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a b s t r a c t

It has been well-documented that foreign exchange rates exhibit both mean reversion and
stochastic volatility. In addition to these, recent empirical evidence shows a stochastic
skew of implied volatility surface from currency option data, which means that the slope
of implied volatility curve of a given maturity is stochastically time varying. This paper
develops a currency option pricing model which accommodates for this phenomena.
The proposed model postulates that the log-currency value follows a mean reverting
process with stochastic volatility driven by Wishart process under risk-neutral measure.
Pricing formula for European currency option is derived in terms of Fourier Transform.
Benchmarking against the Monte Carlo simulation, our numerical examples reveal that
the pricing formula is accurate and remarkably efficient. The proposed model is also
generalized to include jumps. The ability of the our model on capturing stochastic skew
is illustrated through a numerical example.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It iswell-documented that the foreign exchange rates exhibitmean reversion (for example, [1,2]) and stochastic volatility
(for example, [3–5]). It is important that option pricing models should be able to capture these features. Wong and Lo [6]
assume that the log-currency value follows amean reverting process and the volatility follows the Hestonmodel. To further
allow for multi-scale stochastic volatility, Wong and Zhao [7] assume that the volatility is driven by two Heston volatility
factors.

Another important issue in financial modeling is ‘‘stochastic skew’’, which means that the slope of the implied
volatility curve is stochastically time varying, documented in currency option markets in [8] and in index option markets
in [4].

To incorporate the above three essential features, namely mean reversion, stochastic volatility and stochastic skew, into
the dynamics of the foreign exchange rate, we generalize the two-factor Heston stochastic volatility model of Wong and
Zhao [7] through the use of the Wishart process. The Wishart process, a matrix extension of Heston’s [5] volatility model, is
proposed in [9] and is then used in [10–12] to model stochastic volatility and covariance dynamics.

This paper is organized as follows. Section 2 provides the empirical evidence of stochastic skew in the EUR/USD currency
optionmarket. In Section 3, we formulate the currency option pricingmodel with theWishart process and derive the pricing
formula of currency options. We extend the model to include Poisson shocks, generalizing the framework of O’Hara and
Pillay [13]. The implementation of the pricing formulas are demonstrated and contrasted with Monte Carlo simulation. In
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Section 4,we investigate themodel property and show that theWishartmodel provides additional freedom to better capture
stochastic skew than the multi-factor Heston model. Section 5 concludes the paper.

2. Empirical evidence

To show the presence of stochastic skew in practice, we collect from Bloomberg daily mid quotes of the exchange rate
of EUR/USD and the currency option written on EUR/USD from 1-Jan-2008 to 31-Oct-2010. The option quotes have 8 fixed
time-to-maturities, namely, 1, 2, 3, 6, 9, 12, 18 and 24 months. We also collect quotes of 10-delta risk reversal of currency
options1 (R10) of all maturities, which is the difference between the implied volatilities of a 10-delta call option and a 10-
delta put option. Hence, the risk reversal can be regarded as a measure of the slope of the implied volatility curve. Fig. D.1
shows that, for all maturities, the risk reversal is stochastically time varying, similar to the observation of Carr and Wu [8].
Hence, the empirical evidence strongly suggests that a currency option pricing model should be flexible enough to capture
not only mean reversion and stochastic volatility but also stochastic skew.

3. The model

In this section, we generalize the two-factor Hestonmodel of Wong and Zhao [7] through the use of theWishart process.
We derive the characteristic function of log-currency value and the futures-price calibrated characteristic function and
provide the pricing formula for European currency call option. Finally, Monte Carlo simulation is used to demonstrate the
quality of pricing formula.

We define the following notation: 1. [Aij]i,j=1,...,n as a constant square matrix ([Aij
t ]i,j=1,...,n as a matrix-valued process) of

order nwith Aij (A
ij
t ) being its i, j-th element; 2. [B]i,j as the i, j-th element of the matrix B; 3. Tr(A) as the trace of the matrix

A; and, 4. AT as the transpose of the matrix A.

3.1. The dynamics of Wishart process and log-currency value

Let (Ω, F , {Ft}t≥0, Q) be a filtered probability space where the square matrix Brownian motions Wt = [W ij
t ]i,j=1,...,n

and Zt = [Z ij
t ]i,j=1,...,n are defined for all t ≥ 0 and adapted to the filtration {Ft}t≥0 and W ij

t and Z ij
t , for i, j = 1, . . . , n, are

independent scalar Brownianmotions. Under a risk-neutral probability measure Q2, theWishart processΣt = [Σ
ij
t ]i,j=1,...,n

is an n-by-n symmetric positive definite matrix process which follows the dynamics

dΣt =


ΩΩT

+ MΣt + ΣtMT

dt +

√
ΣtdWtQ + Q T(dWt)

T√Σt , (1)

where M = [Mij]i,j=1,...,n,Q = [Qij]i,j=1,...,n and Ω = [Ωij]i,j=1,...,n are constant real square matrices, with Ω invertible, and
√

Σt (the matrix square root of Σt ) is defined as the unique symmetric positive definite matrix such that
√

Σt
√

Σt = Σt ,
that is, Σ ij

t =
n

l=1 σ il
t σ

lj
t =

n
l=1 σ il

t σ
jl
t . Matrices M and Q are the matrix counterparts of mean reversion and vol-of-vol

coefficients in the Heston model3 (see [16]).4 To guarantee the mean reverting feature and strict positivity of the Wishart
process, M is required to be negative semi-definite and

ΩΩT
= βQ TQ ,

with the real parameter β > n − 1 (see [9]).
Let St be a given currency in terms of another currency (that is, exchange rate) for which the risk-neutral process is

postulated as

St = exp

Xt


,

dXt =


θ(t) − κXt −

1
2
Tr

Σt


dt + Tr

√
ΣtdZt


, (2)

dΣt =


βQ TQ + MΣt + ΣtMT


dt +

√
ΣtdWtQ + Q T(dWt)

T√Σt ,

1 For the details of R10 (and other related terminologies frequently used in currency option markets), please refer to Reiswich and Wystup [14].
2 Appendix A presents a change ofmeasure transformation between the real-worldmeasure P and the risk-neutral measureQ using Girsanov’s Theorem

so that the affine nature of the dynamics is preserved in both measures.
3 Unlike themulti-factor Hestonmodel, we allowM andQ to be non-diagonal to enrich the dynamic interaction among components ofΣt . An illustrative

example using a 2 dimensional Wishart process can be found in [15].
4 The existence and uniqueness of weak and strong solutions to matrix-valued affine processes are studied in [9,17,18].
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where the constant κ is the mean reversion speed for the log-currency value, the deterministic function θ(t) represents the
equilibrium mean level of the log-currency value against time and Zt is correlated withWt the following way (see [15]):

Zt = WtRT
+ Bt


In − RRT, (3)

where Bt is a matrix Brownian motion independent ofWt , R = [Rij]i,j=1,...,n and In is the identity matrix of order n.

Remarks. The proposed model embraces many existing models as its special cases. When n = 1, it is reduced to the model
of Wong and Lo [6]; when n = 2 and the matrices M,Q and Σt in (1) and the matrix R in (3) are diagonal, it is reduced to
the model of Wong and Zhao [7]; further, when θ(t) ≡ r , the risk-free rate, and κ = 0, the proposed model is reduced to
the two-factor Heston model of Christoffersen et al. [4].

3.2. The characteristic function

Denote the characteristic function of the log-currency value XT as

Ψ (x, Σ, τ ; u) = EQ

exp


iuXT


|Xt = x, Σt = Σ


, (4)

where EQ
[·] denotes the expectation under Q, τ = T − t ≥ 0 and i =

√
−1. The following proposition holds.

Proposition 3.1. If Xt follows the dynamics in (2), then the characteristic function for XT in (4) is given by

Ψ (x, Σ, τ ; u) = exp

Tr

A(τ ; u)Σ


+ b(τ ; u)x + c(τ ; u)


, (5)

where

A(τ ; u) = H(τ ; u)−1G(τ ; u), (6)

b(τ ; u) = iue−κτ , (7)

c(τ ; u) = iu
 τ

0
θ(T − s)e−κsds −

β

2
Tr

lnH(τ ; u) + MTτ +

2iu
κ

(1 − e−κτ )RQ

, (8)

with

d
dτ


G(τ ; u) H(τ ; u)


=

G(τ ; u) H(τ ; u)

  M −2Q TQ
1
2
iu(iue−2κτ

− e−κτ )In −


MT

+ 2iue−κτRQ
 , (9)

where H(0; u) = In and G(0; u) = 0n, In and 0n being the identity and zero matrices of order n, respectively.

Proof. Since theWishart process is a matrix-valued affine process, following Da Fonseca et al. [15] and Duffie and Kan [19],
we consider that the characteristic function of XT is exponentially affine in the state variables, that is,

Ψ (x, Σ, τ ; u) = exp

Tr

A(τ ; u)Σ


+ b(τ ; u)x + c(τ ; u)


,

Ψ (x, Σ, 0; u) = exp

iux

,

so that A(0; u) = 0n, b(0; u) = iu and c(0; u) = 0. Our strategy is to apply the Feynman–Kac argument to obtain a set of
ordinary differential equations for each of the functions.

Denote d⟨X, Σ ij
⟩t = ϱijdt , where ⟨X, Σ ij

⟩t is the covariation of X and Σ ij at time t . The joint infinitesimal generator of
(X, Σ) can be expressed in the form of

LX,Σ ,


θ(t) − κx −

1
2
Tr


Σ


∂

∂x
+

1
2
Tr

Σ

 ∂2

∂x2

+ Tr


βQ TQ + MΣ + ΣMT

D + 2ΣDQ TQD


+

n
i,j=1

ϱij
∂2

∂Σ ij∂x
, (10)

where D = [
∂

∂Σ ij ]i,j=1,...,n is a matrix differential operator. The first line and second line are the infinitesimal generators of
the log-currency value process and the Wishart process (see [9]), respectively. ϱij in the last line of Eq. (10) is derived as
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follows. Using the fact that

ϱijdt = Et


n

l,k,h=1

σ lk
t dW kh

t Rlh


n

l,k=1

σ il
t dW

lk
t Qkj +

n
l,k=1

σ
jl
t dW

lk
t Qki



=

n
l,k,h=1

σ hl
t Rhk


σ il
t Qkj + σ

jl
t Qki


dt

=

n
k,h=1

Rhk


n

l=1

σ il
t σ hl

t


Qkj +


n

l=1

σ
jl
t σ hl

t


Qki


dt

=

n
k,h=1


Σ ih

t RhkQkj + Σ
jh
t RhkQki


dt

=


[ΣtRQ ]i,j + [Q TRTΣt ]i,j


dt

with Σt = Σ , we have

n
i,j=1

ϱij
∂2

∂Σ ij∂x
=

n
i,j=1


[ΣRQ ]i,j

∂

∂Σ ij
+ [Q TRTΣ]i,j

∂

∂Σ ij


∂

∂x

=

n
i,j=1


[ΣRQ ]i,j

∂

∂Σ ji
+ [ΣRQ ]j,i

∂

∂Σ ij


∂

∂x

= 2Tr

ΣRQD

 ∂

∂x
.

Following Da Fonseca et al. [15], we impose the conditions that the characteristic function is twice-differentiable in x and
Σ , and is differentiable in time.5 Applying the Feynman–Kac argument on the characteristic function (5) by using the joint
infinitesimal generator (10) gives the following partial differential equation for the characteristic function

∂Ψ

∂τ
=


θ(T − τ) − κx −

1
2
Tr

Σ

 ∂

∂x
Ψ +

1
2
Tr

Σ

 ∂2

∂x2
Ψ

+ Tr


βQ TQ + MΣ + ΣMT

D + 2ΣDQ TQD


Ψ + 2Tr


ΣRQD

 ∂

∂x
Ψ

Ψ (x, Σ, 0; u) = exp

iux

.

By rearranging the terms,

Tr


d
dτ

A(τ ; u)Σ


+

d
dτ

b(τ ; u)x +
d
dτ

c(τ ; u)

=


θ(T − τ) − λm − κx −

1
2
Tr

Σ


b(τ ; u) +

1
2
Tr

Σ


b(τ ; u)2

+ Tr


βQ TQ + MΣ + ΣMT


A(τ ; u) + 2ΣA(τ ; u)Q TQA(τ ; u)


+ 2Tr


ΣRQA(τ ; u)


b(τ ; u)

= Tr


1
2
b(τ ; u)(b(τ ; u) − 1)In + A(τ ; u)M +


MT

+ 2b(τ ; u)RQ

A(τ ; u)

+ 2A(τ ; u)Q TQA(τ ; u)


Σ


− κb(τ ; u)x + θ(T − τ)b(τ ; u) + βTr


Q TQA(τ ; u)


,

5 The imposed conditions, which are used by almost all affine models, allow us to solve the characteristic function in closed-form. We thank an
anonymous referee for pointing out the required conditions.
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and identifying the coefficients of X, Σ and constant terms respectively on both sides, we obtain the following system of
ODEs:

d
dτ

A(τ ; u) =
1
2
b(τ ; u)(b(τ ; u) − 1)In + A(τ ; u)M +


MT

+ 2b(τ ; u)RQ

A(τ ; u)

+ 2A(τ ; u)Q TQA(τ ; u), (11)

d
dτ

b(τ ; u) = −κb(τ ; u), (12)

d
dτ

c(τ ; u) = θ(T − τ)b(τ ; u) + βTr

Q TQA(τ ; u)


, (13)

with initial conditions

A(0; u) = 0n, (14)
b(0; u) = iu, (15)
c(0; u) = 0. (16)

The solution to Eq. (12) with initial condition (15) is

b(τ ; u) = iue−κτ .

By Radon’s lemma (see [20]), Eq. (11) can be linearized with the following procedures. Let

G(τ ; u) = H(τ ; u)A(τ ; u),

with H(τ ; u) invertible. With Eq. (11), differentiating both sides with respect to τ yields

d
dτ

G(τ ; u) =


d
dτ

H(τ ; u)


A(τ ; u) + H(τ ; u)

d
dτ

A(τ ; u)

=


d
dτ

H(τ ; u)


A(τ ; u) + H(τ ; u)


1
2
iu(iue−2κτ

− e−κτ )In

+ A(τ ; u)M +


MT

+ 2iue−κτRQ

A(τ ; u) + 2A(τ ; u)Q TQA(τ ; u)



= G(τ ; u)M +
1
2
iu(iue−2κτ

− e−κτ )H(τ ; u)

+


d
dτ

H(τ ; u) + 2G(τ ; u)Q TQ + H(τ ; u)

MT

+ 2iue−κτRQ


A(τ ; u),

and, then, matching both sides yields
d
dτ

G(τ ; u) = G(τ ; u)M +
1
2
iu(iue−2κτ

− e−κτ )H(τ ; u)

d
dτ

H(τ ; u) = −2G(τ ; u)Q TQ − H(τ ; u)

MT

+ 2iue−κτRQ

.

The above system of ODEs can be re-written as follows:

d
dτ


G(τ ; u) H(τ ; u)


=

G(τ ; u) H(τ ; u)

  M −2Q TQ
1
2
iu(iue−2κτ

− e−κτ )In −


MT

+ 2iue−κτRQ
 ,

where H(0; u) = In and G(0; u) = 0n. Therefore, A(τ ; u) is solved and given by (6) and (9). Finally, consider Eq. (13),

d
dτ

c(τ ) = θ(T − τ)iue−κτ
+ βTr


Q TQA(τ ; u)


= θ(T − τ)iue−κτ

+ βTr

Q TQH(τ ; u)−1G(τ ; u)
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= θ(T − τ)iue−κτ
−

β

2
Tr


Q TQH(τ ; u)−1


d
dτ

H(τ ; u) + H(τ ; u)

MT

+ 2iue−κτRQ


(Q TQ )−1



= θ(T − τ)iue−κτ
−

β

2
Tr


H(τ ; u)−1 d

dτ
H(τ ; u) + MT

+ 2iue−κτRQ


.

The solution of c(τ ) in (8) can be obtained by directly integrating from 0 to τ with initial condition (16). �

As the matrix-valued differential equation (9) involves τ -dependent parameters and we use the classical fourth-order
Runge–Kutta method to solve (9) (see Appendix B for the details of the Runge–Kutta method), we choose to apply the
numerical method on the linear differential equation (9) but not on the matrix-valued differential Riccati equation (11)
because the numerical stability of the former is much easier to control than the latter.

Now, we extend the dynamic of Xt in (2) by including the stochastic jump component as follows,

dX (J)
t = dXt − mλdt + d


Nt
i=1

Ji


, (17)

where
Nt

i=1 Ji is a compound Poisson process inwhichNt is a Poisson process with constant intensity λ and Ji, i = 1, . . . , are
i.i.d. random variables with probability density function f (x); the compound Poisson process is assumed to be independent
ofWt and Zt under the measure Q, andm =


R(ex − 1)f (dx).

Corollary 3.1. The characteristic function of X (J)
T in (17), conditional on X (J)

t = x and Σt = Σ , is given by

Ψ (J)(x, Σ, τ ; u) = exp


Tr

A(τ ; u)Σ


+ b(τ ; u)x +c(τ ; u)


,

where A(τ ; u) and b(τ ; u) are defined in Proposition 3.1, and,

c(τ ; u) = iu
 τ

0
θ(T − s)e−κsds − iuλm(1 − e−κτ ) −

β

2
Tr

lnH(τ ; u)


+ Λ(u)τ

Λ(u) = λ


R
(eiux − 1)f (dx).

Proof. Rewrite dX (J)
t as

dX (J)
t = dXt + d


Nt
i=1

Ji


,

where dXt = dXt − mλdt . Hence,

Ψ (J)(x, Σ, τ ; u) = EQ


exp


iuX (J)

T

 X (J)
t = x, Σt = Σ



= EQ


exp


iu

XT +

Nτ
i=1

Ji

 X (J)
t = x, Σt = Σ



= EQ


exp


iuXT

 X (J)
t = x, Σt = Σ


EQ


exp


iu


Nτ
i=1

Ji


.

The last line is obtained byusing the independence of the compoundPoissonprocess and the processXT . The first expectation
in the last row can be derived from Proposition 3.1 by replacing θ(t)with θ(t)−mλ and the second one is the characteristic
function of the compound Poisson process, which is given by

EQ


exp


iu


Nτ
i=1

Ji


= exp


λτ


R
(eiux − 1)f (dx)


. �

With Corollary 3.1, the dynamic of X (J)
t in (17) can be considered as a generalization of the model proposed in [13] in

which the jump size is i.i.d. normally distributed with mean µ and variance γ 2.
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3.3. Super-calibration to FX futures prices

Since FX futures are actively traded, it is important to ensure that the FX option prices derived are consistent with the FX
futures prices. Under a risk-neutral measure Q, the relationship between spot price and current futures price with maturity
T is given by

FT (t) = EQ


ST |Xt = x, Σt = Σ


= Ψ (x, Σ, τ ; −i)

= exp


Tr


A(τ ; −i)Σ


+ b(τ ; −i)x + c(τ ; −i)


.

It is interesting to note that the first term of the function c(τ ; −i) in (8), which is an integral with the time-dependent
mean reversion level θ(t), can be absorbed into the term structure of futures prices so that the characteristic function can
be re-written without the knowledge of the functional form of θ(t).

Proposition 3.2. If Xt follows the dynamics in (2), then the characteristic function for XT calibrated to the current futures price
FT (t) is given by

Ψ (x, Σ, τ ; u, FT (t)) = exp


iu ln FT (t) + Tr


1A(τ ; u)Σ


+ 1c(τ ; u)


,

where

1A(τ ; u) = A(τ ; u) − iuA(τ ; −i),

1c(τ ; u) = −
1
2
βTr


lnH(τ ; u) − iu lnH(τ ; −i) + MTτ(1 − iu)


with A(τ ; u) and H(τ ; u) solved in Proposition 3.1.

Proof. Please refer to Appendix C. �

3.4. Pricing formula of FX options

An FX call option with strike price K and maturity T has the payoff

max{ST − K , 0}.

To price FX call option in the Wishart model, we adopt the fast Fourier Transform approach of Carr and Madan [21] so that
rapid computation of option prices and Greeks can be achieved, which are essential for trading and hedging. Let C(K , T ) be
the value of FX call option with strike price K and maturity T , where the underlying is St = exp(Xt) and the continuously
compounded domestic risk-free rate is r . Then,

C(K , T ) =
e−α ln K

π


∞

0

e−rT−iξ ln KΨ (x, Σ, T ; ξ − (α + 1)i)
α2 + α − ξ 2 + (2α + 1)iξ

dξ, (18)

for some constant α > 0. The above integral is approximated by Simpson’s rule:

C(K , T ) ≈
e−α ln K

π

N−1
j=0

e−rT−iξj ln KΨ (x, Σ, T ; ξj − (α + 1)i)
α2 + α − ξ 2

j + (2α + 1)iξj
wj, (19)

where N is the number of grid points, ξj = jη and

wj =


1
3
η for j = 0,N − 1

1
3
(3 + (−1)j+1)η for j = 1, . . . ,N − 2.

The implementation of the fast Fourier Transform can be found in [21] so it is omitted.

3.5. Simulation study

To investigate the accuracy and efficiency of our model in which a numerical method is used, we compare the option
prices computed by pricing formula (18) and by Monte Carlo simulation,6 whose procedure is given in Appendix D. For the
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Table 1
The call option prices and CPU times produced by the pricing formula and Monte Carlo simulation.

Strike price PF MC % Error PF MC % Error

T = 0.5 T = 1

0.85 0.3360 0.3364 −0.11 0.4025 0.4022 0.07
0.90 0.3119 0.3123 −0.11 0.3809 0.3806 0.07
0.95 0.2896 0.2899 −0.12 0.3606 0.3604 0.07
1.00 0.2689 0.2692 −0.12 0.3416 0.3414 0.06
1.05 0.2497 0.2500 −0.13 0.3238 0.3237 0.05
1.10 0.2320 0.2323 −0.13 0.3071 0.3070 0.04
1.15 0.2156 0.2159 −0.14 0.2915 0.2914 0.03

Total CPU time (s) 0.06 409 0.11 817

Strike price PF MC % Error PF MC % Error

T = 1.5 T = 2

0.85 0.4310 0.4316 −0.14 0.4410 0.4409 0.03
0.90 0.4107 0.4113 −0.14 0.4215 0.4214 0.02
0.95 0.3915 0.3921 −0.14 0.4031 0.4030 0.02
1.00 0.3735 0.3741 −0.14 0.3857 0.3856 0.01
1.05 0.3566 0.3571 −0.15 0.3693 0.3693 0.01
1.10 0.3406 0.3411 −0.15 0.3539 0.3538 0.01
1.15 0.3255 0.3260 −0.15 0.3393 0.3392 0.00

Total CPU Time (s) 0.17 1223 0.22 1629

numerical integration for the pricing formula, the number of grid point is N = 64, the grid size is η = 0.25 and the damping
coefficient is α = 3. Let θ = 0.1, κ = 0.25, S0 = 1 be the parameters of the log-currency value dynamics. The parameters
of the Wishart process are chosen in similar scale with those of Wong and Zhao [7], namely, β = 5,

M =


−0.50 0.00
0.00 −0.05


, Q =


0.10 0.05
0.05 0.05,


,

R =


−0.04 −0.02
−0.02 −0.04


, Σ0 =


0.50 0.20
0.20 0.50


.

In Table 1, the 0.5-year, 1-year, 1.5-year and 2-year call option prices are computed and compared with MC simulation with
100,000 sample paths and time step of 1/100, where the prices and CPU times are reported (‘‘PF’’ refers to pricing formula
and ‘‘MC’’ to Monte Carlo simulation). As shown in the table, the model prices are very close to simulated prices and the
CPU times for pricing formula aremuch less than those for MC simulation. Thus, the simulation study demonstrates that the
analytical formula is correct and efficient.

4. Model property

In this section, we demonstrate the flexibility of the Wishart model on capturing stochastic skew over the multi-factor
Heston model.

4.1. Stochastic instantaneous correlation

Under the stochastic volatility framework, the implied volatility skew is determined by the instantaneous correlation
between the log-currency noise and volatility noise, which, for the Wishart model, is given by (see [15])

ρWis
t =

Tr

RQΣt



Tr

Σt


Tr

Q TQΣt

 . (20)

With Eq. (20), the stochastic instantaneous correlation under the multi-factor Heston model, ρHes
t , can be derived by taking

thematrix RQ andΣt to be diagonal and is shown to be dependent solely on the variance factorsΣ11
t andΣ22

t . In the case of

6 Although finite difference methods are widely used in option pricing under stochastic volatility models, it is difficult to implement here because of
the dimensionality of the model. For instance, the mean reverting dynamics Xt with a 2-D Wishart process Σt has already involved 5 variables, namely,
t, Xt , Σ11

t , Σ12
t and Σ22

t .
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Σt being a 2× 2 symmetric positive definite matrix and R being upper triangular, the stochastic instantaneous correlations
under the Wishart model, ρWis

t , is given by

ρWis
t = ρHes

t +
R12Q22

Σ11
t + Σ22

t


Q 2
11Σ

11
t + Q 2

22Σ
22
t

Σ12
t . (21)

The above relation shows that, when compared with the multi-factor Heston model, the Wishart model contains extra
parameter R12 and process Σ12

t , which act independently from the variance factors, that offer extra flexibility to model
stochastic skew. This flexibility is crucialwhen those volatility factors have been fitted to short-term and long-termvolatility
levels.

4.2. Numerical example

On 31-Dec-2009, the spot price of the 1 EUR is 1.4405 USD and the futures prices are shown below.

Maturity Futures price (USD/EUR)
1-month 1.440437
2-month 1.440354
3-month 1.440260
6-month 1.439749
9-month 1.438766
12-month 1.437908
18-month 1.437360
24-month 1.438791

With Corollary 3.1, the form of θ(t) is not important when the term structure of futures prices are available. For the other
model parameters, they are given by κ = 0.25, β = 5,

M =


−10.00 0.00
0.00 −0.05


, Q =


0.20 0.00
0.00 0.20


,

R =


+0.10 R12
0.00 +0.10


, Σ0 =


0.05 0.04
0.04 0.05


.

In our numerical experiment, we consider the two correlation structures, the first is R12 = −0.4 and the second is
R12 = +0.4 in the matrix R in order to show that the parameter R12 and state variable Σ12

t offer the Wishart model the
freedom to control the implied volatility skew with respect to the two-factor Heston model.

Fig. D.2 displays the implied volatility curves generated by the two models, where the lines with crosses and lines with
stars represent the curves generated by theWishartmodel with R12 = −0.4 and R12 = +0.4 respectively, and the lineswith
dots represent the curves generated by two-factor Heston model. In Fig. D.2, we observe that the implied volatilities for the
short maturity options, from one-month to six-month, are twisted from negative skew to positive skew pivoted around the
spot price S0 = 1.4405 when R12 changes from −0.4 to +0.4. The term structure of the implied volatility skew7 in Fig. D.3
further confirms the conclusions which are made from Fig. D.2. In other words, the Wishart model offers extra flexibility
to control the implied volatility skew without affecting the volatility level. The significance of the above experiment is
that supposing the two-factor Heston model has a good fit to the short-term volatility by the process Σ11

t and long-term
volatility by the process Σ22

t with suitable degree of correlation to the log-currency process, the Wishart model provides
another parameter R12 to fit the variation of implied volatility skew that is not captured by the short-term and long-term
volatilities.

5. Conclusion

We propose a model to simultaneously capture the three essential features observed in the currency market: mean
reversion, stochastic volatility and stochastic skew. Using the non-diagonal elements of matrices in the Wishart process,
our model offers extra control on the implied volatility skew as compared with the multi-factor Heston model. Analytical
solutions are derived for the characteristic functions and European options. This enables our framework to be implemented
accurately and efficiently for practical use as shown in our simulation study.

7 Here, the skew of the implied volatility curve for a particular maturity is defined as the difference between the Black’s implied volatilities at the
right-end point and the left-end point of that volatility curve.
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Appendix A. The change of probability measure

As we attempt to develop a model which is calibrated to derivatives prices, it is necessary for us to start by the risk-
neutral log-currency dynamics in (2) so that the expectation of currency value ST under risk-neutral measure Q matches the
term structure of futures price FT (t), that is,

FT (t) = EQ
[ST |Ft ].

Thematching process determines the function θ(t) in the dynamics ofXt . However,whenderivatives prices are not available,
one has to estimate parameters from historical values of the underlying currency. The estimation leads to the dynamics
under the real-world probability measure P. To value derivatives, the real-world process has to transform into risk-neutral
process. We propose a change of measure to bridge the real-world and risk-neutral process below.

Suppose that W P
t and BP

t are independent square matrix Brownian motions under P, and WQ
t and BQ

t are independent
square matrix Brownian motions under Q. Consider the following relationships.

dWQ
t = dW P

t +
b − θ(t)

n
(
√

Σt)
−1RTdt,

dBQ
t = dBP

t +
b − θ(t)

n
(
√

Σt)
−1

In − RRTdt,

dZQ
t = dWQ

t R + dBQ
t


In − RRT,

where b is some constant. Then, ZQ
t is also a square matrix Brownian motion under Q. Now, we perform the change of

probability measure from risk-neutral measure Q to physical measure P.8

dXt =


θ(t) − κXt −

1
2
Tr

Σt


dt + Tr

√
ΣtdZ

Q
t


=


θ(t) − κXt −

1
2
Tr

Σt


dt + Tr


√

ΣtdW
Q
t R +

√
ΣtdB

Q
t


In − RRT



=


θ(t) − κXt −

1
2
Tr

Σt


dt

+ Tr


√

Σt


dW P

t +
b − θ(t)

n
(
√

Σt)
−1RTdt


R



+ Tr


√

Σt


dBP

t +
b − θ(t)

n
(
√

Σt)
−1

In − RRTdt


In − RRT



=


θ(t) − κXt −

1
2
Tr

Σt


dt + Tr


√

ΣtdW P
t R +

√
ΣtdBP

t


In − RRT



+ Tr


b − θ(t)

n
InRTR


dt + Tr


b − θ(t)

n


In − RRT


dt

=


θ(t) − κXt −

1
2
Tr

Σt


dt + Tr


√

ΣtdW P
t R +

√
ΣtdBP

t


In − RRT



+
b − θ(t)

n
Tr

RTR


dt +

b − θ(t)
n

Tr


In − RRT


dt

=


b − κXt −

1
2
Tr

Σt


dt + Tr


√

Σt


dW P

t R + dBP
t


In − RRT


.

8 As we propose the dynamics of Xt and Σt under a risk-neutral measure Q, we should deduce their dynamics under the physical measure P with a
suitable transformation so that the affine property is preserved. Reversing the transformation allows one to deduce the dynamics under Q from P.
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Define

dZP
t = dW P

t R + dBP
t


In − RRT.

Then, ZP
t is a square matrix Brownian motion under P. The mean reversion level of Xt under physical measure P is thus

assumed to be a constant b.
For the Wishart process,

dΣt =


βQ TQ + MΣt + ΣtMT


dt +

√
ΣtdW

Q
t Q + Q T(dWQ

t )T
√

Σt

=


βQ TQ + MΣt + ΣtMT


dt +

√
Σt


dW P

t +
b − θ(t)

n
(
√

Σt)
−1RTdt


Q

+Q T


dW P

t +
b − θ(t)

n
(
√

Σt)
−1RTdt

T
√

Σt

=


βQ TQ + MΣt + ΣtMT


dt +

√
ΣtdW P

t Q + Q T(dW P
t )T

√
Σt

+
b − θ(t)

n
RTQdt +

b − θ(t)
n

Q TRdt

=


βQ TQ +

b − θ(t)
n

RTQ +
b − θ(t)

n
Q TR


+ MΣt + ΣtMT


dt

+
√

ΣtdW P
t Q + Q T(dW P

t )T
√

Σt .

Thus, it can be seen that the matrix of mean reversion of Wishart process is time-dependent but non-stochastic.

Appendix B. The Runge–Kutta method

In the numerical solution of differential equations, the Taylor-seriesmethod is simple to implement but has the drawback
of requiring higher order derivatives and some error analysis prior to implementation. To circumvent these problems,
the family of Runge–Kutta method imitates the Taylor-series method by means of clever combinations of the values of
the first derivative through the repeating use of chain rule of differentiation. Now, we give below the classical fourth-
order Runge–Kutta method used in this paper. Given the time to maturity T , we partition the interval [0, T ] into N equal
subintervals with partition points 0 = τ0 < τ1 < · · · < τn < · · · < τN = T , where τn = τ0 + nh and h =

T
N for

n = 0, . . . ,N − 1. Denote

X(τ ) =

G(τ ; u) H(τ ; u)


,

f (τ ) =

 M −2Q TQ
1
2
iu(iue−2κτ

− e−κτ )In −


MT

+ 2iue−κτRQ

 .

Let Xn be the numerical approximation of X(τ ) at τn, for n = 1, 1, . . . ,N , with X0 = X(0). In our case, the method is given
by, for n = 0, 1, . . . ,N − 1,

Y1 = Xn,

Y2 = Xn +
h
2
Y1f (τn),

Y3 = Xn +
h
2
Y2f


τn +

h
2


,

Y4 = Xn + hY3f


τn +

h
2


,

Xn+1 = Xn +
h
6


Y1f (τn) + 2Y2f


τn +

h
2


+ 2Y3f


τn +

h
2


+ Y4f (τn + h)


.

The fourth-order Runge–Kuttamethod is called an explicit one-stepmethod and involves local truncation error of order 4 so, as
a one-step method, it is convergent. Moreover, it is strongly stable. For the efficiency of implementation, we fix the stepsize;
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Fig. D.1. The time series of 1, 6, 9, 12, 18, 24-month 10-delta risk reversals from 1-Jan-2008 to 31-Oct-2010.

however, to impose error control, adaptive algorithms, for example, the Runge–Kutta–FehlbergMethod, which vary stepsize
to accommodate local peculiarities in the solution, should be implemented. These standard results can be found in Chapter 5
of Burden and Faires [22] or Chapter 7 of Allen and Isaacson [23].

Appendix C. Proof of Proposition 3.2

The current futures price with maturity T is given by

FT (t) = E


ST |Xt = x, Σt = Σ


= Ψ (x, Σ, τ ; −i)

= exp


Tr


A(τ ; −i)Σ


+ b(τ ; −i)x + c(τ ; −i)


where A(τ ; −i) is solved in Proposition 3.1 and

b(τ ; −i) = e−κτ ,

c(τ ; −i) =

 τ

0
θ(T − s)e−κsds −

1
2
βTr


lnH(τ ; −i) + MTτ +

2
κ

(1 − e−κτ )RQ


.
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Fig. D.2. The implied volatility curves generated by the Wishart model (lines with crosses represent the case of R12 = −0.4, lines with stars represent the
case of R12 = +0.4) and two-factor Heston model (lines with dots).

Fig. D.3. The term structure of implied volatility skew generated by the Wishart model (lines with crosses represent the case of R12 = −0.4, lines with
stars represent the case of R12 = +0.4) and the two-factor Heston model (lines with dots).

Rearrangement of terms yields τ

0
θ(T − s)e−κsds = ln FT (t) − Tr


A(τ ; −i)Σ


− xe−κτ

+
1
2
βTr


lnH(τ ; −i) + MTτ +

2
κ

(1 − e−κτ )RQ


.

Now, substituting the above expression into the characteristic function (5) yields

Ψ (x, Σ, τ ; u, FT (t)) = exp


Tr


A(τ ; u)Σ


+ iuxe−κτ

+ iu


ln FT (t) − Tr


A(τ ; −i)Σ


− xe−κτ

+
1
2
βTr


lnH(τ ; −i) + MTτ +

2
κ

(1 − e−κτ )RQ
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−
1
2
βTr


lnH(τ ; u) + MTτ +

2iu
κ

(1 − e−κτ )RQ



= exp


iu ln FT (t) + Tr


A(τ ; u) − iuA(τ ; −i)


Σ



−
1
2
βTr


lnH(τ ; u) − iu lnH(τ ; −i) + MTτ(1 − iu)


.

Appendix D. The simulation of log-currency value

To simulate the log-currency value Xt in the Wishart model, we apply the OU-discretization scheme proposed in [24]
with β being positive integers.

D.1. The relationship between OU process and Wishart process

Let β ∈ N and let {Um,t : t ≥ 0}1≤m≤β be independent OU processes in Rn which follow the dynamics

dUm,t = MUm,tdt + Q TdWm,t ,

where {Wm,t : t ≥ 0}1≤m≤β are independent vector Brownian motions in Rn,M and Q are real-valued square matrices of
order n. Then, the matrix process defined by

Σt =

β
m=1

Um,tUT
m,t

follows the dynamics

dΣt = (βQ TQ + MΣt + ΣtMT)dt +
√

ΣtdWtQ + Q T(dWt)
T√Σt ,

where W is a square matrix Brownian motion. Note that

√
ΣtdWt ∼

β
m=1

Um,tdW T
m,t .

D.2. The simulation procedure

Under risk-neutral measure, the log-currency value follows the dynamics

Xt+1t = Xt +

 t+1t

t


θ(s) − κXs −

1
2
Tr


Σs


ds +

 t+1t

t
Tr


√

ΣtdWsRT


ds

+

 t+1t

t
Tr


√

ΣtdBs


In − RRT


ds,

where B and W are independent matrix Brownian motions. The stochastic integrals in the above expression can be
approximated as follows: t+1t

t
Tr


Σs


ds ≈

1t
2

Tr

Σt+1t + Σt


,

 t+1t

t
Tr


√

ΣsdWsRT


ds = Tr


β

m=1

 t+1t

t
Um,sdW T

m,sR
T



≈
√

1tTr


β

m=1

Um,tϵ
T
m,t+1tR

T


,

 t+1t

t
Tr


√

ΣsdBs


In − RRT


ds ∼ N


0,
 t+1t

t
Tr


Σs(In − RRT)


ds



≈


1t
2

Tr

(Σt + Σt+1t)(In − RRT)


Z,
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where {ϵm,t+1t}1≤m≤β are vectors in Rn of independent standard normal random variables for the time interval [t, t + 1t]
and Z is a standard normal random variable.

Here is the simulation procedure:
Step 1: Partition the interval [0, T ] into N equal subintervals {ti, ti+1}

N−1
i=0 such that t0 = 0, ti+1 = ti + 1t and 1t = T/N .

Step 2: To initialize the simulation, an eigenvalue decomposition on the symmetric positive definite matrix Σ0 yields

Σt0 =

n
m=1

λmφmφT
m,

where λm are the eigenvalues and φm are the corresponding eigenvectors of Σt0 . Thus, the initial state of the vector OU
process is, form = 1, . . . , β ,

Um,t0 = 1{1≤m≤n}


λmφm.

Step 3: To generate the OU process, for k = 1, . . . , β ,

Um,ti+1 = Um,ti + 1tMUm,ti +
√

1tQ Tϵm,ti+1 ,

where {ϵm,ti+1}1≤m≤β are vectors in Rn of independent standard normal random variables for the time interval [ti, ti+1].
Step 4: The Wishart process is generated by

Σti+1 =

β
m=1

Um,ti+1U
T
m,ti+1

.

Step 5: To generate log-currency value under the Wishart model,

Xti+1 = Xti + 1t


θ(ti) − κXti −

1
4
Tr

Σti + Σti+1


+

√
1tTr


β

m=1

Um,tiϵ
T
m,ti+1

RT



+


1t
2

Tr

(Σti + Σti+1)(In − RRT)


Z .

Step 6: Repeat Steps 3 to 5 for i = 1, . . . ,N − 1.
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