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In this Letter we study the jet response (particularly azimuthal anisotropy) as a hard probe of the
harmonic fluctuations in the initial condition of central heavy ion collisions. By implementing the
fluctuations via cumulant expansion for various harmonics quantified by €, and using the geometric
model for jet energy loss, we compute the response X# = vp/€y. Combining these results with the
known hydrodynamic response of the bulk matter expansion in the literature, we show that the hard-

soft azimuthal correlation arising from their respective responses to the common geometric fluctuations
reveals a robust and narrow near-side peak that may provide the dominant contribution to the “hard-
ridge” observed in experimental data.
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1. Introduction

The structure and properties of QCD matter under extremely
hot and/or dense conditions are of fundamental interest and pro-
vide unique environments for studying the strongest force of Na-
ture. The hot deconfined QCD matter, the so-called quark-gluon
plasma (QGP), was part of the history for cosmic evolution af-
ter the Big Bang and has now been created via relativistic heavy
ion collisions (the “Little Bang”) and explored in laboratory exper-
iments at the Relativistic Heavy lon Collider (RHIC) and the Large
Hadron Collider (LHC). In such collisions, highly energetic jets born
from initial hard scattering provide natural “tomography” of the
created hot QCD matter. Jet quenching due to energy loss along
the jet path through the medium encodes essential information
about the dynamics of jet-medium interaction and the medium
properties as well, which shall be inferable from experimental ob-
servables such as the high-p; hadron suppression and azimuthal
anisotropy, as well as the di-hadron correlations (for reviews see
e.g. [1]).

While the jet quenching has been experimentally established
as a very robust phenomenon at RHIC and now at LHC, the mi-
croscopic mechanism of jet energy loss is not yet fully under-
stood. A conventional observable for quantifying jet quenching is
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the nuclear modification factor R44 which compares the parti-
cle production in the AA collision to the naive expectation from
simply scaling up single NN cross section by the binary NN col-
lision number. A measured R significantly smaller than unity
for the high-p; hadrons implies strong in-medium energy loss for
the jets: indeed for central collisions at both RHIC and LHC we've
seen Raa < 0.2. The Ras provides direct information on the av-
erage opaqueness of the created hot medium, and it is customary
in various jet quenching models to use Ra4 in the most central
collisions to normalize their respective parameters for the aver-
age jet-medium interaction strength. More sensitive are the geo-
metric features of jet quenching observables that are particularly
useful in discriminating different models of energy loss. These in-
clude the A-dependence (when changing colliding systems), the
b-dependence (when changing the collision impact parameter or
centrality class), and the ¢-dependence (when changing the probe
jet’s azimuthal orientation with respect to the reaction plane).
For any given model with its parameters fixed in the most cen-
tral collisions, the above geometric dependence and the correla-
tions among different observables then provide crucial tests of the
model [2-10].

Let’s elaborate a bit on the ¢-dependence of Ras. In non-
central collisions, the medium “thickness” as seen by a penetrating
jet depends on the azimuthal angle ¢ of the jet with respect to
the reaction plane, therefore leading to the reaction-plane depen-
dence of high-p; hadron suppression i.e. Raa(¢) [2]. The domi-
nant anisotropy in Raa(¢) (for non-central collisions) can be at-
tributed to the second harmonic term cos(2¢ — 2Wg. p.) with its
coefficient being the elliptic “flow” parameter for high-p; hadrons,
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Vé""d which is a non-collective component though [11]. Despite
the success of many models in describing Raa and its centrality
dependence, most models significantly under-predicted the Vg‘"d
and failed the test by geometric data [3,9]. The lack of a simul-
taneous description for Raa and V3¢ in a single model was
not resolved till a new insight suggested in [4]. Motivated by the
“magnetic scenario” for sQGP [12], the authors of [4] pointed out
that the energy loss of a jet may not simply scale with the lo-
cal medium density as most models have assumed, but actually
has nontrivial dependence on matter density (or temperature). It
was particularly shown that the geometric data Ra4 and Vg“rd ver-
sus centrality can be successfully described together by including
a jet quenching component with strong enhancement in the near-
T. matter by a factor 3-5 compared with higher-T QGP. Such an
enhancement of jet-medium interaction may originate from non-
perturbative structures created by the (color-)electric jet passing
a plasma of (color-)magnetic monopoles that dominate the near-
T, matter [12,13]. A natural prediction of this scenario is that the
effective jet-medium interaction would be rapidly reduced when
going from RHIC to LHC energies, or the hot matter created at LHC
will be more “transparent” (apart from the trivial density factor)
to a penetrating jet at LHC as compared with that at RHIC. In-
terestingly, recent quantitative computations and comparison with
LHC data at /s =2.76 TeV [8,14,15] indeed suggest that 1) fix-
ing the jet-medium interaction at RHIC and applying it directly to
LHC would lead to “over-quenching” as compared with data; 2) re-
ducing the jet-medium interaction by about a factor of 2 would
allow a good description of the LHC data — such reduction is re-
markably rapid provided only a 30% increase in temperature from
RHIC (4/s = 0.2 TeV) to current LHC (/s = 2.76 TeV)! The future
LHC heavy ion data at /s = 5.5 TeV will be essential in establish-
ing how much and how fast the jet-medium interaction decreases
with temperature.

In this Letter we explore a new and interesting geometric as-
pect of jet quenching: the hard probe of the geometric fluctuations
(in terms of various harmonics in azimuthal angle) in the ini-
tial condition of heavy ion collisions. It has recently been shown
in measurements [16-20] and demonstrated in various modelings
[21-33] that there are very strong fluctuations in the initial mat-
ter profile from event to event. Such fluctuations contain various
higher order harmonics in azimuthal angle ~ cos(n¢) rather than
the naive expectation of 2nd harmonic dominance in averaged ge-
ometry. In the collective expansion of the bulk matter, these fluc-
tuations lead to observed harmonic flows up to about n =6 and
also explain the soft di-hadron azimuthal correlations (the “soft-
ridge”). In particular, it was shown in [22] that there is primarily
a linear response of the low-p; hadrons’ harmonic flows to the
initial harmonic fluctuations. A natural question to ask is, there-
fore, how a penetrating jet responds to the strongly fluctuating
matter density from event to event. There have been some discus-
sions in the literature [5,7,34] and also data from both RHIC [17,
35] and LHC [36,37], but a systematic and clear picture has not
been achieved. Intuitively one would expect the event-by-event
azimuthal distribution of high-p; hadrons shall also reflect such
harmonic fluctuations in the initial condition and it is our pur-
pose to systematically quantify such response. In addition, both the
quenching of hard jet and the expansion of soft matter are com-
monly correlated to the same underlying particular matter profile
in a given event and such hard-soft correlation will survive the
event average. We will examine how such correlation contributes
to the di-hadron azimuthal correlation with a hard trigger and a
softer associate hadron, in particular a possible explanation of the
“hard-ridge” [38] for which the origin has so far not been fully
understood [39-41]. To highlight the role of pure fluctuations in
leading to azimuthal anisotropy, we limit our study in the present

Letter only for the most central collisions, and to be specific we
do calculations for RHIC /s =200 GeV collisions. Unlike in non-
central collisions with strong anisotropy already in the average ge-
ometry and dominated by the 2nd harmonics, in the perfectly cen-
tral collisions (b = 0) the average background geometry is isotropic
and the anisotropy from various harmonic fluctuations will be best
manifested.

The Letter is organized as follows. In Section 2 we will de-
scribe our model setup for the present study. The simulation re-
sults for jet response to the harmonic fluctuations in central colli-
sions, characterized by v,/e, forn=1,2,...,6, will be presented
in Section 3. Such results will be used in Section 4 to compute
the hard-soft di-hadron correlations due to harmonic fluctuations
where we will find a robust and narrow near-side peak in the
azimuthal angle A¢ dependence as a possible explanation of the
so-called “hard-ridge”. The summary and discussions will be given
in Section 5.

2. Model setup

In this section we introduce our model setup. First we will
show how we implement various harmonic fluctuations on top of
the isotropic fireball in a perfectly central collision by using a mod-
ified cumulant expansion based on that of [26]. In particular we
will discuss the fluctuations in both the participant density and the
binary collision density profiles and their mutual relations. Second
we will briefly discuss the geometric model we use for calculating
the jet energy loss and its azimuthal angle dependence for a given
matter distribution.

2.1. Parametrization of harmonic fluctuations in central collisions

In each central collision event, the participant density (pop)
and the binary collision density (o) are related to the thickness
functions of the two colliding nuclei (Tqp): pc() = o Ta(P) Ty (),
Pp() = Ta(P[1 — Pp(F)] + (a <> b). Here o (=42 mb) is the N-
N inelastic scattering cross section at /s = 200 GeV, A is the
number of nucleons in each nucleus, and P, = (1 — aTb/A)f. It
should be emphasized that in general one shall use To(F —b/2)
and T,(f 4+ b/2), and the above is only to be used for the perfectly
central collisions with b = 0. Suppose event by event, T, fluctu-
ate around an isotropic background Ty, i.e. Tqp = T(?,b +68Tqp. As
the result, by using the linear approximation, the fluctuations of
oc and pp are directly related, as shown by

8pc=0T0(8Tq+8Tp), M
oTO\ 4 oTO\"1
5pp=[1—<1——> +O’TO<1——> :|(5Ta+5Tb)~
A A
(2)

TO is obtained by the (optical) Glauber model. To parameterize the
fluctuations, we focus on §0, and later use the above equations to
compute the corresponding §pc.

We will use a modified cumulant expansion based on the meth-
ods in [24,26]. Generally, we can make a Fourier analysis for any
profile

Pp@) = pp.o() + Y 2ppn(r) cos[n(p — &)]. (3)
n>1

The difficulty is to parameterize the function form for the coeffi-

cients ppn(r). The small-k expansion method [24,26] starts with

the transformation (for 2-D transverse plane) pp(ﬁ) = [drpp(F) x

exp (iEF), and examines instead the Fourier series 0po(k) +
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Zn>] 20pn(k) cos[n(¢, — l1/,4‘)]. One can then make a small-k ex-
pansion of the coefficients ppn(k) like eg ppnk) =
Zm>0 Op.m,n(ik)™/m!. The coefficient ppo(k) is irrelevant to the
azimuthal anisotropy and will not be addressed here. It is easy
to see that [24] for the nth harmonic (n > 2), the leading term
in ppn(k)’s k expansion is ppnn(=1/2"(r" cos[n(¢d — ¥p)1), (-
means averaging over normalized p,(F)). The case for n =1 de-
serves special treatment: it starts with pp31 (= 3/8(r3 cos(¢p —
¥1))) as one can set pp 1,1 =0 by choosing the “right origin” of
coordinates. Practically one then has to truncate the series, e.g.
keeping only leading terms (assuming the relevant k is small). Due
to the truncation, upon transforming back to the r-space one needs
to regulate the large r part. Different from previous approaches, we
will simply use a Gaussian factor with a length parameter X that
roughly reflects the scale of fluctuations. In the end, we have the
following parameterizations for various orders of harmonics:

adry r 1 -5
Pm(”—‘EFKE) ‘2<E>]ﬁe - v
@@ r\" 1 2
'OP»”(r)=_HF<E> 7'(226 2 n>2. (5)

Here €1 = —(r3 cos (¢ — ¥1))/(r3), €nz2 = —(r" cosn(p — W)/ (™),
(r"1/m =3.88, 419, 4.44, 4.63, 4.80, 495 fm forn=1, 2, 3, 4, 5, 6.
The root-mean-radius-square \/W =4.19 fm is defined as o and
will be used as a “ruler” for X. Therefore by specifying the values
of €, (as well as ¥,) for an event, one then fixes the pp () above
and obtains a particular density profile in Eq. (3) with harmonic
fluctuations.

One technical complication is that for such parametrization at
large radius, the total density can become negative. Hence certain
regularization scheme has to be implemented as discussed in de-
tails by [26]. We simply set the density beyond that critical radius
as zero. For the condition of our interest, i.e. € ~ 0.1, this criti-
cal radius is around 7 fm and our regularization is physical. The
regularization will require a re-calibration of the eccentricities: all
the actual €, values need to be evaluated directly from the gener-
ated and regularized profile which would generally differ from the
input €, parameters in Eq. (4), see e.g. [23,26].

2.2. The jet energy loss

In this study, we use the geometric model approach for com-
puting the jet energy loss. Such models reflect the generic geomet-
ric features (e.g. the path-length dependence) that are most crucial
for describing geometric data [3-8]. We assume that the final en-
ergy E of a jet with initial energy E; after traveling an in-medium
path P can be parameterized as Ey = E; x fp with the suppression
factor f3 given by:

fp= exp{—/ k[s]sDIm dl]. (6)
P
In the above the s(l) is the entropy density of local matter at a
given point on the jet path, while the «(s) is the local jet quench-
ing strength which as a property of matter should in principle
depend on the local density s(l). There can be different choices of
the parameter m for path-length dependence (e.g. LPM-motivated
quadratic or AdS/CFT-motivated cubic) and of the jet-medium in-
teraction «(s). In the present study, we use the near-T. enhance-
ment model as in [4,8], assuming m =1 and introducing a strong
jet quenching component in the vicinity of T, (with density s. and
span of sy, ) via

k(s) =k [1+§ exp(—(s —50)%/s3,) ] 2

with & =6, s. = 7/fm3, and sy = 2/fm3 (see [4] for details.) As
aforementioned, the parameter x will be fixed by Ras ~ 0.18 in
the 0-5% collisions at RHIC /s =200 GeV.

It shall be emphasized that the jet path P is determined by the
initial jet spot coordinates on the transverse plane as well as the
azimuthal angle ¢ for the transverse orientation of its propaga-
tion. After averaging over all jet paths (including all possible start
points properly weighed by binary collision density and all equally
possible orientations) one may then obtain the Raa:

Raa=((f3)""2); (8)

where the exponent n comes from measured reference p-p spec-
trum (see e.g. [9] for a detailed account). The value of n depends
on collision energy and throughout this Letter we focus on the
RHIC /s = 200 GeV collisions with n = 8.1. Note that in this model
as in many other geometric models, assuming the fractional energy
loss will lead to the Ras independent of p; which may be justi-
fied by the approximate “flatness” seen in the data at RHIC energy.
The results from such modeling apply only to the high-p; region,
e.g. pr > 6 GeV at RHIC.

The azimuthal angle ¢-dependence can be studied by aver-
aging over jet paths with a particular azimuthal orientation, i.e.
Raa(¢) = ((f;,)"*z)lg((p) from which various harmonic components
are derivable by Fourier decomposition. In this study for each given
geometry, we compute Raa(¢) as a function of azimuthal angle
¢ by integrating over all initial jet spots on the transverse plane
weighed by the binary collision density at each spot for a given
value of ¢.

3. Jet response to harmonic fluctuations

Here we report our results for the jet response to harmonic
fluctuations: see Fig. 1. The results are obtained with ¥ =0 =
4.19 fm, which indicates the scale of the fluctuation is roughly
the same as that of the isotropic background. In our approach,
the fluctuations €, are assumed to be small so that the jet re-
sponse to density-fluctuations is approximately linear. We will first
demonstrate that indeed for nth harmonics alone with amplitude
€n, the jet response to a good approximation depends on €, lin-
early (hence we can define X,’} = vp/€n). The solid curves in each
panel clearly show that for n =1, 2, 3, the relations between vy
and €, are linear, while for n =4, 5, 6 only very mild nonlinearity
starts to develop near €, =0 and the response stays quite linear
for the physically most relevant region 0.05 < €, < 0.1. For each
harmonic fluctuation, we have checked that the initial axis angle
¥, of fluctuation coincides with the final axis angle lIJn] of the jet
distribution anisotropy.

One important issue is to understand the different influences
on the jet response due to the fluctuation in the participant den-
sity (which mostly concerns the bulk matter that quenches the
jets) and that in the binary collision density (which concerns
the profile of initial jet spots). The difference could be tricky
and counter-intuitive (see e.g. some discussions in [34]). Here we
clearly demonstrate the difference by showing three different re-
sponses in Fig. 1: the case with only o, fluctuation (“Part”, green
dashed curves), the case with only p. fluctuation (“Coll”, blue
dotted curves), and the physical case with both (“Tot”, red solid
curves). We've checked that the total response agrees well with
the sum of the two individual contributions which provides addi-
tional evidence for the linear nature of the response. As one can
see, the contributions to the jet response due to fluctuation in par-
ticipant density and that in collision density differ significantly in
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Fig. 1. (Color online.) The calculated v, vs. €, for various harmonic fluctuations n =1, 2, 3, 4, 5, 6 with parameter X = o. Three different responses are shown: the case with
only pp fluctuation (“Part”, green dashed curves), the case with only pc fluctuation (“Coll”, blue dotted curves), and the physical case with both (“Tot”, red solid curves) (see

text for details).

Table 1
Total responses to various orders of harmonic fluctuations in the initial condition
using different values for the parameter X (see text for details).

Total response ~ xM x5 x4 x4 xh xh
Y=0 13 0.18 017 —2.5e-2 —4.1e-2 —1.5e-3
¥ =1.250 15 0.25 0.18 —3.0e-2 —4.4e-2 —8.8e-4

the absolute magnitude and can even have opposite signs (in the
case of n =1, 2, 6) thus canceling each other to certain extent. It
is therefore clear that for event-by-event studies of jet response,
both fluctuations have to be fully taken into account.

Finally in Table 1, we show the jet response coefficients X;’; ex-
tracted from the physically most relevant region 0.05 < €, < 0.1
where the linear dependence is a very well approximation for all
harmonics. The results as a response spectrum X,f} vs. n are also
plotted in Fig. 2. The response spectrum shows a typical decrease
from low to high harmonics, and somewhat surprisingly (as com-
pared with the soft response) there is a very strong response in
the first harmonics. We also see the responses are relatively insen-
sitivity to the parameter X' and therefore the quantified response
spectrum shape in n is robust. While it would be interesting to
directly compare with data, currently the RHIC data [17,35] for
higher harmonics are only available for the low to intermediate p;
region so such comparison with our results would not be appro-
priate. We point out though the previous comparison between the
results from the same model with v, data at high p; was rather
successful, see e.g. [4,8].

We end this section by discussing certain check we've done.
One issue is about possible “mixing” or “interfering” effect among
different harmonic fluctuations when they all co-exist with var-
ied respective main-axis for each. This should be clarified as in
reality each collision event would automatically come with all
these harmonic fluctuations. We've done the following test: we
include on top of the isotropic background all the n =1, 2, 3,
4, 5, 6 harmonic fluctuations simultaneously with randomly as-
signed €, (in the linear regime though) and randomly chosen axis
Y, (different for each), and then calculate the jet quenching re-
sult Raa(¢). We've found that 1) the main-axis for each harmonics

1.5m
)
= 10
s W
=
.50
S 05
~

0.0

Fig. 2. (Color online.) The jet response x,’l‘ = vp/€n to various orders of harmonic
fluctuations in the initial condition, with the blue solid curve for parameter ¥ = o
and the red dashed curve for parameter ¥ = 1.250 (see text for details).

lI/n] as determined by maximizing the corresponding cos(¢ — lI/n])
component in final state Raa(¢) agrees with the initial ¥, from
fluctuation with less than 1% difference; 2) the response v,/€;
also agrees with the values we extracted above by treating each
harmonics separately. Another issue that we've checked is how
such response would change with different jet energy loss models.
We've also done the calculation for two other models: the model
with path-length-square dependence and constant jet-medium in-
teraction, i.e. k(s) =« and m =1 in Eq. (6); and the model with
path-length-cubic dependence and constant jet-medium interac-
tion, i.e. k(s) =k and m =2 in Eq. (6). The response coefficients
Xr’f from different models are not drastically different, show sim-
ilar decreasing trend with increasing n, and may become distin-
guishable when realistic and accurate data comparison can be
done.

4. The “hard-ridge” in di-hadron correlations

In this section, we study the correlation between the hard and
soft sector due to their respective correlations to the common ini-
tial condition with fluctuations. It would be interesting to see what
major features of the hard-soft correlation structures can arise
from the jet response to harmonic fluctuations in the initial condi-
tion.
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Fig. 3. (Color online.) Hard-soft correlation C[A¢] from responses to common ge-
ometric fluctuations in the initial condition, with the blue solid curve using jet
response results from ¥ = o case while the red dashed curve from X = 1.25¢
case (see text for details).

Suppose for an arbitrary central collision event, we have the
initial azimuthal distribution of matter density fluctuations char-
acterized by a series of harmonics with varied (and uncorrelated)
magnitude €, and axis orientation ¥,. According to our results on
the jet response, we would expect the final state high-p; hadron
distribution to be of the form

thard
dydg¢

~14 Z 2vh cos[n(¢ — ¥n)]. (9)

n=1,23,...

The bulk matter, on the other hand, will generate the harmonic
flows during hydrodynamic expansion and lead to the final state
low p¢ hadron distribution of the form

stoft
dyde

~1+ Z 2v;, cos[n(¢ — ¥)]. (10)

n=1,2,3,...

Note that for a given event both the soft and the hard responses to
each order of the harmonic fluctuations are commonly aligned to
the same corresponding angle ¥, from the initial condition — such
a correlation between the hard and soft responses will survive the
average over many events.

We can therefore define a hard-soft correlation function

thard stoft
AP ayag dyagy) | a1
lﬂﬂ thard d¢2 stoft
f 2 dydéq f 27 dyclzpz

T 22— 1 —

2w 27w

ClAg]=

where the () means averaging over events. Since the initial har-
monic fluctuations have their orientation angles ¥;, vary randomly
from event to event and uncorrelated among each other (at least
so in central collisions), we obtain from Egs. (9), (10) the following
Clagl= > 2(vpvy)cos(nag). (12)

n=1,2,3,...

In the linear response approximation we can use v,., = xMse, to
further get
Clagl= Y 2x"x((en)*)cos(nAg). (13)

n=1,2,3,...

We therefore see that the common correlations of the hard and
soft responses with various harmonic fluctuations indeed lead to
the hard-soft correlation that survives the event average.

It is tempting to quantitatively examine the features of such
hard-soft azimuthal correlation. To do that, we compute C[A¢] by
including the n=1, 2, 3, 4, 5 harmonics in Eq. (13). For the initial
fluctuations we use results from Monte Carlo simulations of initial

conditions for most central collisions, which are 6321 2345~

0.037, 0.068, 0.076, 0.084, 0.091 respectively (see e.g. [22,24,26,
27]). For the soft response coefficients we take the results from
hydrodynamic modeling, which are x’_ 123.45 ~ 0.15, 0.26, 0.21,
0.14, 0.086 respectively (see e.g. [22,24, 26 27]) The hard response
coefficients are taken from our results: since such coefficients de-
pend on the parameter X we will show results for both values of
X as studied in the previous section. The so-obtained correlation
function C[A¢] is plotted in Fig. 3: the blue solid curve is obtained
using Xr’f results from X = o case while the red dashed curve is
from X =1.250 case. A few remarks are in order:

1) There is a robust and narrow near-side peak around A¢ = 0.
Actually for both cases we've fitted very well the peaks by a Gaus-
sian function with width about 0.8 radian which is very close to
the experimental data. This main feature, we believe, could pro-
vide a natural explanation of the “hard-ridge” structure as arising
from superposition of multiple harmonics (dominantly from the
first three harmonics).

2) The away-side structure around A¢ = 7 shows an interest-
ing double-hump shape, with a “dip” at & and two “shoulders”
around 27 /3 and 47 /3. This structure is mainly due to an in-
terplay between the vi response and the v3 response and also
quite robust despite the two different choices of the parameter X.
The precise shape of the away-side, though, is very sensitive to the
ratio between the responses to the first and third harmonic fluctu-
ations.

Qualitatively these features agree well with the experimentally
observed di-hadron correlations. While certainly interesting to do,
a quantitative comparison between the obtained correlation and
the experimental data is not ready yet, due to a number of ap-
proximations used in the modeling and also the complication in
experimental methods (e.g. observable definition, trigger and asso-
ciate p; selection, the ZYAM procedure for background subtraction,
etc.). Some of these issues will be discussed further at the end.

One might also think about possible measurements of hard-
hard correlations, i.e. di-hadron correlations with both hadrons’ p;
to be high enough that they are most likely from jets. Such mea-
surements might become feasible at LHC energies when enough
events with more than one pair of jets could be collected. Along
similar consideration as before we may expect a component in
the hard-hard azimuthal correlation due to geometric fluctuations
of the form ~ 3,155  2(x™?((n)?) cos(nA¢). A remnant of a
near-side ridge migﬁf be visible, while the usual di-jet back-to-
back correlation will be dominant.

5. Summary

In summary, we've studied the jet response (particularly az-
imuthal anisotropy) as a hard probe of the harmonic fluctuations
in the initial condition of central heavy ion collisions. By imple-
menting the fluctuations via cumulant expansion for various har-
monics quantified by €, and using the geometric model for jet
energy loss, we've computed the response X,? = v, /€y. Combin-
ing these results with known results for hydrodynamic response
of the bulk matter expansion in the literature, we've shown that
the hard-soft azimuthal correlation arising from their respective
responses to the common geometric fluctuations reveals a robust
and narrow near-side peak that may provide the dominant contri-
bution to the “hard-ridge” observed in experimental data.

This Letter is intended to demonstrate and emphasize the main
idea of hard probe for harmonic fluctuations in the initial con-
dition, and we end by discussing a number of highly interesting
aspects for further developments as well as some issues that are
not fully addressed in the present Letter and will be further inves-
tigated. The approach of quantifying fluctuations by cumulant ex-
pansion with one harmonic fluctuation at a time has the advantage
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of clearly demonstrating the response of jet energy loss to each or-
der of harmonics, but for realistic modeling and comparison with
data one needs to use Monte Carlo generated initial matter profiles
born with various harmonics and more irregularity — this has now
been implemented and the results are to be reported in a forth-
coming publication. Using the Monte Carlo initial conditions will
also allow extending our study to non-central collisions as well as
eliminating ambiguity due to choice of parameters. In addition the
“reaction plane” dependence of the hard-soft correlation will be
exploited with the Monte Carlo generated fluctuations. At present
the various jet energy loss models suffer from uncertainty for the
energy loss in the pre-equilibrium matter [5,7,42], and it would be
interesting to find ways of using geometric features of jet quench-
ing to tightly constrain such uncertainty. While explanation of the
near-side peak structure in the hard-soft di-hadron azimuthal cor-
relation by the harmonic fluctuations appears to be robust, the full
explanation of the observed away-side structure is much tricker
due to known contributions from various other sources, like e.g.
transverse expansion dynamics [43] and background effects like
transverse momentum conservation and cluster correlations [44],
which all require further scrutiny. All that said, we emphasize
again that the hard probe of geometric fluctuations provides a new
and useful tool for exploring both the initial condition and the jet
energy loss mechanism in heavy ion collisions.
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