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Abstract

In this paper we show using a purely combinatorial argument that a finitely generated infinite
group such thafg (n) < an®, wherea is a constant, admits for eveeya sequencég; .} of non-unit
elements whose centralizer contains more taf < elements of length less thanOf course, the
interest of this result is in the fact that it excludes the possibility that the group is a pure torsion group,
since otherwise the existence of the sequegee} is obvious. As an application of this result, we
show that, in the case where< 3/2, there exists an element whose centralizer has finite indéx in
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Let G be afinitely generated group aida finite generating system. Fgre G define
the E-length ofg as the minimal length of an expressiorgadis a product of elements G
and denote it byz (g). Denote byfx (r) the function that gives the number of elements of
G whose length is less or equal thenWe will say thatG haspolynomial growthf there
exista, s € Ry such thatfg(n) < an’. It can be shown that the polynomiality of growth
does not depend on the choice of the generating system, so that having polynomial growth
is an intrinsic property of a group. This notion was introduced by J. Milnor [4] in order to
study the relationship between curvature and the growth of the volume of the spheresin a
Riemannian manifold. A famous result of M. Gromov [1] states that a group of polynomial
growth contains a subgroup of finite index that is nilpotent.

In this paper we study the relationships between growth and conjugacy. We show using
a combinatorial argument that & is a finitely generated infinite group of polynomial
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growth then, for every and for arbitrarily large:, we can find an elemengte G whose
centralizer grows locally more tham'/2=¢, that is £5%¥(n) > n¥/27¢, If, moreover,
r < 3/2, we will see that there exists an element whose centralizer has finite index.

2. First definitions and lemmas

Throughout this paper we will suppose tltatis a finitely generated infinite group of
polynomial growth, as defined in Section 1, aAda finite generating subset. We will
suppose that we have chosen an ordeFoBy G, we will denote the set of the elements
of G whose length is less than by G, , the set of the elements whose length is greater or
equal thanm and less than, and byV,, . the setG,, x+1)..- As usual, forg € G, g5 will
denote the set of the elements @fof the forms—1gs, with s € S. If H < G, we will
denote byfg(n) the function that gives the number of elementgbfvhoseE-length is
less or equal than. Notice thatH needs not to be finitely generated.

For short, since no confusion can arise from the context, we will adopt the convention
of writing C(g) for Cg(g) (the centralizer of in G), [(g) for lg(g), f(n) for fr(n), and
fH(n) for féq(n). Moreover, by logr) we will mean log(n).

Definition 2.1. SetS = {t e Ry |Ing e N, f(n) < n', Vn > ng}. As, by hypothesis,
S # ¥, we denote by the infimum ofS. We will call it the degree of growth ofy relative
to E.

An immediate property of is the following lemma.

Lemma 2.2. For everye > Owe havef (n) < n" € for sufficiently large: and f (n) > n’ ¢
for infinitely manyn.

Here and in the followings will be positive.
Lemma2.3. Letx, y € G then|l(xy) — [(x)| <I(y).
Proof. Immediate. O
Lemma2.4.LetA C G, andg € G. Then|g?| > |A|/(f€©® (2n)).
Proof. If a,b € A theng?® = g? only if a = bx, with x € C(g) and(x) < 2n, since
x=b"ta. O
3. Intervalsof rapid growth
The conditionf (n) < an® does not say much on the cardinality of the Séts, whose

variation can in principle be very erratic. Nevertheless, we can give an estimate on the set
of the indices such thatV,, ; does not increase or decrease too rapidly W.t—1.
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In the following two sections, we will suppose> 1. In this section, we will suppose
also that is fixed.

Definition 3.1. Let ¢ > 1 andk > 0. We will say that an intervdlz, k] is an increasing
(respectively decreasing}interval if, for everyi in [k, k] we havec < |V, i+1l/|Va.il
(respectively < |V,.i—1]/|Va.il). We will say that it is a maximal increasing or decreasing
interval, if it is maximal w.r.t. this property.

Definition 3.2. SetC = J[4, k], where[k, k] are the maximal increasing 2-intervals. Set
D = [k, k1, where[h, k] are the maximal decreasing 2-intervals. $et (C U D) and
I=N\T.

Lemma3.3. Leti € I. Then|V, iy1|/| Vil < 2and|V, i—1]/|Va.il < 2.

Corollary 3.4. Leti € 1. Then|G -1y, i+2)nl/1Vn,il <5.

Proof. Immediate, by Lemma 3.3, sin€®; 1y, (i+2n = Vi,i—1U Vi UV iq1. O

Lemma 3.5. Let[4, k] be a maximal increasin@fespectively decreasing@-interval. Then
k+ 1€l (respectivelyr —1e I).

Proof. Let [h, k] be increasing. Then 2 |V, i41|/|Vak| and |V il/| Vak+1] < 1/2,
which implies thatk + 1 cannot belong to a decreasing 2-interval. On the other hand,
by the maximality of{A, k], kK + 1 cannot belong to an increasing 2-interval. [letk]

be decreasing. Then<2 |V, 5—1|/Va 1|, which implies that: — 1 does not belong to an

increasing interval. It cannot belong to a decreasing interval either, by the maximality of
[A,k]. O

Lemma 3.6. Let G be infinite. Lete < 1/4. Then, for any integer sequenkg: € N such
thatnl=% <1, . <n'~% one hasf (nl, ) < n? ¢ for sufficiently largen.

Proof. Choose: sufficiently large and, . so thats'=% <1, . <n'=%. For everys > 0,
by Lemma 2.2, we have

F(ly.e) < (nly )" < 0" FpA-200+8) _ 2r+25-2er—2¢s
for sufficiently largen. Sincer > 1, we have
280 — 2er — 280 < — 3¢
for some sufficiently smallg. Then
flnly ) <P 732

for sufficiently largen. O
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Definition 3.7. Setl, . = I N[1,1, ] andT, . =T N[1,1, ]

Lemma 3.8. Lete < 1/8 and letl, . be as in Lemm&.6. There exists a constantsuch
that if [, k] € [1,1,.] is a 2-interval (increasing or decreasingthenk — i < clog(l,.¢).

Proof. Let us suppose th#k, k] is increasing. SincgV,, | > 1, we have
2 L2V < V-

But | V.1l < f(n?) <n%*% wheres is a constant, for sufficiently largg by Lemma 2.2.
Then 2= < p2+2 gnd

k —h < (2r +28)log(n) < % log(n) = clog(n'/?) < clog(n'~%) < clog(ly,e)

for some constant, for € < 1/8 and for sufficiently large, by Lemma 3.6. The proof is
analogousiif, k] is decreasing. O

Lemma 3.9. For everye and for sufficiently large: there exists a constamt such that
132 /(@d10g(ln.e)) < el

Proof. Consider7, .. Suppose that, for sufficiently large, one has|T, | < l,};f.
Then, since, by definition[1,/, ] \ The S Ine, We havel, . — l,}fj < |nel, and
then we have the claim, sindéfj/(c 09(n.e)) <lpne — l,{;e, for sufficiently largen.
Otherwisel,},;€ < |Ty.el. In this case consider that, by Lemma 318, contains at least
l,};f/(c log(l,.¢)) increasing or decreasing 2-intervals. By Lemma 3.5, this implies that

I,  contains at Ieadﬂ-;f/(ZCIog(ln,é)) elements. O

4. Thegrowth of the conjugacy classes
Throughout this section, we will suppose tlaats infinite.

Lemma 4.1. Leti € I, .. Then, there exists a constantsuch that, for sufficiently
large n, for everys € V,, ; there are at IeastrL|G,,/4|2/|V,-,,,|J elementy € G, such that
l(sflps) <n.

Proof. Consider the functiorf; : G,/a x Guja = Gi-1)n,i+2)» defined by fi(x, y) =
xsy. (By Lemma 2.3, ifs € V,,; andx, y € G,/4 thenxsy € G_1n, i+2)s.) There is at
least one elememt € f (G, 4 x G,/4) such that

2 2 2 2
|7 m)| > { |Gpyal J > L |Gpyal J > {} |Gpyal J > {IGnMI J
| f(Grjax Gpya)l |G (i —yn, (i+D)nl 5 Vil [Vi,il
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wherec is a constant. Define the skf, as
Ly ={g€Gna| fs(g. hg) =m, for someh, € G,/a}.

Let (x, hy) € f;,1(m) and consider the sdt,x. Since, for every fixedyo, the function
fs(x0,y) is injective, we haveL,,| = |f,1(m)|, and then|L, x| = | f71(m)|. Let us
show that, fors € V,,; and p € L;,%x, we havel(s~1ps) < n. Sincep € L;x, then
there existg,, hg, € Gn/a such thatp = g;lx andgpshg, = xshy. By this relation, we
havel(s~'ps) = I(s~tg, xs) = I(hg,h 1) < n sincehy, hy € G,ya. Finally, note that
L, x C G, sincex, g, € G,,4. This proves the claim. O

Coroallary 4.2. Denote byP, ; the set of the pairgx, y) € G, x V,; such thatc” € G,,.
Then| P, i| = ¢|Gpyal? — c|Vy.i| for sufficiently largen.

Proof. By Lemma 4.1 we haveP, ;| > cLlG,,/4|2/|V,,,,»|J|Vn,,-|, and, since|x/y| >
x/y —1,we have P, ;| > c|Gual> = c|Vuil. O

Lemma4.3. Lete < 1. SetPf =
that| P, | > nZ "¢

i€l /16 P,.i. Then there exists a sequenieg.} such

Proof. For short, we set’ = ¢/16. For any fixedn, the setsP,; are disjoint, then
|Psl =3 ic; , |Puil. The sets/, ; are disjoint too, then

= > Vail < f(nlye)

‘ U Vn,i

[Eln,e’ [Eln,e’
sinceUielnve/ Vi C Gnln,é,. Then, by Lemma 3.6 and Corollary 4.2:
1Pl = D 1Puil=c Y (IGujal® = Vail) =clli||Gupal> —c Y Vil

i€l, o i€l, o iel, o

WV

2 2 2r—e’
Clln,e/”Gn/4| - Cf(nln,e’) > Clln,e/”Gn/4| —cn ¢

e l1Gjal® — cn® /18,
Sincee < 1 and there’ < 1/2, by Lemmas 3.9 and 3.6 we have:

Clngg/ 1-4¢
dlog(l,.e) dlog(nl—2¢)
1 1—4¢’ 1—4¢’

_ cn Gpa2 > cn
~ 1_2¢dlogin) " 7 dlog(n)

e||Gnyal® > |G nyal? > |Gnyal?

|G nyal?.
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Now, let {n; .} be a sequence such thén; . /4) > n’ _ 5/8 , Which exists by Lemma 2.2.
We have:
1-4¢ A 2r+1—¢/2
i G2 cn; 14 J2—e/a_ i | 2r+1-3¢/4
dlognie) """ 7 dlog(ni.c) Mie dlog(n; ) = €

for sufficiently largen; .. Then

2r+1-3¢/4 — —
|P€| >n + 14 _ o2 6/16>ni2r€+1 €

i€

again, for sufficiently large:; .. Then, up to eliminating a finite number of elements of
{n; <} and renumbering it, we have the claimo

Lemma 4.4. For every ¢, there exist two sequencdg;.} and {m;.} such that
fEEO2m2 ) > miE.

Proof. Again for short we set’ =¢/2. LetP;{’E, andn; - be asin Lemma4.3. NowP¢’

’I’l e
can be regarded as a subseGaf , x U Va.i, SO that we can define an equwalence

ie,n,e//lﬁ
relation onPfl ,as(x,y) = (x',y) & x =x'. There are obviously at moKE,, | classes

on P,f o then there is an equivalence class with more thB,ﬁ |/|G,, | elements.
Let (g, e hic) be a representatlve of this class. Therefore theBsei {x c Gy, oy 1t |
g € Gy, _,} has more thanhP,f_ 1/1Gy, | elements. Now

| P

B> wl o re1-gesa

TG, | T
since, by applying Lemma 4.3, we hayg¢ | > nl.zrjl’e/z and |G, | < n T by
Lemma 2.2, for sufficiently large:; ... Now, sinceg,f , € Gie, we have|gn_ <
G, /| < nlr.;“f/“, for sufficiently larger; ... Then, by Lemma 2.4, we ha\fé(g)(ane,) >

|B|/|gffl_€,| > nl.lj, for sufficiently largen; .. Then we have the claim by setting
mi e =ﬁi’€/. O

Now we can give the result on the centralizers.

Lemma 4.5. Let G be a finitely generated group of polynomial growth. Suppose that there
exists a finite generating subsegtsuch that the degree of growth 6f relative to E is
greater or equal tharl. Then, for every, there exist a sequenc{gl ¢}, gie € G,and an

increasing sequenda; .}, n; € N, such thatf €& (n; ) > nl/

Proof. Considerg; . andn; = 2m2 , wherem; . andg; . are as in Lemma 4.4. We have

fc(g“)(n )>nl e_(zn )(1 5)/2> 1/2 € 1/2— €

, for sufficiently Iargen O
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This, together with the characterization of the case whetel (see [3,5] or [2]), gives
a combinatorial proof of the following result.

Theorem 4.6. Let G be afinitely generated groug, a finite generating subset aads two
positive constants such thgg (n) < an®. Then, for every, there exist a sequendg; },

gi.c € G, and an increasing sequenfe .}, n; € N, such thatf €& (n; () > nl/2=e

i,€

5. Thegrowth of the subgroups

In this section, we apply Theorem 4.6 to the case of a group having a degree of growth
relative to a finite generating subsetwhich is less than 2. In order to do it, we give a
result based on a local condition on the growth of the subgroups of a group of polynomial
growth.

Definition 5.1. As usual, denote b¥* the set of the finite sequences of symbols of the
set E and denote byw| the length ofw € E*. Let H be a subgroup of; andG/H be
the set of its right cosets. Let denatg : G/H — E* the map which associates to a coset
x the elementw € E* affording its minimal representative i@ w.r.t. the length and the
lexicographic orde g induced by the order or. We will say thatw is the minimal
representative of. For short, we will also say that is minimal and thatw| is the length

of x.

Lemma5.2. The setp(G/H) is closed under taking prefixes.

Proof. Let x € G/H and let®y (x) = ey, ---e,,, With €, ..., e,, € E be its minimal
representative. The claim is equivalent to saying thatg i¢ 1, thene,,---e,, , iS
minimal. In orderto show it, let,,, - - - e;, , be the minimal representative tfe,, - - - e, ;.
We have thatz — 1 < o’ since otherwiser,,,, -+ -em, en, Would be a representative of
x of length at mosta — 1. On the other handy’ < a — 1 sincee,,---e,, , IS a
representative i e,, - - - en,_, oflengtha —1 ande, - - - ey, , is minimal. Themt/' =a—1.
Now, ey, ---en, andem, ---enm e, belong to the same right coset by the definition
of e, ---em, and by the above they have both length Then, sincee,, ---e,, is
minimal, e,, - --en, <E €my - €m, en, aNd thene,, ---en,_; <g emy - -em,. Again, by
the definition ofey,, - - - e, , we have that,, - --e,,_, andey,, - - -en, belong to the same
right coset. Then, since,, ---¢e,, , has lengtha’ and it is less or equal te,,, - - “em,,
w.r.t. the lexicographic order, and sineg, cem, is minimal, we havee,, cem, =
€ny€n,_q- O

Lemma 5.3. If H has infinite index inG, then for everyn there exists an element of
¢ (G/H) of lengthn.

Proof. Since¢y(G/H) C E* is injective, then, sincéG : H] is infinite, we can find
an increasing sequenge;}, i,n € N, such that for every € N there existsy; € G/H
of lengthn;. Now, defineP C E* as the set of the prefixes of the elemepis(x;). By
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Lemma 5.2, we hav® C ¢y (G/H). Moreover, for every € N, and for everyk € [1,i],
¢u (x;) has a prefix of lengtk. Then the se¢;,1(P) yields the claim. O

The Splitting Lemma in [1, p. 59] can be stated as follows.

Lemma5.4. Leta,r, s € Ry be such thatfg(n) <an”, s >r — 1, and letH be a finitely
generated subgroup @. Then, if f¥ (n) > n*, Vn € N, H has finite index irG.

The following is a local version of the Splitting Lemma, in whighis not necessarily
finitely generated.

Lemma 55. Let a,r, s € Ry be such thatfg(n) < an”, s > r — 1. FiX ng such that
nd T > a2". Then, ifH < G is such thatf (n) > n®, Vn < no, H has finite index
inG.

Proof. We argue by contradiction and assume tlfathas infinite index. Then by
Lemma 5.3G,, contains:g representatives of distinct right cosetstdf Let denote them

81, ---,8ngp- Now,

ng

U Hnogi

i=1

1
=no|Hyyl| > n6+ .

But

ng

U Hnogi c G2no-
i=1

Then we haveszrl < |Gangl < a2'ng, contradicting the assumption @g. O

Now we can show the main result of this section.

Theorem 5.6. Let G be a finitely generated group anfd a finite generating subset such
that fg(n) <an”, withr < 3/2. Then there existg € G such thafG : C(g)] < oco.

Proof. Let ¢’ be such thatfz (n) < an®27¢. Lete < ¢ and letng be as in Lemma 5.5,
wherer =3/2—¢"ands = 1/2—e¢. Letthe sequencds; }, gi.c € G, and{n; ¢}, nic €N,
be as in Theorem 4.6 and I&f be such that;, . > ng. Now, by Theorem 4.6, we have

FEG0) (ny, o) > nllo/i’e Then, sincer;, ¢ > no, by Lemma 5.5 we have that(g;, c) has
finite indexinG. O
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