process Z+c. The rest of the argument for proving (3.1) runs along
the lines of the proof of (2.17). Since |[Zn]|&|[Zn*]| converges to zero
stochastically under P(n) (see the argument following (2.18)) and, thus,
because of contiguity, also under Q(n), the assertion of Theorem 3.2 is a
consequence of (3.1) and the CMT. K

4. EMPIRICAL RESULTS AND DISCUSSION

We stress that, for each fixed ;>0, rejecting the hypothesis Hd of multi-
variate normality for large values of Tn, ; yields an affine invariant and
universally consistent MVN test which may be carried out easily for any
number of dimensions (cf. the four bullets at the beginning of Section 1).

To determine approximate upper quantiles of the null distribution of
Tn, ; , a Monte Carlo experiment was performed. The results are given in
Tables I�IV for several values of n, d, and ; and the significance levels
:=0.1 and :=0.05. Each tabulated value is based on 10.000 Monte Carlo
replications. An entry like &51.17 stands for 1.17_10&5, and 1.0321 means
1.00021. The results clearly show that the test is practically sample size
independent; i.e., the critical values seem to converge rapidly to their
corresponding asymptotic values. This observation (which contrasts with
other nonparametric settings where a normal limit arises) is typical for
situations where the statistic under discussion is a degenerate U- or

17NEW APPROACH TO THE BHEP TESTS
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TABLE I

Empirical Percentage Points of Tn, ; (d=2)

;=0.1 ;=0.5 ;=1.0 ;=3.0

1&: 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

n=20 &51.17 &51.48 0.060 0.073 0.468 0.540 1.081 1.172
n=50 &51.40 &51.77 0.065 0.078 0.477 0.553 1.089 1.177
n=100 &51.47 &51.85 0.065 0.079 0.480 0.555 1.100 1.191
q;, d (:) &51.44 &51.84 0.065 0.079 0.472 0.554 1.096 1.186
q+

;, d (:) &51.05 &51.41 0.065 0.079 0.475 0.552 1.096 1.188

TABLE II

Empirical Percentage Points of Tn, ; (d=3)

;=0.1 ;=0.5 ;=1.0 ;=3.0

1&: 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

n=20 &52.14 &52.63 0.097 0.113 0.615 0.671 1.056 1.095
n=50 &52.55 &53.10 0.103 0.119 0.621 0.682 1.057 1.095
n=100 &52.67 &53.19 0.105 0.120 0.621 0.683 1.062 1.098
q;, d (:) &52.72 &53.26 0.106 0.121 0.620 0.684 1.061 1.096
q+

;, d (:) &52.52 &53.15 0.106 0.121 0.620 0.684 1.062 1.099

TABLE III

Empirical Percentage Points of Tn, ; (d=5)

;=0.1 ;=0.5 ;=1.0 ;=3.0

1&: 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

n=20 &55.14 &55.73 0.186 0.199 0.814 0.845 1.008 1.020
n=50 &56.24 &57.13 0.197 0.213 0.815 0.847 1.014 1.022
n=100 &56.55 &57.44 0.200 0.216 0.815 0.851 1.014 1.021
q;, d (:) &56.75 &57.52 0.201 0.217 0.814 0.849 1.015 1.020
q+

;, d (:) &56.72 &57.58 0.201 0.217 0.814 0.852 1.015 1.021

18 HENZE AND WAGNER
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TABLE IV

Empirical Percentage Points of Tn, ; (d=10)

;=0.1 ;=0.5 ;=1.0 ;=3.0

1&: 0.9 0.95 0.9 0.95 0.9 0.95 0.9 0.95

n=50 &42.64 &42.79 0.463 0.474 0.980 0.986 0.955 1.05

n=100 &42.79 &42.95 0.466 0.476 0.979 0.986 1.041 1.048
n=200 &42.87 &43.02 0.467 0.480 0.979 0.986 1.048 1.0319
q;, d (:) &42.91 &43.04 0.468 0.479 0.978 0.985 1.0321 1.0327
q+

;, d (:) &42.91 &43.06 0.468 0.481 0.978 0.985 1.0321 1.0327

V-statistic (see Go� tze [10]). That Wn, ; defined in (1.2) is a degenerate
V-statistic with estimated parameters has been exploited by Henze and
Zirkler [11].

In each table, the row denoted by q;, d (:) is the (1&:)-quantile of a
lognormal distribution having expectation +;, d :=E(T;(d )) and variance
_2

;, d=Var(T;(d )) given in Theorem 2.3, i.e.,

q;, d (:)=+;, d \1+
_2

;, d

+2
;, d+

&1�2

exp \8&1(1&:) �log \1+
_2

;, d

+2
;, d++ ,

where 8&1( } ) denotes the inverse of the standard normal distribution
function. Likewise, the row denoted by q+

;, d(:) is the (1&:)-quantile of a

Fig. 4.1. Power of the MVN tests based on Tn, ; (d=5) for a normal mean mixture.
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Fig. 4.2. Power of the MVN tests based on Tn, ; (d=5) for a uniform distribution over
the unit 5-cube [0, 1]5.

three-parameter lognormal distribution having the first three moments as
given in Theorem 2.3; i.e.,

q+
;, d (:)=+;, d&

_;, d

- a+1�a&2 \1&
exp(8&1(1&:) - log(a+1�a&1))

- a+1�a&1 + ,

where

a=\1+
m2

;, d

2_3
;, d

+
1
2 �4

m2
;, d

_3
;, d

+
m4

;, d

_6
;, d+

1�3

,

m;, d=E(T;(d )&ET;(d ))3.

With the exception of the cases d=2, ;=0.1 and d=10, ;=3, both
q;, d (:) and q+

;, d (:) show remarkably good agreement with the empirical
quantiles. We therefore suggest to use q;, d (:) or q+

;, d (:) as an approximate
critical value for a nominal level : test based on Tn, ; if the sample size n
is not too small.

To illustrate the dependence of power of the MVN test based on Tn, ; on
the parameter ;, Figs. 4.1�4.4 exhibit plots of the empirical power (based
on 10.000 Monte Carlo replications) of the Tn, ; test for the case d=5 and
the sample sizes n=20, n=50, and n=100 as a function of ;. In each case,
the nominal level is 0.1. The alternatives to normality chosen are an equal
mixture of the standard normal distribution Nd (0, Id) and the normal dis-
tribution Nd (a, Id), where a=(3, 3, ..., 3) (Fig. 4.1), the uniform distribution
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Fig. 4.3. Power of the MVN tests based on Tn, ; (d=5) for a symmetric Pearson type II
distribution given in (4.1).

over the unit 5-cube (Fig. 4.2), the spherically symmetric Pearson Type II
distribution with density

1(9�2)
?5�2 (1&&x&2) } 1[&x&2<1] (4.1)

(Fig. 4.3) and the spherically symmetric Pearson Type VII distribution
having density

32
?3 (1+&x&2)&5 (4.2)

It is striking to see that, at least for the values of n under study and a
certain range of values for ;, power does not increase with the sample size.
We have no theoretical explanation for this weird behavior which certainly
constitutes a field of future research. Taking a large value of ; (which effec-
tively amounts in rejecting Hd for large values of the right hand side of
(1.5)) seems to be a powerful procedure against short-tailed symmetric
alternatives. On the other hand, taking a small value of ; which essentially
results in computing a convex combination of two skewness measures (see
(1.4)) is a good safeguard against symmetric heavy-tailed distributions. Of
course, much more work needs to be done to understand the dependence
of power on ; in order to obtain some kind of an adaptive test for multi-
variate normality.
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Fig. 4.4. Power of the MVN tests based on Tn, ; (d=5) for the symmetric Pearson type
VII distribution given in (4.2).
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