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Abstract

In this paper we show using a purely combinatorial argument that a finitely generated i
group such thatfE(n)� ans , wherea is a constant, admits for everyε a sequence{gi,ε} of non-unit
elements whose centralizer contains more thani1/2−ε elements of length less thani. Of course, the
interest of this result is in the fact that it excludes the possibility that the group is a pure torsion
since otherwise the existence of the sequence{gi,ε} is obvious. As an application of this result, w
show that, in the case wherer < 3/2, there exists an element whose centralizer has finite indexG.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finitely generated group andE a finite generating system. Forg ∈G define
theE-length ofg as the minimal length of an expression ofg as a product of elements inG
and denote it bylE(g). Denote byfE(n) the function that gives the number of elements
G whose length is less or equal thann. We will say thatG haspolynomial growthif there
exista, s ∈ R+ such thatfE(n) � ans . It can be shown that the polynomiality of grow
does not depend on the choice of the generating system, so that having polynomial
is an intrinsic property of a group. This notion was introduced by J. Milnor [4] in orde
study the relationship between curvature and the growth of the volume of the spher
Riemannian manifold. A famous result of M. Gromov [1] states that a group of polyno
growth contains a subgroup of finite index that is nilpotent.

In this paper we study the relationships between growth and conjugacy. We show
a combinatorial argument that ifG is a finitely generated infinite group of polynom

E-mail address:incitti@ihes.fr.
0021-8693/03/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0021-8693(03)00029-2

https://core.ac.uk/display/82791294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


R. Incitti / Journal of Algebra 265 (2003) 420–428 421

f
ill
ts
r or

ntion

,

the set
growth then, for everyε and for arbitrarily largen, we can find an elementg ∈ G whose
centralizer grows locally more thann1/2−ε , that is f CG(g)

E (n) � n1/2−ε . If, moreover,
r < 3/2, we will see that there exists an element whose centralizer has finite index.

2. First definitions and lemmas

Throughout this paper we will suppose thatG is a finitely generated infinite group o
polynomial growth, as defined in Section 1, andE a finite generating subset. We w
suppose that we have chosen an order onE. By Gn we will denote the set of the elemen
of G whose length is less thann, byGm,n the set of the elements whose length is greate
equal thanm and less thann, and byVn,x the setGxn,(x+1)n. As usual, forg ∈G, gS will
denote the set of the elements ofG of the form s−1gs, with s ∈ S. If H < G, we will
denote byf H

E (n) the function that gives the number of elements ofH whoseE-length is
less or equal thann. Notice thatH needs not to be finitely generated.

For short, since no confusion can arise from the context, we will adopt the conve
of writing C(g) for CG(g) (the centralizer ofg in G), l(g) for lE(g), f (n) for fE(n), and
f H (n) for f H

E (n). Moreover, by log(n) we will mean log2(n).

Definition 2.1. Set S = {t ∈ R+ | ∃n0 ∈ N, f (n) � nt , ∀n > n0}. As, by hypothesis
S 
= ∅, we denote byr the infimum ofS. We will call it the degree of growth ofG relative
toE.

An immediate property ofr is the following lemma.

Lemma 2.2. For everyε > 0 we havef (n)� nr+ε for sufficiently largen andf (n) > nr−ε

for infinitely manyn.

Here and in the following,ε will be positive.

Lemma 2.3. Let x, y ∈G then|l(xy)− l(x)| � l(y).

Proof. Immediate. ✷
Lemma 2.4. LetA⊆Gn andg ∈G. Then|gA| � |A|/(f C(g)(2n)).

Proof. If a, b ∈ A then ga = gb only if a = bx, with x ∈ C(g) and l(x) � 2n, since
x = b−1a. ✷

3. Intervals of rapid growth

The conditionf (n)� ans does not say much on the cardinality of the setsVn,i , whose
variation can in principle be very erratic. Nevertheless, we can give an estimate on
of the indicesi such thatVn,i does not increase or decrease too rapidly w.r.t.Vn,i−1.
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In the following two sections, we will supposer � 1. In this section, we will suppos
also thatn is fixed.

Definition 3.1. Let c > 1 andh > 0. We will say that an interval[h, k] is an increasing
(respectively decreasing)c-interval if, for everyi in [h, k] we havec < |Vn,i+1|/|Vn,i |
(respectivelyc < |Vn,i−1|/|Vn,i |). We will say that it is a maximal increasing or decreas
interval, if it is maximal w.r.t. this property.

Definition 3.2. SetC = ⋃[h, k], where[h, k] are the maximal increasing 2-intervals. S
D = ⋃[h, k], where[h, k] are the maximal decreasing 2-intervals. SetT = (C ∪ D) and
I = N \ T .

Lemma 3.3. Let i ∈ I . Then|Vn,i+1|/|Vn,i | � 2 and|Vn,i−1|/|Vn,i | � 2.

Corollary 3.4. Let i ∈ I . Then|G(i−1)n,(i+2)n|/|Vn,i | � 5.

Proof. Immediate, by Lemma 3.3, sinceG(i−1)n,(i+2)n = Vn,i−1 ∪ Vn,i ∪ Vn,i+1. ✷
Lemma 3.5. Let [h, k] be a maximal increasing(respectively decreasing) 2-interval. Then
k + 1 ∈ I (respectivelyh− 1 ∈ I).

Proof. Let [h, k] be increasing. Then 2< |Vn,k+1|/|Vn,k| and |Vn,k|/|Vn,k+1| < 1/2,
which implies thatk + 1 cannot belong to a decreasing 2-interval. On the other h
by the maximality of[h, k], k + 1 cannot belong to an increasing 2-interval. Let[h, k]
be decreasing. Then 2< |Vn,h−1|/|Vn,h|, which implies thath − 1 does not belong to a
increasing interval. It cannot belong to a decreasing interval either, by the maxima
[h, k]. ✷
Lemma 3.6. LetG be infinite. Letε < 1/4. Then, for any integer sequenceln,ε ∈ N such
thatn1−4ε � ln,ε � n1−2ε one hasf (nln,ε)� n2r−ε for sufficiently largen.

Proof. Choosen sufficiently large andln,ε so thatn1−4ε � ln,ε � n1−2ε . For everyδ > 0,
by Lemma 2.2, we have

f (nln,ε)� (nln,ε)
r+δ � nr+δn(1−2ε)(r+δ) = n2r+2δ−2εr−2εδ

for sufficiently largen. Sincer � 1, we have

2δ0 − 2εr − 2εδ0 � −3
2ε

for some sufficiently smallδ0. Then

f (nln,ε)� n2r−3ε/2 � n2r−ε

for sufficiently largen. ✷
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Definition 3.7. SetIn,ε = I ∩ [1, ln,ε] andTn,ε = T ∩ [1, ln,ε].

Lemma 3.8. Let ε < 1/8 and letln,ε be as in Lemma3.6. There exists a constantc such
that if [h, k] ⊆ [1, ln,ε] is a 2-interval (increasing or decreasing), thenk − h� c log(ln,ε).

Proof. Let us suppose that[h, k] is increasing. Since|Vn,h| � 1, we have

2k−h � 2k−h|Vn,h| � |Vn,k|.

But |Vn,k| � f (n2)� n2r+δ , whereδ is a constant, for sufficiently largen, by Lemma 2.2.
Then 2k−h � n2r+2δ and

k − h� (2r + 2δ) log(n)� c

2
log(n)= c log

(
n1/2) � c log

(
n1−4ε) � c log(ln,ε)

for some constantc, for ε < 1/8 and for sufficiently largen, by Lemma 3.6. The proof i
analogous if[h, k] is decreasing. ✷
Lemma 3.9. For everyε and for sufficiently largen there exists a constantd such that
l1−ε
n,ε /(d log(ln,ε))� |In,ε |.

Proof. ConsiderTn,ε . Suppose that, for sufficiently largen, one has|Tn,ε | � l1−ε
n,ε .

Then, since, by definition,[1, ln,ε] \ Tn,ε ⊆ In,ε , we have ln,ε − l1−ε
n,ε � |In,ε |, and

then we have the claim, sincel1−ε
n,ε /(c log(ln,ε)) � ln,ε − l1−ε

n,ε , for sufficiently largen.
Otherwisel1−ε

n,ε < |Tn,ε |. In this case consider that, by Lemma 3.8,Tn,ε contains at leas
l1−ε
n,ε /(c log(ln,ε)) increasing or decreasing 2-intervals. By Lemma 3.5, this implies
In,ε contains at leastl1−ε

n,ε /(2c log(ln,ε)) elements. ✷

4. The growth of the conjugacy classes

Throughout this section, we will suppose thatG is infinite.

Lemma 4.1. Let i ∈ In,ε . Then, there exists a constantc such that, for sufficiently
large n, for everys ∈ Vn,i there are at leastc�|Gn/4|2/|Vi,n|� elementsp ∈ Gn such that
l(s−1ps)� n.

Proof. Consider the functionfs :Gn/4 × Gn/4 → G(i−1)n,(i+2)n defined byfs(x, y) =
xsy. (By Lemma 2.3, ifs ∈ Vn,i andx, y ∈ Gn/4 thenxsy ∈ G(i−1)n, (i+2)n.) There is at
least one elementm ∈ f (Gn/4 ×Gn/4) such that

∣∣f−1
s (m)

∣∣ �
⌊ |Gn/4|2 ⌋

�
⌊ |Gn/4|2 ⌋

�
⌊

1 |Gn/4|2⌋
� c

⌊ |Gn/4|2⌋

|f (Gn/4 ×Gn/4)| |G(i−1)n, (i+1)n| 5 |Vn,i | |Vn,i |
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wherec is a constant. Define the setLm as

Lm = {
g ∈Gn/4

∣∣ fs(g,hg)=m, for somehg ∈Gn/4
}
.

Let (x,hx) ∈ f−1
s (m) and consider the setL−1

m x. Since, for every fixedx0, the function
fs(x0, y) is injective, we have|Lm| = |f−1

s (m)|, and then|L−1
m x| = |f−1

s (m)|. Let us
show that, fors ∈ Vn,i and p ∈ L−1

m x, we havel(s−1ps) � n. Sincep ∈ L−1
m x, then

there existgp,hgp ∈ Gn/4 such thatp = g−1
p x andgpshgp = xshx . By this relation, we

have l(s−1ps) = l(s−1g−1
p xs) = l(hgph

−1
x ) � n sincehx,hg ∈ Gn/4. Finally, note that

L−1
m x ⊆Gn sincex,gp ∈Gn/4. This proves the claim. ✷

Corollary 4.2. Denote byPn,i the set of the pairs(x, y) ∈ Gn × Vn,i such thatxy ∈ Gn.
Then|Pn,i | � c|Gn/4|2 − c|Vn,i| for sufficiently largen.

Proof. By Lemma 4.1 we have|Pn,i | � c�|Gn/4|2/|Vn,i |�|Vn,i|, and, since�x/y� �
x/y − 1, we have|Pn,i | � c|Gn/4|2 − c|Vn,i |. ✷
Lemma 4.3. Let ε < 1. SetPε

n = ⋃
i∈In, ε/16

Pn,i . Then there exists a sequence{ni,ε} such

that |Pni,ε | � n2r+1−ε
i,ε .

Proof. For short, we setε′ = ε/16. For any fixedn, the setsPn,i are disjoint, then
|Pε

n | = ∑
i∈In,ε′ |Pn,i |. The setsVn,i are disjoint too, then

∣∣∣∣
⋃

i∈In,ε′
Vn,i

∣∣∣∣ =
∑
i∈In,ε′

|Vn,i | � f (nln,ε′ )

since
⋃

i∈In,ε′ Vn,i ⊆ Gnln,ε′ . Then, by Lemma 3.6 and Corollary 4.2:

∣∣Pε
n

∣∣ =
∑
i∈In,ε′

|Pn,i | � c
∑
i∈In,ε′

(|Gn/4|2 − |Vn,i |
) = c|Ii,ε′ ||Gn/4|2 − c

∑
i∈In,ε′

|Vn,i |

� c|In,ε′ ||Gn/4|2 − cf (nln,ε′)� c|In,ε′ ||Gn/4|2 − cn2r−ε′

= c|In,ε′ ||Gn/4|2 − cn2r−ε/16.

Sinceε < 1 and thenε′ � 1/2, by Lemmas 3.9 and 3.6 we have:

c|In,ε′ ||Gn/4|2 � cln,ε′

d log(ln,ε′)
|Gn/4|2 � cn1−4ε′

d log(n1−2ε′
)
|Gn/4|2

= 1
′
cn1−4ε′

|Gn/4|2 � cn1−4ε′
|Gn/4|2.
1− 2ε d log(n) d log(n)
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Now, let {ni,ε} be a sequence such thatf (ni,ε/4) � n
r−ε/8
i,ε , which exists by Lemma 2.2

We have:

cn1−4ε′
i,ε

d log(ni,ε)
|Gni,ε/4|2 � cni,ε

1−4ε′

d log(ni,ε)
n

2r−ε/4
i,ε = cn

2r+1−ε/2
i,ε

d log(ni,ε)
� n

2r+1−3ε/4
i,ε

for sufficiently largeni,ε . Then

|Pε
n | � n

2r+1−3ε/4
i,ε − cn2r−ε/16 � n2r+1−ε

i,ε ,

again, for sufficiently largeni,ε . Then, up to eliminating a finite number of elements
{ni,ε} and renumbering it, we have the claim.✷
Lemma 4.4. For every ε, there exist two sequences{gi,ε} and {mi,ε} such that
f C(gi,ε)(2m2

i,ε) > m1−ε
i,ε .

Proof. Again for short we setε′ = ε/2. LetPε′
ni,ε′ andni,ε′ be as in Lemma 4.3. Now,Pε′

ni,ε′
can be regarded as a subset ofGni,ε′ ×⋃

i∈In,ε′/16
Vn,i , so that we can define an equivalen

relation onPε′
ni,ε′ as(x, y)≡ (x ′, y ′)⇔ x = x ′. There are obviously at most|Gni,ε′ | classes

on Pε′
ni,ε′ ; then there is an equivalence class with more than|Pε′

ni,ε′ |/|Gni,ε′ | elements.
Let (gi,ε , hi,ε) be a representative of this class. Therefore the setB = {x ∈Gni,ε′ ln

i,ε′ ,ε′
|

gxi,ε ∈Gni,ε′ } has more than|Pε′
ni,ε′ |/|Gni,ε′ | elements. Now

|B| �
|Pε′

ni,ε′ |
|Gni,ε′ |

� n
r+1−3ε/4
i,ε′

since, by applying Lemma 4.3, we have|Pε′
ni,ε′ | � n

2r+1−ε/2
i,ε′ and |Gni,ε′ | � n

r+ε/4
i,ε′ , by

Lemma 2.2, for sufficiently largeni,ε′ . Now, sincegBni,ε′ ⊆ Gi,ε′ , we have|gBni,ε′ | �
|Gni,ε′ | � n

r+ε/4
i,ε′ , for sufficiently largeni,ε′ . Then, by Lemma 2.4, we havef C(g)(2n2

i,ε′)�
|B|/|gBni,ε′ | � n1−ε

i,ε′ , for sufficiently largeni,ε′ . Then we have the claim by settin
mi,ε = ni,ε′ . ✷

Now we can give the result on the centralizers.

Lemma 4.5. LetG be a finitely generated group of polynomial growth. Suppose that t
exists a finite generating subsetE such that the degree of growth ofG relative toE is
greater or equal than1. Then, for everyε, there exist a sequence{gi,ε}, gi,ε ∈ G, and an

increasing sequence{ni,ε}, ni,ε ∈ N, such thatf C(gi,ε)(ni,ε)� n
1/2−ε

i,ε .

Proof. Considergi,ε andni,ε = 2m2
i,ε , wheremi,ε andgi,ε are as in Lemma 4.4. We hav

f C(gi,ε)(ni,ε)� n1−ε = (2n2 )(1−ε)/2 � n
1/2−ε , for sufficiently largen1/2−ε . ✷
i,ε i,ε i,ε i,ε
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This, together with the characterization of the case wherer < 1 (see [3,5] or [2]), gives
a combinatorial proof of the following result.

Theorem 4.6. LetG be a finitely generated group,E a finite generating subset anda, s two
positive constants such thatfE(n) � ans . Then, for everyε, there exist a sequence{gi,ε},
gi,ε ∈G, and an increasing sequence{ni,ε}, ni,ε ∈ N, such thatf C(gi,ε)(ni,ε)� n

1/2−ε
i,ε .

5. The growth of the subgroups

In this section, we apply Theorem 4.6 to the case of a group having a degree of g
relative to a finite generating subsetE which is less than 3/2. In order to do it, we give a
result based on a local condition on the growth of the subgroups of a group of polyn
growth.

Definition 5.1. As usual, denote byE∗ the set of the finite sequences of symbols of
setE and denote by|w| the length ofw ∈ E∗. Let H be a subgroup ofG andG/H be
the set of its right cosets. Let denoteφH :G/H →E∗ the map which associates to a co
x the elementw ∈ E∗ affording its minimal representative inG w.r.t. the length and th
lexicographic order<E induced by the order onE. We will say thatw is the minimal
representative ofx. For short, we will also say thatw is minimal and that|w| is the length
of x.

Lemma 5.2. The setφ(G/H) is closed under taking prefixes.

Proof. Let x ∈ G/H and letΦH(x) = en1 · · ·ena , with en1, . . . , ena ∈ E be its minimal
representative. The claim is equivalent to saying that, ifa > 1, then en1 · · ·ena−1 is
minimal. In order to show it, letem1 · · ·ema′ be the minimal representative ofHen1 · · ·ena−1.
We have thata − 1 � a′ since otherwiseem1 · · ·ema′ ena would be a representative o
x of length at mosta − 1. On the other hand,a′ � a − 1 since en1 · · ·ena−1 is a
representative ofHen1 · · ·ena−1 of lengtha−1 andem1 · · ·ema′ is minimal. Thena′ = a−1.
Now, en1 · · ·ena and em1 · · ·ema′ ena belong to the same right coset by the definit
of em1 · · ·ema′ and by the above they have both lengtha. Then, sinceen1 · · ·ena is
minimal, en1 · · ·ena �E em1 · · ·ema′ ena and thenen1 · · ·ena−1 �E em1 · · ·ema′ . Again, by
the definition ofem1 · · ·ema′ , we have thaten1 · · ·ena−1 andem1 · · ·ema′ belong to the sam
right coset. Then, sinceen1 · · ·ena−1 has lengtha′ and it is less or equal toem1 · · ·ema′
w.r.t. the lexicographic order, and sinceem1 · · ·ema′ is minimal, we haveem1 · · ·ema′ =
en1 · · ·ena−1. ✷
Lemma 5.3. If H has infinite index inG, then for everyn there exists an element
φH (G/H) of lengthn.

Proof. SinceφH (G/H) ⊆ E∗ is injective, then, since[G : H ] is infinite, we can find
an increasing sequence{ni}, i, n ∈ N, such that for everyi ∈ N there existsxi ∈ G/H

of lengthni . Now, defineP ⊆ E∗ as the set of the prefixes of the elementsφH (xi). By
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Lemma 5.2, we haveP ⊆ φH (G/H). Moreover, for everyi ∈ N, and for everyk ∈ [1, i],
φH (xi) has a prefix of lengthk. Then the setφ−1

H (P ) yields the claim. ✷
The Splitting Lemma in [1, p. 59] can be stated as follows.

Lemma 5.4. Let a, r, s ∈ R+ be such thatfE(n)� anr , s > r − 1, and letH be a finitely
generated subgroup ofG. Then, iff H (n)� ns , ∀n ∈ N, H has finite index inG.

The following is a local version of the Splitting Lemma, in whichH is not necessarily
finitely generated.

Lemma 5.5. Let a, r, s ∈ R+ be such thatfE(n) � anr , s > r − 1. Fix n0 such that
ns−r+1

0 > a2r . Then, ifH < G is such thatf H (n) � ns, ∀n � n0, H has finite index
in G.

Proof. We argue by contradiction and assume thatH has infinite index. Then b
Lemma 5.3,Gn0 containsn0 representatives of distinct right cosets ofH . Let denote them
g1, . . . , gn0. Now,

∣∣∣∣∣
n0⋃
i=1

Hn0gi

∣∣∣∣∣ = n0|Hn0| � ns+1
0 .

But

n0⋃
i=1

Hn0gi ⊆G2n0.

Then we havens+1
0 � |G2n0| � a2rnr0, contradicting the assumption onn0. ✷

Now we can show the main result of this section.

Theorem 5.6. LetG be a finitely generated group andE a finite generating subset suc
thatfE(n)� anr , with r < 3/2. Then there existsg ∈G such that[G :C(g)] <∞.

Proof. Let ε′ be such thatfE(n) � an3/2−ε′
. Let ε < ε′ and letn0 be as in Lemma 5.5

wherer = 3/2−ε′ ands = 1/2−ε. Let the sequences{gi,ε}, gi,ε ∈G, and{ni,ε}, ni,ε ∈ N,
be as in Theorem 4.6 and leti0 be such thatni0,ε > n0. Now, by Theorem 4.6, we hav

f C(gi0,ε )(ni0,ε)� n
1/2−ε
i0,ε

. Then, sinceni0,ε > n0, by Lemma 5.5 we have thatC(gi0,ε) has
finite index inG. ✷
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