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Let X, .., X,, be iid. random d-vectors, d> 1, with sample mean X and sample
covariance matrix S. For testing the hypothesis H, that the law of X, is some non-
degenerate normal distribution, there is a whole class of practicable affine invariant
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exp( — [|#?/2) under H,. The test statistics have an alternative interpretation in
terms of L>-distances between a nonparametric kernel density estimator and the
parametric density estimator under H,, applied to Y|, .., Y,. By working in the
Fréchet space of continuous functions on R¢, we obtain a new representation of
the limiting null distributions of the test statistics and show that the tests have
asymptotic power against sequences of contiguous alternatives converging to H, at

the rate n~ "2 independent of d.  © 1997 Academic Press

1. INTRODUCTION

There is a continued interest in the problem of testing for multivariate
normality, as evidenced by the recent papers of Ahn [1], Bowman and
Foster [5], Henze [12], Horswell and Looney [ 14], Kariya and George
[16], Koziol [17], Mudholkar, McDermott, and Srivastava [20],
Mudholkar, Srivastava, and Lin [21], Naito [22], Ozturk and Romeu
[23], Rayner, Best, and Matthews [24], Romeu and Ozturk [25], Singh
[26], Versluis [27], and Zhu, Wong, and Fang [29] on this subject.

The purpose of this paper is not to review the huge literature on tests for
multivariate normality (for short; MVN tests), but to present a new
approach to a whole class of MVN tests studied by Baringhaus and Henze
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2 HENZE AND WAGNER

[3] and Henze and Zirkler [ 11]. These tests have the desirable properties
of

o affine invariance,

e consistency against each fixed nonnormal alternative distribution,

 asymptotic power against contiguous alternatives of order n '/,

o feasibility for any dimension and any sample size,

which no other MVN test shares, at least to our knowledge.

To state the testing problem and the tests under discussion, let X, X, ...
be a sequence of independent copies of a random d-dimensional column
vector X, where d>1 is a fixed integer. The distribution of X will be
denoted by P*. The problem is to test, on the basis of X, .., X,, the
hypothesis

H,: PXe .V,

where ./, is the class of all nondegenerate d-variate normal distributions.
Since .1 is closed with respect to full rank affine transformations and the
alternatives to H, are rarely known or given in practice, we are interested
in (affine) invariant and consistent tests. Such a test may be based on the
test statistic

T, ;:=n(4 1{S,is singular} + W, , 1{S,is nonsingular}). (1.1)

Here, >0 is a parameter (the role of which is discussed later), 1{ -}
stands for the indicator function and

is the empirical covariance matrix of X, .., X,, where X, :=n"! (.¢

and the prime denotes transpose. W, ; is the weighted L>-distance

0 —ex (- 1)

between the empirical characteristic function

2
W, ;= (1) di (1.2)

Rd

1 n
¥ (1) = Y exp(it'Yy) (?=-1)

k=1

of the scaled residuals

Y, :=S,"%(X,—X,) (k=1,.,n)
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and the characteristic function exp( — ||#||?/2) of the standard d-variate nor-
mal distribution. S, "% is the symmetric positive definite square root of
S, . Note that Y, and, hence, W, ; are only defined if S, is nonsingular.
According to (1.1), W, s is replaced by its maximum possible value 4 in the
case when S, is not invertible (this suggestion is due to Csorgd [7]). The

weight function ¢, figuring in (1.2) is

@u(1) = (2mf?) =% exp ( - |2f8|2>

The extremely appealing feature of this choice is that W, , takes the simple
form

1 n [))2 5
Wap=r3 3 exp( =5 1Y, =Y

Jok=1
Ll d B 1Y)
— 2y —d/2 _ A S
2A1+4) nZexp( 0+55

Jj=1

>+(1 +2p7) 2,

This representation shows that T, ; is invariant; i.e., we have
T, (AX,+b, .., AX,+b)=T, s(X;, .., X,)

for each nonsingular 4 € R?*“ and each b e R?. Moreover, since the com-
putation of | Y;,— Y, |* and || Y,|* involves only S, ', not even the square
root S, 2 of S ! is needed.

The statistic W, , was proposed by Epps and Pulley [9] in the special
case d =1. Baringhaus and Henze [3] extended the approach of Epps and
Pulley to the case d>1 and obtained the limit distribution of n- W, ,
under H, for the case f=1. S. Csoérgd [ 7] coined the term BHEP test with
reference to these four authors.

Using a theorem of de Wet and Randles [8], Henze and Zirkler
[11] proved that the limiting distribution of T, , under H, is that of
2=190;(p) Nf, where N,, N,,... are iid. standard normal random
variables and (6;(f)),~, is the sequence of eigenvalues associated with an
integral operator given in Theorem 3.1 of Henze and Zirkler [11]. If the
distribution of X is not in ./, we have

liminfn='T, ,> C(P*, ) >0, almost surely

n— oo

for some constant C(P*, ) (Csorgd [7]). This shows that rejecting H,, for
large values of T, , yields an affine invariant and universally consistent
MYVN test (cf. the first two bullets).
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That the role of f figuring in the weight function ¢ is that of a smooth-
ing parameter may be seen from the representation

W, ;=Q2rn)" B~ J [[g,,,,;(x) —(27t?) " exp < — Z';ﬂ ’ dx, (1.3)

where 72 = (2% +1)/(2f%), and

| - |x— Y, |?
g p(X) =Wk§1 (27) 92 exp < _Tzk

is a nonparametric kernel density estimator, applied to Y, .., Y,,, with a
standard Gaussian kernel and bandwidth 2=1/(f ﬁ) (see Henze and
Zirkler [8, p. 3600]). In the spirit of density estimation, Bowman and
Foster [4, p. 1535] proposed to base a MVN test on

BFn :ﬁ;zl(zn) —42 Wn, B>

where 8, :=(h, ﬁ)*l and h, :=[4/(n(d+2))]V“*+*. We conjecture that,
in contrast to the case of fixed f (see Section 3), the MVN test based on
BF, is not able to discriminate between H, and alternatives which are
n~2apart.

Interestingly, the class of MVN tests based on T, ; is “closed at the
boundaries f— 0 and f— c0” which correspond to “infinite and zero
smoothing,” respectively. More precisely, we have (Henze [13])

lim B=CW, s=1-b, 4+5%-b, 4 (1.4)

B—0
where
1 ,
bl.d—7 Z YYA
I

is Mardia’s time-honored measure of multivariate sample skewness
(Mardia [18]) and

n

bia=25 Z RANONIAL

is the sample version of the population skewness measure J Ld=
|E[ || X]I*> X]||? (this notation assumes X to be standardized), introduced by
Moéri, Rohatgi, and Székely [19]. On the other hand, we have

1 2 Y2
lim ﬂd< _n>:2d/2_n Y exp<—'2’|> (L.5)

o j=1
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which shows that, in the limit f — oo, rejection of H, is equivalent to rejec-
ting H, for small values of n ! 71 €xp(— 31 Y;[1?). Note that this statistic
is similar to Mardia’s measure n~' i 1Y H4 of multivariate kurtosis
(Mardia [18]) in the sense that it investigates an aspect of the “radial
part” of the standardized underlying distribution.

In view of the four properties featured at the beginning of this section,
we stress that standard MVN tests based on multivariate skewness and
kurtosis in the sense of Mardia lack the property of universal consistency
(see Baringhaus and Henze [4] and Henze [12]).

The purpose of this paper is to provide a new approach to the class of
BHEP tests. The reasoning utilizes the theory of weak convergence in the
Fréchet space C(R?) of continuous functions on R and is presented in
Section 2. By means of this approach, we obtain

e a new representation of the limiting null distribution of 7, ; in
terms of a Gaussian process in C(RY)

« the joint limiting null distribution of T, ; for several values of f§

« the asymptotic power of the test based on T, ; against contiguous
alternatives.

Interestingly, the MVN test based on T, , is able to detect contiguous
alternatives which converge to the normal distribution at the rate n ~ /2 (see
Section 3). The final section presents some empirical results and concluding
discussion.

2. THE LIMIT DISTRIBUTION OF T, , UNDER H,

Throughout this section, we assume that the distribution of X is a cen-
tered d-variate normal with unit covariance matrix [/, for short,
X~ A4(0,1,). Since T, g is affine invariant, this assumption means no loss
of generality when studying the distribution of T, 5 under H,. Our starting
point is the observation that for n>d+ 1,

T p= fw Z,(1) @y(1) dt, (2.1)

where

i [cos (1'Y;) +sin(1'Y;) —exp <—|t2|2>}, (2.2)

n=—"r
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te R Note that Z, is a random element in the Fréchet space C(R“) of
continuous functions on R¢ endowed with the metric

< nk PilXp)
plx, y)= 3 27K ==,
kgl 1 + pk(xa y)

where

pi(x, y)=max |x(1)— y(1)|.

el <k

THEOREM 2.1. Let X, X5, ... be a sequence of i.i.d. N,;(0,1,) distributed
random d-vectors, and let Z, be defined in (2.2). There exists a centered
Gaussian process Z in C(R?) having covariance kernel

2 14\2 2 2
K(s, t):exp<—s_2” >—{l+s’t+(szt)}exp<—|s| er”’” > (2.3)

(s, te RY) such that
Z, -2 Z in C(RY,
where “ -2 denotes convergence in distribution.

THEOREM 2.2. Under the conditions of Theorem 2.1, we have

|z e a—= [ 22 gy dr
R4 R4
Note that this result is not trivial since the functional

e [[x117 = [ x2(0) 1) e (24)

is not continuous on C(RY) (it is not even defined on C(R“) but only on
the subset of square-integrable functions with respect to ¢,). Here and in
what follows, an unspecified integral denotes integration over the whole
space R“.

Remark. There seems to be a connection between Z(z) and a limiting
process Z(¢) obtained by Csérgd [6] in the context of MVN testing via the
empirical characteristic function (see Theorem 2.2 of [6]). Both Z(¢) and
Z(t) have the property that their values are independent at orthogonal vec-
tors. Whereas the process Z is a simple transform of a complex-valued
Gaussian process Y (see formula (2.5) of [6]), it is not clear whether the
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process Z is a transform of that same Y. If the underlying distribution is
AN5(0, 1,), the covariance kernel o(s, #) of Y given in (2.2) of [6] is related

to the kernel K(s, 7) by the formula

Proof of Theorem 2.1. Let

: l[2])?
Zx(t — X X,)—
f ; [cos ('X;) +sin(7'X;) exp< >

1 lel> Iz]?
+{2(IX) 3 —1'X;rexp| — 7 }
and
i t
Z,(1): 7 > {cos (1'X)) +sin(t’Xj)—exp<— H2H
+ {cos(7'X,) —sin(7' X))} t’A_l} ,
where

A,=(S,"*=1,)X,—S,'*X,.
The main steps of the proof are to show that
Z*—~27Z in C(RY),

pz,. 2,)— 0,
and

p(Z,, 25— 0.

)

(2.10)

To prove (2.8), use elementary trigonometric identities and the formulae

E cos(t'X) =exp( — [|£]*/2),
Esin(#'X) =0,
E(s'Xt'X)=+'t,
E(¢' X sin(s'X)) = 5"t exp( — | s]|*/2),
E((s'X)? (£ X)?) = [s]1? 71> +2(s"0)?,

E((s'X)? cos(#'X)) = (IIs]|* — (s')*) exp( — || £]]*/2)
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to obtain EZ¥(¢t)=0 and E(Z}(s) Z}(t)) = K(s, t), where K(s, t) is given
n (2.3). By the multivariate central limit theorem, the finite dimensional
distributions of Z* converge to centered multivariate normal distributions
with covariances determined by the kernel K. To prove that the sequence
(Z¥),=, 1s tight, it suffices to show that for each k> 1 the sequence Z}

restricted to R{= {le[R{" |7]| <k}, is tight in the Banach space C([Rd)
(adapt the reasoning given in Karatzas and Shreve [ 15, p. 62f.], to the pre-
sent case). To this end, let N(RY, ) denote the smallest number m such

that R¢ can be covered with m spheres of radius &. Since

d
<Rz,<><<1+z "21>

is a (crude) bound for N(R{, &), the metric entropy condition
1
| flog N(RY, &)} 17 de < o0
0
holds. Moreover, letting

8(x, 1) :=cos('x) +sin(7'x) —exp < _|[22>

1 ! 2 M_ ! _M
+{2(tx) - tx}exp( > >, (2.11)

straightforward calculations yield the estimate

lg(X,s)—g(X, Ol <M-|ls—zl  (lsl, 7l <k),
where M= (2k+k32)(1+|X|*)+(3+k%) || X]|. Since M=>0 and
EM? < o0, (2.8) now follows from Corollary 7.17 of Araujo and Giné [2].

To prove (2.9), note that Y;= X, + 4, with 4, given in (2.7). Using tri-
gonometric formulae, we have

cos(?'Y;) =cos(t'X;) —t'4;sin('X;) +e, (1)
sin('Y;) =sin('X;) + '4; cos(1'X;) + 1, (1),

where [e, (D] <712 14,12 |n,, ;(2)

<||7* |4, Since

HM:

&, (1) + 11, (1) ],

Z,(0)~Z,(1)=—
f
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it follows that

- 2k?
max |Z,(t)— Z,()| < Z 14,12 (2.12)

n
Il <k f 2

From

1 n
IS, = 1) = 7 Y (X, X;— 1)+ 0pn="7)
nj=1

and \/n(S; ' —1,)=/n(S; "> —1,)(S; "> +1,) we obtain

(S —1,)= Li(}(jx;—ld)juop(n*l/z). (2.13)

2./n;=

Writing tr(-) for trace, a simple calculation shows that

14,12 = X,(S, 2= 1,2 X, 2X,8 'X(S, P~ 1) X, + X,5, ' X,
and, thus,

NI A G ZX /)

j= jo
22X, (S P —1) X, /n XS X,

In view of X,=0,(n"'?), n™' 3/ | X, X, =1,+ O0p(n~"?), (2.12), (2.13)

and the definition of the metric p, (2.9) follows
To verify (2.10), note that

max |Z,(t) —Z (1)

el <k
- L LX) P, <_|t|2>
_mgg{ f;( > th>exp > )| (2.14)
where
U,,(t)z\}’;éll t'A;(cos(t'X;)—sin(t'X;))

— SHS T L) (A1) — X, B(1) — 1 —= S X.B(1)
Vi
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and
i X;(cos(#'X;) —sin(7' X)), (2.15)
i (cos(#'X;) —sin(7'X))). (2.16)

From the compactness of {r: ||z <k}, the continuity of 4,(-) and B,(-)
and the strong law of large numbers, it is straightforward (although a little
tedious) to show that

t 2
max |A4,(t)+texp < —|2|> — 0 almost surely
lell <k n= o
and
[k
max |B,(t)—exp| — 2 )| 0 almost surely.
el <k e

On combining (2.15), (2.16) with (2.13) and plugging into (2.14), we obtain

max |Z, (1) — Z (1) = 0.

el <k

This proves (2.10) and concludes the proof of Theorem 2.1. ||

Proof of Theorem 2.2. Use fK(t, 1) @4(t) dt < oo and Tonellis theorem
to conclude that sz(t) @g(t) dt is finite almost surely. The main steps of
the proof are to show that

I[Z¥11?—5 [ 2112 (2.17)
and

[Z, 231170 (2.18)
(recall the notation |[x]|? from (2.4)). Note that, from (2.17) and the con-
tinuous mapping theorem (CMT), we have |[[Z*]| -2 |[Z]], which, in
view of the triangle inequality ||[Z]] —[Z]<I[Z¥—=Z,]| and
(2.18), implies |[Z,]| -2 |[Z]] and, thus,

I[Z,11>2-5 ([ 2112 (2.19)
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From the proof of Theorem 2.1 (cf. (2.12)) we obtain

201 ¢

x 14
Jn A
= 1>+ 0p(1)

1Z,() = Z,(1)] <

which, in turn, implies |[Z,— Z,]|> > 0. The assertion of Theorem 2.2
now follows from (2.19), the CMT and the inequality | |[[Z,]| — [ Z,]] | <
| [Zn - Zn] |

To prove (2.17), recall that Z* and Z have the same covariance kernel
K defined in (2.3). For fixed ¢>0, we may thus choose a compact set C
such that

E(V, )=EV))<¢, (2.20)
where
V1= ZX )Q(Pﬁ()d nxzl,
R\
_ 2
v, _jw\cz () (1) dt
Put

Vaa=| ZH o di  Va=| Z0) py0) i,
C

and write F, and F for the distribution functions of [[ZX*]|?
(=V,1+V,, and |[Z]|* (= V,+ V,), respectively. Using

Vit Vi<t s{V,2<t},
(Vo<ty S{V i+ V,<i+e} u{V,>e},
{V" 1+V”v2<[}U{Vn 1/8}3{Vn,2<l‘—8},

{(Vo<t—e} 2{V+V,<t—e¢},

together with V, , -5 V5, (2.20), and the continuity of the distribution
function of V,, we have
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Flt—e)—e<P(V,<t—e)—¢

=lim P(V,,<t—¢)—¢

n— oo

<lim inf F,(¢)

n— oo

<lim sup F,(1)

n— oo

< hm P(V}1,2<t)

n— oo

<F(t+e)+e

and, thus, (2.17) by letting ¢ tend to zero.
To prove (2.18), we deduce from the proof of Theorem 2.1 (cf. the

reasoning following (2.14)) that
e
A (t)+texp| — 7
+ 2]l 114,(2) [ 0p(1)

+ It /7 1%, | ‘Bn(t)_exp<_t2>

Zin-z0P<| 502 ¥ (x-1

Jj=1

2
+ el /(S 2= 1)) X, | 1Bt )I} (2.21)
where A4,(t) and B,(¢) are given in (2.15) and (2.16), respectively. Letting

woi=[ (Bao-e [ ~L5)) 1 0

Tonellis theorem and some algebra give

1
EW,) =;f (I—exp(— [[£])) 111> @4(1) dt
and, thus,

W,=o0p(1). (222)
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In the same way, straightforward calculations yield

~ 1
E(W,,)=ZJ(1 — ll£l1* exp( — [£]1%) 12]1* @ (1) dt

and, thus,

W,=0p(1), (2.23)

n

where

2

2% @ 1) dt.

Wn :=f A,(t)+texp ( — |lj2|2>

Since by (2.21), we have

2

[Z,~ZFIP<0n1)- [ 1] P 1) di

A, (t)+tex <—|t|2>
n P )
+op1)- [ 1117 14,(0)1% (1) di

. 122
+0p(1)- [ 112 ( By —exp [ =25 ) ) @pl0)di

+op(1)- [ 1117 B0 g 1) db,

the proof now follows from (2.22), (2.23), and the fact that both the second
and the last integral form a tight sequence (we have convergence of expec-
tations). ||

It is well known that the distribution of

Tyd) = [ Z3(1) o (1) de

is that of X,_, 4,(f) N;, where N, N,, ... is a sequence of independent unit
normal random variables, and (4;(f));~, is the sequence of nonzero eigen-
values of the integral operator A defined by

Aq(s)= | K(s, 1) (1) g 0) d.

Although K given in (2.3) looks much simpler than the kernel %} figuring
in Theorem 3.1 of Henze and Zirkler [11], we did not succeed in solving
the equation Ag(s)=Aq(s) and thus getting an explicit form for 4,(f).
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However, some valuable information on the distribution of 74(d) may be
obtained from the relations

E(Tyd)= | K(t,1) g,(1) d,
Var(Ty(d) =2 [[ K5, 1) g (s) 9(1) ds db,
and
E(Ty(d)~ ET/(d))’

=8 ﬂf K(s, 1) K(t, u) K(u, 5) @ (s) @ (1) @ pu) ds dt du.

By tedious manipulations of integrals we obtain the following result (for
ETg(d) and Var(T4(d)); see also Theorem 3.2 of Henze and Zirkler [11]):

THEOREM 2.3. We have

2 4
iy =1y 19 4D

2y?

Var(Ty(d)) =2(1 +4/32)“’/2+2y"{1 2fylﬁ4+3d (d+2) p* }

4y*

Liaf ) 3B dd+2) B
_45/{ 26 T 2 }
E(Ty(d)— ET4(d))?
S O2dBS 2dBE d(d+2) B
e e

4dﬁ4 N 4dp° N d(d+2) B N 3d(d+2) ﬂ‘z}

dj2
+6(0) [ e o

12dp*  8dp® 6d(d+2) +d(d+2)(d+8),8‘2]

—3d)2
—y |:8+ + +
2 3 :4 :6
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where

y=7(B)=1+2p
5=0(B)=1+4%+ 34",
w=w(f)=1+4p>+2p*

3. CONTIGUOUS ALTERNATIVES

In this section, we consider a triangular array X,,, ..., X,,,, n=>d+ 1, of
rowwise independent and identically distributed random vectors having
Lebesgue density,

Julx)=(x) - (1 +n""2h(x)),

where ¢ = ¢, is the density of .4,(0,,) and % is a bounded measurable
function such that jh(x) ¢(x) dx=0. To guarantee that f, is nonnegative,
we tacitly assume n to be large enough.

In what follows, we retain the notation adopted in the previous sections;
ie, we write X,=n"'Y7 X, S,=n'Y"  (X,—X)X,—X,),

n _ j=1"nj> j=1
Y,:=8,"4(X,—X,), etc.
THEOREM 3.1. Under the triangular array X,,, ..., X,, and the standing
assumptions, we have
Z, < Z+e¢

in C(RY), where Z, is defined in (2.2), Z is the Gaussian process figuring in
Theorem 2.1 and the shift function c is given by

()= | glx, 1) h(x) lx) dx,
where g(x, t) is defined in (2.11).

THEOREM 3.2.  Under the conditions of Theorem 3.1, we have

[ Z20) pytr) dt = [ (2(0) + (1)) o 1) a

From Theorem 3.1 and Theorem 3.2, we conclude that the BHEP tests
are able to detect alternatives which converge to the normal distribution at
the rate n~ ' irrespective of the underlying dimension d.
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Proof of Theorem 3.1. Consider the probability measures

n

P =R (i), o = é (£, 29

j=1 j=1

on the measurable space (Z,,, 4,) := ®/_, (R, #7), where 1/ is Lebesgue
measure on the Borel sets Z#“ of R?. Putting L, :=dQ""/dP", we have

lOg Ln(an> B Xnn) = Z log(l +n_1/2h(an))

J=1

=3 ()~ et

and thus, by the Lindeberg—Feller theorem and the law of large numbers,

0,2

—, 2 d pwn
20> under

log L, == A < -
where 6° := | h*(x) ¢(x) dx < co. By LeCam’s first lemma (see, e.g., Witting
and Miiller-Funk [28, p. 311]) the sequence Q" is contiguous to P".
Noting that, under P,

lim Cov(Z}*(t),log L,)=c(t),

n-— oo

where Z* is the auxiliary process introduced in (2.5), it is straightforward
to show that, for fixed k and ¢,, .., t, € R?, the joint limiting distribution of
Z*(ty), .., Z¥(t,) and log L, under P is the (k + 1)-variate normal dis-
tribution

—a?2

where 2= (K(#;, t,,))1 <. m<ix and e=(c(t,), ..., c(t)) (recall K(s, t) from
(2.3)). Invoking LeCam’s third lemma (see, e.g., Witting and Miiller—Funk
[28, p. 329]), we thus obtain that, under Q", the finite dimensional
distributions of Z* converge to the finite dimensional distributions of the
shifted Gaussian process Z + ¢. Since tightness of Z* under P and the
contiguity of Q™ to P"™ imply tightness of Z* under Q™, we have

Z¥ -2 Z+c¢  under Q.
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Since, by (2.9) and (2.10), p(Z,,, Z*) tends to zero stochastically under P
and thus also under Q' (because of contiguity), the assertion of
Theorem 3.1 follows. |

Proof of Theorem 3.2. Since the proof follows the reasoning given in the
proof of Theorem 2.2, it will only be sketched. First, from the boundedness
of i and the fact that |g(x, £)| <3+ [|z]| |x[I?/2 + [ £]>/2 + || £]| [|x]|, we have
le(£)] <p(1+ | 7]|*) for some constant y which ensures that [(Z(z)+
c(1)? o 5(1) dt is finite almost surely. To prove

[Z¥11?-5 |[Z+c]|>  under Q™ (3.1)

note that, under O, we have

Ej ZX(1)? 1) dt = j <K(t, 4! c2(t)> o ,(t)dt +o(1).

This shows that, for fixed ¢ >0, there is a compact set C such that, under
0", E(V,)<¢&® and E(V, ,)<¢&’, n=1, where V, ,, V, are given in the
proof of Theorem 2.2 with the only exception that Z is replaced by the
shifted process Z + ¢. The rest of the argument for proving (3.1) runs along
the lines of the proof of (2.17). Since |[[Z,]| —|[Z}]| converges to zero
stochastically under P (see the argument following (2.18)) and, thus,
because of contiguity, also under Q"), the assertion of Theorem 3.2 is a
consequence of (3.1) and the CMT. ||

4. EMPIRICAL RESULTS AND DISCUSSION

We stress that, for each fixed > 0, rejecting the hypothesis H, of multi-
variate normality for large values of T, ; yields an affine invariant and
universally consistent MVN test which may be carried out easily for any
number of dimensions (cf. the four bullets at the beginning of Section 1).

To determine approximate upper quantiles of the null distribution of
T, 5, a Monte Carlo experiment was performed. The results are given in
Tables I-1V for several values of n, d, and f and the significance levels
a=0.1 and o =0.05. Each tabulated value is based on 10.000 Monte Carlo
replications. An entry like ~°1.17 stands for 1.17 x 10 =, and 1.0,21 means
1.00021. The results clearly show that the test is practically sample size
independent; ie., the critical values seem to converge rapidly to their
corresponding asymptotic values. This observation (which contrasts with
other nonparametric settings where a normal limit arises) is typical for
situations where the statistic under discussion is a degenerate U- or
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TABLE 1

Empirical Percentage Points of T, 5 (d=2)

B=0.1 B=05 B=10 B=30
1—a 0.9 0.95 09 095 09 095 09 095

n=20  LI7 148 0.060 0073 0468  0.540 1081  1.172

n=50 140 177 0065 0.078 0477  0.553 1089 1.177

n=100 147  °185 0.065 0.079 0480  0.555 1100 1191

Gpala)  l44 184 0.065  0.079 0472 0554 1096 1.186

qf.@ L0514l 0.065  0.079 0475  0.552 1096  1.188

TABLE II

Empirical Percentage Points of T, 4 (d=3)

=01 =05 =10 =30
11—« 0.9 0.95 09 095 09 095 09 0095
n=20 ~2.14 5263 0.097  0.113 0615  0.671 1.056  1.095
n=50  ~%255 %310 0.103  0.119 0621  0.682 1057  1.095
n=100 ~267 ~%3.19 0.105  0.120 0.621  0.683 1062 1.098
dpale) 272 73326 0106  0.121 0.620  0.684 1.061  1.096
qfg0) 252 %315 0.106  0.121 0.620  0.684 1.062  1.099
TABLE III

Empirical Percentage Points of T, 4 (d=5)

=01 =05 =10 =30

-« 0.9 0.95 09 095 09 095 09 0095
n=20 %514 5573 0.186  0.199 0814  0.845 1.008  1.020
n=50 %24 713 0.197 0213 0815  0.847 1.014  1.022
n=100 %55 744 0200 0216 0815 0851 1014 1.021
dpald) 675 3752 0201 0217 0.814  0.849 1015 1.020

qf (0) %672 7158 0.201  0.217 0.814  0.852 1.015  1.021
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TABLE 1V

Empirical Percentage Points of T, , (d=10)

B=0.1 =05 =10 p=30
1—a 0.9 0.95 09 095 09 095 09 095
n=50 64 4279 0463 0474 0980 0986 0955  1.05
n=100 ~*279 4095 0466 0476 0979 0986 10, 10,8
n=200 ~287 ~43.02 0467  0.480 0979  0.986 10,8 10,19
Gpa) 291 4304 0468 0479 0978  0.985 1021 10,27
aja0) 291 ~*3.06 0468 0481 0978 0985 1021 10,27

V-statistic (see Gotze [10]). That W, , defined in (1.2) is a degenerate
V-statistic with estimated parameters has been exploited by Henze and
Zirkler [11].

In each table, the row denoted by g4z ,(«) is the (1 —a)-quantile of a
lognormal distribution having expectation u, ,:= E(T4(d)) and variance
0. 4= Var(Ty(d)) given in Theorem 2.3, ie.,

a5 N\ o
qﬁ,d("‘)=/‘ﬂ,d<1+ 5 > exp<¢1(1—a) log<1+§’>>,
Hp a 13 a

where @ ~'(-) denotes the inverse of the standard normal distribution
function. Likewise, the row denoted by ¢ ,(«) is the (1 —a)-quantile of a

0.9
0.8
0.7
0.6
0.5

0 [ L 1 Il
0 5 10 15 20

B

FiG. 4.1. Power of the MVN tests based on 7, ; (d=5) for a normal mean mixture.
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F1G. 42. Power of the MVN tests based on T, ; (d=35) for a uniform distribution over
the unit 5-cube [0, 1]°.

three-parameter lognormal distribution having the first three moments as
given in Theorem 2.3; i.e.,

4 (o) =ty g— Op.d <1_exp(¢1(1—oc)\/m)>
. P Ja+1ja=2 Jatlja—1 ,

where

2 p) T\ 13
a=(1e g ] 4y MhaY"
20/3,4 2 Opa Opa
m/z’,d:E(T/}(d)_ET/}(d))3-

With the exception of the cases d=2, f=0.1 and d=10, =3, both
qp a(a) and g ,(a) show remarkably good agreement with the empirical
quantiles. We therefore suggest to use g, 4(«) or g4 ,(«) as an approximate
critical value for a nominal level « test based on T, j; if the sample size n
is not too small.

To illustrate the dependence of power of the MVN test based on T, , on
the parameter £, Figs. 4.1-4.4 exhibit plots of the empirical power (based
on 10.000 Monte Carlo replications) of the T, ; test for the case d =5 and
the sample sizes n =20, n =50, and n =100 as a function of . In each case,
the nominal level is 0.1. The alternatives to normality chosen are an equal
mixture of the standard normal distribution .4,(0, I,) and the normal dis-
tribution .A,(a, I,), where a = (3, 3, ..., 3) (Fig. 4.1), the uniform distribution
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F1G. 4.3. Power of the MVN tests based on 7, s (d=35) for a symmetric Pearson type II
distribution given in (4.1).

over the unit 5-cube (Fig. 4.2), the spherically symmetric Pearson Type 11
distribution with density

119/2)

T

(1= x]?) - 1{ [ x]* < 1} (4.1)

(Fig. 4.3) and the spherically symmetric Pearson Type VII distribution
having density

2
(14 [x)1*) = (4.2)

7'53

It is striking to see that, at least for the values of » under study and a
certain range of values for 5, power does not increase with the sample size.
We have no theoretical explanation for this weird behavior which certainly
constitutes a field of future research. Taking a large value of f§ (which effec-
tively amounts in rejecting H, for large values of the right hand side of
(1.5)) seems to be a powerful procedure against short-tailed symmetric
alternatives. On the other hand, taking a small value of f which essentially
results in computing a convex combination of two skewness measures (see
(1.4)) is a good safeguard against symmetric heavy-tailed distributions. Of
course, much more work needs to be done to understand the dependence
of power on f in order to obtain some kind of an adaptive test for multi-
variate normality.
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F1G. 44. Power of the MVN tests based on T, ; (d=35) for the symmetric Pearson type
VII distribution given in (4.2).
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