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Let A be an associative ring with identity, K(Flat A) the homotopy
category of flat modules and Kp(Flat A) the full subcategory of pure
complexes. The quotient category K(Flat A)/Kp(Flat A), called here
the pure derived category of flats, was introduced by Neeman.
In this category flat resolutions are unique up to homotopy and
so can be used to compute cohomology. We develop theories
of Tate and complete cohomology in the pure derived category
of flats. These theories extend naturally to sheaves over semi-
separated noetherian schemes, where there are not always enough
projectives, but we do have enough flats. As applications we
characterize rings with finite sfli and schemes which are locally
Gorenstein.
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1. Introduction

There is a long history of studying algebraic structures using homological methods. The particular
cohomology theories of interest to us in this paper are Tate cohomology and complete cohomology,
which have been developed by many people, see for example [Fa77,B86,BC92,Goi92,Mi94,N98]. These
theories have also been studied in the context of representation theory of algebras, see [B86,Kra05,
Ch08,Be09].

As is typical in homological algebra, these theories are developed using projective and/or injective
objects, in order to have some kind of lifting property and hence uniqueness of resolutions up to
homotopy. Although in many situations it is more natural to work with flat modules rather than pro-
jectives, at first it seems futile to build a cohomology theory out of flats, since flat resolutions are not
unique up to homotopy. One approach is to work with a more rigid kind of flat resolution, possibly
due to a series of papers by Enochs and his collaborators proving that the flat modules form a cover-
ing class [E84,EGR98,BEE01]. A natural advantage of building a cohomology theory out of flat modules
is that it can be more naturally extended to the setting of quasi-coherent sheaves on schemes, where
there are very few projectives [EE05,EEGO04]. In this paper we define Tate cohomology and complete
cohomology for both rings and schemes using flat modules; the technical formalism making this pos-
sible is the pure derived category of flat modules. We would like to point out that even the reader
who does not care about these particular cohomology theories may find some of our techniques in-
volving cotorsion modules interesting, as we expect that these techniques may be helpful in applying
the setting of the pure derived category to other problems.

Let A be an associative ring with identity, and let all modules be left modules. In his study of
the homotopy category K(Proj A) of projective A-modules as a subcategory of the homotopy category
K(Flat A) of flat modules, Neeman discovered an interesting equivalence [Nee08, §8]

K(Proj A) → K(Flat A) → K(Flat A)

Kp(Flat A)

of triangulated categories. Here Kp(Flat A) denotes the full subcategory of K(Flat A) consisting of pure
complexes, those complexes that remain exact after tensoring with any Aop-module. As a consequence
of this equivalence flat resolutions are unique in the quotient category K(Flat A)/Kp(Flat A), which we
call the pure derived category of flat modules and denote D(Flat A). This uniqueness provides us with
the setting for defining our theories of Tate and complete cohomology.

The origin of the notion of totally acyclic complexes goes back to the 1950s, when Tate discovered
that the trivial ZG-module Z, when G is a finite group, can be considered as a syzygy of an acyclic
complex T of projective ZG-modules. This complex T has the property that it remains exact after
applying the functor HomZG( ,ZG). Such a complex is actually unique up to homotopy, and can
therefore be used to define a cohomology theory, now known as Tate cohomology.

To generalize the theory to any group, Mislin [Mi94], Benson and Carlson [BC92] and Vogel [Goi92]
independently developed a cohomology theory now known as complete cohomology, see 4.10 below
for the history of the theory. In full generality, a totally acyclic complex of projective A-modules is an
acyclic complex of projective modules which is exact with respect to the functor HomA( , P ), for any
projective A-module P . Let Ktac(Proj A) denote the full subcategory of K(Proj A) consisting of totally
acyclic complexes. A complete projective resolution of a complex M of A-modules is a totally acyclic
complex T together with a morphism ν : T → P M , where P M is a projective resolution of M , such
that ν i is bijective for all i � 0.

Once we have a complete resolution for M , we can compute Tate cohomology. The existence of
a complete projective resolution for M is known in a few cases. For example, in case the Gorenstein
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projective dimension of M is finite, such resolutions exist. Also it is shown in [Jor07] that, when the
inclusion functor I : Ktac(Proj A) → K(Proj A) has a right adjoint Iρ , for any A-module M the map
Iρ(P M) → P M can be considered as the best approximation to M by a complete projective resolution,
in the sense that when M admits a complete resolution T → P M , then Iρ(P M) ∼= T in K(Proj A). This,
together with [Jor05], are important results in the direction of obtaining Krause’s results in [Kra05]
for projectives instead of injectives (at least over rings). A natural question arises: is it possible to
find a variation of these theories in the category of flats? Our answer in the affirmative is given in
Section 4.

The paper is structured as follows: In Section 2 we collect the definitions and results that we need
throughout the paper, including the basic properties of the pure derived category of flat modules.

In Section 3, we study the notion of total acyclicity in the category D(Flat A), which we call F-total
acyclicity. We define finiteness of an F-Gorenstein flat dimension for any complex. We show that the
F-Gorenstein flat dimension of a homologically bounded below complex X is finite if and only if one
of the syzygies of a flat resolution of X is a syzygy of an F-totally acyclic complex. Examples are
provided in which F-totally acyclic complexes exist and/or the F-Gorenstein flat dimension is finite.

Section 4 is devoted to the study of F-Tate cohomology. We establish several properties of this
theory, discuss its connection with the previous notions of Tate cohomology, investigate the rigidity
of the theory and show that its vanishing characterizes the flat dimension of complexes.

To any pair of complexes of flat modules X and Y we assign a subcomplex of the Hom com-
plex consisting of homotopically bounded below morphisms using which we introduce a complete
cohomology theory in D(Flat A). Section 5 contains our main results on this theory. Under certain
circumstances it is compatible with the F-Tate cohomology groups. Moreover, its vanishing character-
izes the flat dimension of complexes. As an application of our results for (non-commutative) rings we
provide a characterization of rings with finite sfli, where sfli is the supremum of the flat dimension
of injective modules. This invariant has connections with other (co)homological invariants of groups.

In Section 6, we explain how one can get a satisfactory version of Tate cohomology in the category
of quasi-coherent sheaves over a semi-separated noetherian scheme X . In particular, this theory can
be used to characterize locally Gorenstein schemes.

2. Preliminaries

In this paper A denotes an associative ring with identity and by default all modules are left
A-modules. If we say that X is a complex, we mean that it is a complex of A-modules, that is, a se-
quence of (left) A-modules Xi and A-linear maps ∂ i

X : Xi → Xi+1, i ∈ Z, such that ∂∂ = 0. Modules
are viewed as complexes concentrated in degree zero. For any integer i, Σ i X denotes the complex X
shifted i degrees to the left. For any complex X by the (left) soft truncation of X at n, denoted X�n ,
we mean the complex · · · → Xn−2 → Xn−1 → Ker∂n−1

X → 0. By the (left) hard truncation of X at n,
denoted h X�n , we mean the complex · · · → Xn−2 → Xn−1 → Xn → 0. Right truncations, X�n and
h X�n are defined similarly. We define inf(X) to be the infimum of all integers � such that H�(X) �= 0,
with inf(X) = ∞ if X is homologically trivial, and −∞ if X is not homologically bounded below. The
category of A-complexes and chain maps is denoted by C(A).

The homotopy category K(A) has as objects the complexes in A and the morphisms are the ho-
motopy equivalences of morphisms in C(A). Let X be a class of A-modules. We denote by K(X ) the
homotopy category of complexes over X , which is a triangulated subcategory of K(A).

2.1. Orthogonality. Let S be a triangulated subcategory of T . The left and right orthogonal of S in T
are defined, respectively, by

⊥S = {
X ∈ T

∣∣ HomT (X, S) = 0, for all S ∈ S
}
,

S ⊥ = {
X ∈ T

∣∣ HomT (S, X) = 0, for all S ∈ S
}
.

2.2. Localization sequences. Let S be a localizing subcategory of T , that is, S is a triangulated
subcategory of T and is closed under arbitrary small coproducts. It is a standard fact in the theory of
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Bousfield localization (see e.g. [Nee01, Theorem 9.1.13]) that the inclusion S → T has a right adjoint
if and only if for any object X in T , there exists a triangle X ′ → X → X ′′ � in T with X ′ ∈ S and
X ′′ ∈ S ⊥ . This triangle is unique up to isomorphism and the right adjoint of S → T maps X to X ′ . In
the language of Verdier [Ver96, §II.2] the above situation can be stated by saying that S → T → T /S
is a localization sequence.

2.3. Resolution of complexes. Following Spaltenstein [Sp88], a complex P of A-modules is called
K-projective if the functor HomA(P , ) preserves acyclicity of complexes. It is well known that any
bounded above complex of projectives is K-projective. A K-projective resolution of a complex X is
a quasi-isomorphism P → X , with P K-projective. If, moreover, P is a complex of projectives, then
the resolution P is called a projective resolution of X . K-injective complexes, K-injective resolutions and
injective resolutions are defined similarly. Such resolutions exist thanks to [Sp88]. Projective (resp.
injective) resolutions are called semiprojective (resp. semiinjective) by Avramov et al., see [AFH03].

A complex F is called K-flat if the functor −⊗A F preserves acyclicity. Any bounded above complex
of flat modules is K-flat. Moreover, the class of K-flat complexes form a localizing subcategory of K(A),
that is closed under direct limits and homotopy colimits. A quasi-isomorphism F → X , with F K-flat,
is called a K-flat resolution of a complex X . The existence of K-flat resolutions for any complex is guar-
anteed by [Sp88, §5]. By a flat resolution of a complex we mean a K-flat resolution by flat modules;
these resolutions are also called semiflat resolutions [AFH03].

2.4. Proper flat resolution. Let M be an A-module. A flat resolution

· · · → F −2 ∂−2−−→ F −1 ∂−1−−→ F 0 ∂0−→ 0

of M is called proper if for any i � 0, F i → Im ∂ i is a flat precover. It is easy to see that a flat
resolution of M is proper if and only if it remains exact after applying the functor HomA(F , ), for any
flat module F . It is known that the class of flat modules is (pre)covering and hence any A-module M
admits a proper flat resolution, see [BEE01].

2.1. Pure derived category of flats

A complex X of A-modules is called pure if for any right A-module M , the tensored complex
M ⊗A X is acyclic. Clearly, a pure complex is acyclic. Let Kp(Flat A) denote the homotopy category
of all pure complexes of flat modules. It is a triangulated subcategory of K(Flat A). It is proved by
Neeman [Nee08, Theorem 8.6, Corollary 9.4] that the objects of Kp(Flat A) are acyclic complexes with
flat kernels, or equivalently, acyclic K-flat complexes. Moreover, by [Nee08, Theorem 8.6], Kp(Flat A) is
the right orthogonal of K(Proj A) in K(Flat A), that is, Kp(Flat A) = K(Proj A)⊥ . He also establishes the
existence of a recollement

Kp(Flat A) K(Flat A) K(Proj A),

which implies the following equivalence

K(Proj A)
in−→ K(Flat A)

can−−→ K(Flat A)

Kp(Flat A)

of triangulated categories. We denote the quotient K(Flat A)/Kp(Flat A) by D(Flat A), and refer to it as
‘pure derived category of flat modules’. It is a triangulated category with coproducts.

2.1.1. The above recollement, in particular, implies that the inclusion j : K(Proj A) → K(Flat A) has
a right adjoint jρ : K(Flat A) → K(Proj A), see [Nee08, Proposition 8.1]. This means that any complex F
in K(Flat A) fits into a triangle P → F → L �, in which P ∈ K(Proj A) and L ∈ K(Proj A)⊥ = Kp(Flat A).
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Therefore F is isomorphic to P in D(Flat A), as L belongs to Kp(Flat A). So any complex of flats can
be replaced in D(Flat A) by a complex of projectives.

Remark 2.1.2. (1) Note that Kp(Flat A) and K(Flat A) can be generalized to schemes. This is one of
the most advantages features of working in D(Flat A) rather than K(Proj A). In view of this fact,
Murfet [Mu07] studied the homotopy category K(Flat X)/Kp(Flat X), in which X is a noetherian
semi-separated scheme. He called this quotient, the mock homotopy category of projectives, de-
noted Km(Proj X).

(2) Let Q : K(Flat A) → D(Flat A) = K(Flat A)/Kp(Flat A) be the Verdier quotient. Clearly the canoni-
cal functor K(Flat A) → D(A) vanishes on the objects of Kp(Flat A) and so there exists a unique functor
U : D(Flat A) → D(A), completing the diagram

K(Flat A)
Q

D(Flat A)

U

D(A).

The kernel of U is the full subcategory of D(Flat A) consisting of acyclic complexes. We denote it
by Dac(Flat A). By [Mu07, Theorem 5.5], the sequence

Dac(Flat A)
inc−→ D(Flat A) → D(A)

induces a recollement

Dac(Flat A) D(Flat A) D(A).

In particular, the functor U has a left adjoint Uλ : D(A) → D(Flat A) that, by [Mu07, Remark 5.9(iii)],
takes flat resolutions. That is, for a complex X , Uλ(X) is isomorphic to a flat resolution of X in
D(Flat A).

(3) In D(Flat A) flat resolutions are unique up to isomorphism and are functorial, [Mu07, Re-
mark 3.7]. So, in particular, they can be used to define cohomology. This is another advantage of
working in D(Flat A) rather than K(Flat A), where flat resolutions are not unique.

(4) The class of pure complexes was first introduced and studied in [EGR98], where these
complexes were called flat. Some characterizations of such complexes are given in [EGR98, Theo-
rem 2.4].

(5) Let P and C be complexes in K(Flat A). Using the formalism of localization functors, it is easy
to see [Nee01, Lemma 9.1.5] that the canonical map

HomK(Flat A)(P , C) → HomD(Flat A)(P , C),

is an isomorphism if either P is a complex of projectives or C is a bounded below complex of co-
torsion flat A-modules. Recall that an A-module C is called cotorsion if Ext1

A(F , C) = 0, for all flat
A-modules F . Throughout the paper, we shall use this fact without any further mention. The class of
all cotorsion flat modules will be denoted by Cof A.

3. Total acyclicity and homological dimensions

In this section, using a notion of total acyclicity in the pure derived category of flats, we intro-
duce the class of F-Gorenstein flat modules and an associated homological dimension. We compare
this dimension with other related dimensions and show (Theorem 3.15) that this dimension can be
computed using certain flat resolutions. Finally, we present some explicit examples.
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3.1. Totally acyclic complexes. A complex P of projectives is called totally acyclic if it is acyclic and re-
mains acyclic after applying the functor HomA( , Q ), for any projective module Q . We let Ktac(Proj A)

denotes the full subcategory of K(Proj A) consisting of totally acyclic complexes of projectives. So

Ktac(Proj A) = Kac(Proj A) ∩ ⊥(Proj A),

where the orthogonal is taken in K(Proj A). An A-module G is called Gorenstein projective if it is
a syzygy of a totally acyclic complex of projectives, see [EJ95].

3.2. F-totally acyclic complexes. A complex F of flat modules is called F-totally acyclic if it belongs to

Dac(Flat A) ∩ ⊥(Flat A),

where the orthogonal is taken in D(Flat A). The full subcategory of D(Flat A) consisting of F-totally
acyclic complexes is denoted by Dtac(Flat A). An A-module G is called F-Gorenstein flat if it is a syzygy
of an F-totally acyclic complex.

Clearly, any flat module is F-Gorenstein flat. In Example 3.1.3, we present an example of an
F-Gorenstein flat module which is neither of finite flat dimension nor of finite Gorenstein projective
dimension.

Remark 3.3. (1) Let us remind the notion of Gorenstein flat modules, see [EJ00]. A complete flat
resolution of modules is an exact sequence of flat R-modules

F• = · · · → Fi+1 → Fi → Fi−1 → ·· ·
such that E ⊗R F• is exact for any injective right R-module E . An R-module M is called Gorenstein
flat if it is a syzygy of a complete flat resolution, i.e. it has the form M = Ker(Fi → Fi−1) for some
integer i. It is clear that every flat R-module is Gorenstein flat.

(2) The name ‘F-totally acyclic’ has been used in a recent joint paper of the second and Daniel
Murfet. They work over a commutative noetherian ring and have used this name for acyclic complexes
of flat modules that remain acyclic after applying the functor I ⊗A −, for any injective A-module I
[MS09, Definition 4.1]. Theorem 4.18 of [MS09] shows that over noetherian rings both definitions are
the same. Hence our choice of nomenclature is compatible with the name used there.

Definition 3.4. Let X be a complex and let P X (resp. F X ) be a projective (resp. flat) resolution of X .

(1) A complete projective resolution of X is a triangle

T X → P X → Z X �

in K(Proj A), such that T X ∈ Ktac(Proj A) and Z X ∈ Ktac(Proj A)⊥ . If furthermore X is homologically
bounded below, we say that the Gorenstein projective dimension of X is less than or equal to n,
a fixed integer, denoted GpdA X � n, if −n � inf X and for all i < −n, Coker∂ i

Z X
is projective. If no

integer n exists with GpdA X � n, then we define GpdA X = ∞.

(2) An F-complete flat resolution of X is a triangle

T X → F X → Z X �

in D(Flat A), such that T X ∈ Dtac(Flat A) and Z X ∈ Dtac(Flat A)⊥ . If furthermore X is homologically
bounded below, we say that the F-Gorenstein flat dimension of X is less than or equal to n,
a fixed integer, denoted F-GfdA X � n, if −n � inf X and for all i < −n, Coker ∂ i

Z X
is flat. If no

integer n exists with F-GfdA X � n, then we define F-GfdA X = ∞.
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It is easy to see that the notion GpdA X < n, for a complex X , is well defined. Our next proposition
guarantees that for X the notion F-GfdA X < n also makes sense. We preface the proposition with
a well-known lemma.

Lemma 3.5. Let F be a homologically bounded below complex of flats and n be a fixed integer with n � inf F .
Then Ker∂ i

F is flat for all i < n if and only if Hi HomA(N, F ) = 0, for all i < n and all finitely presented
A-modules N.

Proof. Both directions follow immediately by applying Cohen’s Theorem, see e.g. [R09, Lem-
ma 3.70]. �
Proposition 3.6. Consider the triangle F → F ′ → F ′′ � in D(Flat A) of homologically bounded below com-
plexes and let n be an integer with n � min{inf F , inf F ′, inf F ′′}. Assume that any two of F , F ′ and F ′′ have
flat kernels in degrees less than n. Then so has the complex.

Proof. We assume that F and F ′′ have flat kernels in degrees less than n and show that F ′ also has
this property. By 2.1.1, there exist triangles

P → F → E �, P ′ → F ′ → E ′ � and P ′′ → F ′′ → E ′′ �

in K(Flat A) such that P , P ′ and P ′′ are complexes of projectives and E , E ′ and E ′′ are acyclic com-
plexes with flat kernels. Lemma 3.5 implies that P and P ′′ also have flat kernels in degrees less
than n. Now consider the diagram

P P ′ P ′′

F F ′ F ′′

E E ′ E ′′

of triangles. Applying Lemma 3.5 to the triangle in the first row, we learn that the modules Ker ∂ i
P ′

are flat for i < n. Another application of Lemma 3.5, this time to the second column, completes the
proof. �
Remark 3.7. There is a notion of Gorenstein projective dimension for complexes introduced by Veliche.
By [V06, 3.1], a complex X is of finite Gorenstein projective dimension if there exists a totally acyclic
complex T X of projectives and a morphism ν : T X → P X such that ν i : T i

X → P i
X is bijective for all

i � 0, where P X is a projective resolution of X . In this case, ν : T X → P X is called a complete projec-
tive resolution of X . She showed that the Gorenstein projective dimension of X is finite if and only if
X admits a complete projective resolution.

Now assume that X is a complex of finite Gorenstein projective dimension in the sense of Veliche.
By taking the mapping cone of ν , we get the triangle T X → P X → Z X � such that Z X is a bounded
below complex of projectives. So Z X ∈ Ktac(Proj A)⊥ . Therefore, X is of finite Gorenstein projective
dimension in our sense; see [Jor07, Lemma 3.6]. But, as we will see, for a complex X it may happen
that the complete projective resolution in our sense exists, without any assumption on the finiteness
of the Gorenstein projective dimension of X .

Proposition 3.8. In D(Flat A), any F-complete flat resolution of a complex X is isomorphic to an F-complete
flat resolution whose terms are all projectives.
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Proof. Let T X → F X → Z X � be an F-complete flat resolution of X . In the notation of 2.1.1, we have
a diagram

j jρ(T X )

ξT X

j jρ(F X )

ξF X

j jρ(Z X )

ξZ X

T X F X Z X

in which ξ : j jρ → id is the adjunction morphism. But the mapping cones of ξT X , ξF X and ξZ X are all
in Kp(Flat A). Therefore both triangles are isomorphic in D(Flat A). �
Proposition 3.9. Consider an exact triangle X ′ → X → X ′′ � in D(A). If any two of the complexes X ′ , X
and X ′′ admit F-complete flat resolutions, then so does the third.

Proof. This follows by a standard argument in the theory of Bousfield localization. It is enough to con-
sider the case where both X ′ and X have F-complete flat resolutions. So we have triangles in D(Flat A)

T X ′ → F X ′ → Z X ′ � and T X → F X → Z X �

in which T X ′ , T X ∈ Dtac(Flat A) and Z X ′ , Z X ∈ Dtac(Flat A)⊥ . Since Z X ∈ Dtac(Flat A)⊥ , we may deduce
that there exists a morphism T X ′ → T X

T X ′ F X ′ Z X ′

T X F X Z X

that commutes the square on the left. We complete it to a morphism of triangles

T X ′ F X ′ Z X ′

T X F X Z X .

But the mapping cone of T X ′ → T X belongs to Dtac(Flat A) and the diagram

T X ′ F X ′ Z X ′

T X F X Z X

T X ′′ F X ′′ Z X ′′

implies that Z X ′′ ∈ Dtac(Flat A)⊥ . Hence X ′′ also admits an F-complete flat resolution. �
In view of Proposition 3.6 and the functoriality of flat resolutions this implies:

Corollary 3.10. Let X ′ → X → X ′′ � be an exact triangle in D(A). If any two of the complexes X ′ , X and X ′′
have finite F-Gorenstein flat dimension, then so does the third.
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Towards the end of this section we prove that finiteness of F-Gorenstein flat dimension can be
determined via a flat resolution, see Theorem 3.15 below. To this end, we need some lemmas and
propositions.

Lemma 3.11. Let F be a homologically bounded below complex of flats and t be an integer with t � inf F . Set
K i = Ker∂ i

F . Let n < t − 1 and G ε−→ K n+1 be a proper flat resolution of K n+1 which is constructed by taking
flat covers and kernels, repeatedly. Let F ′ denote the complex

· · · → G−2 ∂−2
G−−→ G−1 ∂−1

G−−→ G0 ιε−→ F n+1 ∂n+1
F−−−→ F n+2 → ·· · ,

where ι : K n+1 → F n+1 is the inclusion. Then F ′ ∼= F in D(Flat A).

Proof. Since G is a proper flat resolution of K n+1, there is a morphism ϕ : h F�n → G , lifting the
identity morphism on K n+1. So we get a morphism of complexes

· · · F n−3

ϕn−3

F n−2

ϕn−2

F n−1

ϕn−1

F n

ϕn

F n+1 F n+2 · · ·

· · · G−3 G−2 G−1 G0 F n+1 F n+2 · · · .

It is easy to see that its mapping cone is obtained by pasting the mapping cones of the following two
diagrams

· · · F n−3

ϕn−3

F n−2

ϕn−2

F n−1

ϕn−1

F n

ϕn

0

· · · G−3 G−2 G−1 G0 0

and

0 G0 F n+1 F n+2 · · ·

0 G0 F n+1 F n+2 · · · .

The mapping cone of the first diagram is pure because both rows are flat resolutions of K n+1. More-
over, it is easy to see that the mapping cone of the second diagram is pure exact. Therefore the
mapping cone of the main diagram is pure and so belongs to Kp(Flat A). This means that considering
in D(Flat A), F ′ is isomorphic to F . �

Recall that the kernel of a flat cover is cotorsion, and so it follows from the lemma that for any
homologically bounded below complex F in D(Flat A) and any integer t � inf F , we may assume
that F i and also Ker∂ i

F , for all i < t − 2, are cotorsion. We use this fact in the proof of the next
proposition.

Definition 3.12. Two modules L and K are called flat equivalent if there exist flat modules F and F ′
such that L ⊕ F ∼= K ⊕ F ′ .

Proposition 3.13. Let F
f−→ G

g−→ E � be a triangle in D(Flat A) in which F and G are homologically bounded

below and E has flat kernels in degrees small enough. Then there exists a triangle F ′ f ′−→ G ′ g′−→ E ′ � which is
isomorphic to the above triangle in D(Flat A) such that Ker∂ i

F ′ and Ker ∂ i
G ′ are flat equivalent, for all i � 0.
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Proof. Without loss of generality, we may assume that F is a complex of projectives and that f is
a chain map. Let t � inf G . The above lemma allows us to replace G with a complex G ′ such that
Ker ∂ i

G ′ is cotorsion, for all i < t − 2. Let f1 be the composition of f with the map G → G ′ of the
lemma, and let E1 be the mapping cone of f1. In the following commutative diagram π denotes the
truncation map, and E2 the mapping cone of π f1 (on the level of chain maps)

F
f1

G ′

π

E1

F
π f1

hG ′
�t−3 E2 .

In view of the fact that Ker∂ i
E1

is flat in small degrees, we may deduce that Ker∂ i
E2

is flat for all
i � 0.

We claim that hG ′
�t−3 belongs to Kp(Flat A)⊥ . To see this, consider the complex

G ′′ : · · · → Gt−5 → Gt−4 ∂t−4−−→ Gt−3 → Coker ∂t−4 → 0,

which is an acyclic complex of cotorsion modules with cotorsion kernels. It is clear that for any
complex B ∈ Kp(Flat A), HomK(A)(B,Coker∂t−4) and HomK(A)(B, G ′′) both vanish. So one can deduce
the claim from the associated triangle.

Up to isomorphism in D(Flat A), F can be replaced by a complex F ′ whose kernels in small degrees
are cotorsion. Moreover the composite F ′ ∼= F → hG ′

�t−3 in D(Flat A) can, by the observations we have
just made, be represented by a chain map. Hence we get a triangle

F ′ → hG ′
�t−3 → E3 �,

in which Ker∂ i
E3

is flat for all i � 0.

Now choose an integer s small enough that both F ′
�s and G ′

�s are acyclic, F ′ i , G ′ i and L′ i = Ker ∂ i
F ′

are cotorsion for i < s and Ker∂ i
E3

is flat for all i < s. Consider the diagram (with K ′ i = Ker ∂ i
G ′ )

0 L′ i F ′ i F ′ i+1 · · ·

0 K ′ i G ′ i G ′ i+1 · · ·

where i < s − 1, to get the mapping cone sequence

0 → L′ i → F ′ i ⊕ K ′ i → F ′ i+1 ⊕ G ′ i ϕ i−→ · · · .
This gives us the short exact sequence 0 → L′ i → F ′ i ⊕ K ′ i → Kerϕ i → 0, which is split, because L′ i

is cotorsion and Kerϕ i , which is a kernel of E3, is flat. So L′ i and K ′ i are flat equivalent.

Finally, note that the triangle F ′ f ′−−→ G ′ g′−−→ E ′ � is isomorphic to the first triangle and the previ-
ous paragraph, implies that the syzygies of F ′ and G ′ , in small degrees are flat equivalent. �
Lemma 3.14. Assume that X ⊕ F is F-Gorenstein flat, where F is a flat module. Then X is F-Gorenstein flat.

Proof. Let T be an F-totally acyclic complex with syzygy X ⊕ F . So there exists an exact sequence

0 → X ⊕ F → T 0 → T 1 → T 2 → T 3 → ·· ·
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which is HomA( , G)-exact, for any cotorsion flat module G . Now let

0 → F → C0 → C1 → C2 → C3 → ·· ·

be a resolution of F by cotorsion modules which is constructed step by step using cotorsion preen-
velopes of cokernels in the usual way. Note that C i , for i � 0, is flat and cotorsion; see [ET01,
Theorem 10] and [BEE01] for the construction of this resolution. Consider the diagram

0 X ⊕ F T 0 T 1 T 2 · · ·

0 F C0 C1 C2 · · · .

The vertical maps exist because the upper row is HomA( ,Cof A)-exact. Clearly the mapping cone of
this diagram

0 → X ⊕ F → T 0 ⊕ F → T 1 ⊕ C0 → T 2 ⊕ C1 → ·· ·

is HomA( ,Cof A)-exact. Using this, we easily obtain an exact sequence which is moreover
HomA( ,Cof A)-exact

0 → X → T 0 → T 1 ⊕ C0 → T 2 ⊕ C1 → ·· · .

Now one can paste a projective resolution of X to the first column and use the fact that Ext1
A(X ⊕

F , C) = 0, for any C ∈ Cof A, to deduce the result. �
Theorem 3.15. Let X be a homologically bounded below complex of A-modules. Then F-GfdA X is finite if and
only if there exists a flat resolution F X of X and an integer n < inf X such that Ker∂n

F X
is F-Gorenstein flat.

Proof. ‘If ’. Let t be an integer less than or equal to inf X . Assume that F X → X is a flat resolution of X
such that K = Ker ∂n

F X
is a syzygy of an F-totally acyclic complex T X . We can assume that n � t . Also,

without loss of generality, we may assume that T i
X = F i

X , for all i < n. On the other hand, there is an

F-totally acyclic complex T X whose terms are projective and fits into a triangle T X
f−→ T X → Z X �

in which Z X is acyclic with flat kernels. Since T X is a complex of projectives and it is F-totally acyclic,
we may deduce that for all i � n, there exist maps hi : T i

X → F i
X

· · · T n−2
X

f n−2

T n−1
X

f n−1

T n
X

f n

hn

T n+1
X

f n+1

· · ·

· · · F n−2
X F n−1

X
T n

X T n+1
X

· · ·

· · · F n−2
X F n−1

X
F n

X F n+1
X

· · · .

So considering these maps and the composition of the identity with the maps f i , i < n, we get
a morphism T X → F X such that its mapping cone has flat kernels, for all i < n. That is F-GfdA X < ∞.

‘Only if ’. Since F-GfdA X is finite, by definition X admits an F-complete flat resolution. But by
Proposition 3.13, we may consider an F-complete flat resolution

T X → F X → Z X �
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in D(Flat A), such that Ker∂ i
T X

and Ker∂ i
F X

are flat equivalent, for all i � 0. Hence there exists a flat

A-module G such that Ker ∂ i
F X

⊕ G is a syzygy of an F-totally acyclic complex. The proof now can be
completed using Lemma 3.14. �
3.16. Let F X be a flat resolution of an A-module X . Assume that there exists an integer n such that for
all i < n, F i

X and Ker∂ i
F X

are cotorsion. Then the proofs of Proposition 3.13 and Theorem 3.15, imply

that F-GfdA X is finite if and only if Ker∂
j
F X

, for some j < n is F-Gorenstein flat. In particular, if F X

is a minimal flat resolution of X , by [EJ00, Lemma 5.3.25], F i and Ker∂ i
F X

, for all i < 0, are cotorsion

and hence F-GfdA X is finite if and only if there exists an integer j such that Ker ∂
j
F X

is F-Gorenstein
flat. Recall that a flat resolution F X of an A-module X is called minimal, if it is constructed using
repeated kernels and flat covers (instead of precovers).

3.1. Comparison and examples

We provide some examples of objects admitting F-complete flat resolutions and objects of finite
F-Gorenstein flat dimension.

Consider the following inclusion functors of triangulated categories

I : Ktac(Proj A) → K(Proj A) and J : Dtac(Flat A) → D(Flat A).

When we know that one of these functors admits a right adjoint, we may deduce that the corre-
sponding triangle in Definition 3.4 exists, see e.g. [Kra05, Lemma 3.2].

When A is a commutative noetherian ring with a dualizing complex, the existence of a right
adjoint for I is proved in [Jor05]. In case A is commutative, noetherian and has finite Krull dimension,
the existence of a right adjoint for I is proved in [MS09]. But for an arbitrary ring, the problem of the
existence of a right adjoint for I is still open.

When A is commutative and noetherian, the existence of right adjoint for J is proved in [MS09].
This, in turn, implies that, over such rings, any complex of flat A-modules admits an F-complete
flat resolution. In fact their result is more general: they prove the existence of adjoint when X is
a semi-separated noetherian scheme. But the problem of the existence of a right adjoint for J , for an
arbitrary ring, is still open.

Examples 3.1.1.

(1) Assume that A is a ring with the property that every cotorsion flat module has finite in-
jective dimension. With this assumption, one can deduce easily that any acyclic complex of
flats is F-totally acyclic. That is Dtac(Flat A) = Dac(Flat A). But by [Mu07, Proposition 5.4], the
inclusion functor Dac(Flat A) → D(Flat A) admits a right adjoint. Hence J admits a right ad-
joint.

(2) Assume that A is a ring with the property that every flat module has finite projective dimen-
sion. Then Ktac(Proj A) is equivalent to the category Dtac(Flat A). This, in turn, implies that any
Gorenstein projective A-module is F-Gorenstein flat. Such rings have already studied by several
authors in different settings. For example, it is shown in [BG00], that if A is a ring in which any
flat module has finite projective dimension, then for any finite group G , the group ring AG also
has the same property.

It is obvious that any flat module is F-Gorenstein flat. In the following, we provide an example
of a group G and an AG-module F such that F is F-Gorenstein flat but it is neither of finite flat
dimension nor of finite Gorenstein projective dimension.

Lemma 3.1.2. Let G be a finite group. Then any flat A-module F is an F-Gorenstein flat AG-module, with the
trivial action.
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Proof. Consider the short exact sequence

0 → F ι−→ HomA(AG, F ) → L0 → 0,

of AG-modules, where ι is the canonical injection. It is known that as an A-sequence, it is split
and hence L0 is flat A-module. Moreover, since G is finite, AG ⊗A F ∼= HomA(AG, F ) and hence
HomA(AG, F ) is flat AG-module. This argument can be repeated this time starting from L0 to get
a short exact sequence

0 → L0 → F 1 → L1 → 0,

of AG-modules in which F 1 is flat AG-module, L1 is flat A-module and the sequence is A-split. By
splicing these short exact sequences we get a right resolution

0 → F → F 0 → F 1 → F 2 → ·· ·

of F by flat AG-modules. Moreover, the resolution is split when considered over A. On the other
hand, consider a free resolution of the trivial AG-module A by finitely generated free AG-modules

· · · → (AG)n1 → (AG)n0 → A → 0.

Clearly this sequence is split over A. By applying the functor − ⊗A F on this sequence we get a reso-
lution of F by flat AG-modules

· · · → (AG ⊗A F )n1 → (AG ⊗A F )n0 → F → 0.

So we get an exact sequence

· · · F2 F1 F0 F 0 F 1 F 2 · · ·

F

(∗)

of flat AG-modules which is split over A. We claim that the sequence is HomG(−, X)-exact, for any
flat AG-module X . Since X is flat as an AG-module, there exists a flat A-module X ′ such that X ∼=
AG ⊗A X ′ as AG-modules. So we have

HomG(−, X) ∼= HomG
(−, AG ⊗A X ′)

∼= HomG
(−,HomA

(
AG, X ′))

∼= HomA
(

AG ⊗G −, X ′)
∼= HomA

(−, X ′).
Since the complex (∗) is HomA(−, X ′)-exact, the above isomorphisms imply that it is HomG(−, X)-
exact and hence the sequence is an F-complete resolution. Therefore F is F-Gorenstein flat. �

Now we have the necessary ingredients to present our example.

Example 3.1.3. Let G be a finite group and F a flat A-module which is not of finite Gorenstein pro-
jective dimension. Moreover, assume that nF �= F , where n is the order of an element of G . Then,
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by Lemma 3.1.2, with the trivial action, F is an F-Gorenstein flat AG-module. We claim that as
AG-module, it is neither of finite Gorenstein projective dimension nor of finite flat dimension.

If F is of finite Gorenstein projective dimension as AG-module, then it is easily seen that it is
of finite Gorenstein projective dimension as an A-module, contradicting our assumption. To complete
the claim, we show that F is not a flat AG-module. In fact, we show something stronger: the flat
dimension of F over AG is not finite. Since for any subgroup G ′ of G , fdAG ′ F � fdAG F , we may
assume that G = 〈x〉 is a cyclic group, where the order of x is n. It is known that, in this case, we
have a projective resolution of A as AG-module

· · · x−1−−→ AG t−→ AG x−1−−→ AG → A → 0,

where t is the norm element 1 + x + x2 + · · · + xn−1 of AG . By applying the functor − ⊗A F on this
sequence we get the sequence

· · · x−1−−→ AG ⊗A F t−→ AG ⊗A F x−1−−→ AG ⊗A F → A ⊗A F → 0.

We know that A ⊗A F , with the diagonal action, is isomorphic to F as an AG-module and AG ⊗A F ,
with the diagonal action, is a flat AG-module. That is, the above sequence is a flat resolution of F as
AG-module. Now, by applying the functor − ⊗AG F on the above sequence we get the sequence

· · · t−→ (AG ⊗A F ) ⊗AG F x−1−−→ (AG ⊗A F ) ⊗AG F → (A ⊗A F ) ⊗AG F → 0.

But it is easy to see that the homology of this complex at even degrees is isomorphic to ((AG ⊗A

F ) ⊗AG F )/n((AG ⊗A F ) ⊗AG F ) which is not zero, because F/nF �= 0 and G is finite. Hence
fdAG F = ∞.

Example 3.1.4. Let (A,m) be a noetherian local ring and let Â be its m-adic completion. Assume
further that Â is not projective as an A-module. Let G be a finite group such that its order is
a non-unit in A. By Lemma 3.1.2, Â is an F-Gorenstein flat AG-module which is not Gorenstein pro-
jective and, by the same method used in the above example, Â does not have finite flat dimension as
AG-module.

4. Tate cohomology based on flat modules

In this section, we introduce a version of Tate cohomology defined using flat modules. The the-
ory is based on Neeman’s results in [Nee08] and [Nee10]. For a complex X , P X (resp. F X ) denotes
a projective (resp. flat) resolution of X . Note that by Remark 2.1.2(3), F X is unique up to isomorphism
in D(Flat A).

4.1. We know that K(Proj A) is a localizing subcategory of K(A) and by [Nee08, Corollary 5.10] satisfies
Brown representability. So by [Nee01, Theorem 8.4.4], the inclusion E : K(Proj A) → K(A) possesses
a right adjoint Eρ . This, in particular, implies that for an arbitrary complex Y we have a triangle

E Eρ(Y ) → Y → ZY � (∗)

in K(A) such that Eρ(Y ) ∈ K(Proj A) and ZY ∈ K(Proj A)⊥ . In the case where Y is bounded above
Eρ(Y ) is a projective resolution of Y , because in this case for any projective resolution P Y of Y ,
the cone of the morphism P Y → Y is an acyclic bounded above complex, and hence belongs
to K(Proj A)⊥ . We fix the triangle (∗) throughout this section.
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Now assume that X admits a complete projective resolution. So dual to Krause’s definition [Kra05],
we may consider the triangle T X → P X → Z X � in K(Proj A) with T X ∈ Ktac(Proj A) and Z X ∈
Ktac(Proj A)⊥ . The ith Tate cohomology group of X and Y , denoted Êxt

i
A(X, Y ), is then defined by

Êxt
i
A(X, Y ) := HomK(A)

(
T X ,Σ i Eρ(Y )

)
.

Note that since ZY ∈ K(Proj A)⊥ , it is clear that Êxt
i
A(X, Y ) = HomK(A)(T X ,Σ i Y ). Moreover, it follows

from Remark 3.7 that, when X is a complex of finite Gorenstein projective dimension in the sense
of [V06, 3.1], our definition of Tate cohomology is compatible with the one introduced in [V06, §4].
This motivates our next definition.

Definition 4.2. Assume that X admits an F-complete flat resolution, so there exists a triangle T X →
F X → Z X � in D(Flat A) with T X ∈ Dtac(Flat A) and Z X ∈ Dtac(Flat A)⊥ . The ith F-Tate cohomology

group of X and Y , denoted Êxt
i
F(X, Y ), is defined by

Êxt
i
F(X, Y ) := HomD(Flat A)

(
T X ,Σ i Eρ(Y )

)
.

Theorem 4.3. The above definition of F-Tate cohomology group, is independent of the choice of complete res-
olutions.

Proof. Consider another F-complete flat resolution of X , say T ′
X → F ′

X → Z ′
X �. Since flat resolutions

are unique in D(Flat A), there exists a homotopy equivalence μ : F X → F ′
X . Since T X ∈ Dtac(Flat A) and

Z ′
X ∈ Dtac(Flat A)⊥ ,

HomD(Flat A)

(
T X , T ′

X

) ∼= HomD(Flat A)

(
T X , F ′

X

)
.

So we get a unique morphism μ̂ : T X → T ′
X commuting the square on the left of the following diagram

T X

μ̂

F X

μ

Z X

T ′
X F ′

X Z ′
X

.

The uniqueness of μ̂ implies that T X and T ′
X are homotopy equivalence in D(Flat A), as desired. �

Note that, by the axioms of a triangulated category, we may deduce that there exists a morphism
μ̄ : Z X → Z ′

X such that (μ̂,μ, μ̄) is a morphism of triangles.

Theorem 4.4. Assume that A is a commutative noetherian ring of finite Krull dimension. Then for any inte-
ger i,

Êxt
i
F(X, Y ) ∼= Êxt

i
A(X, Y ).

Proof. First note that, since dim A < ∞, both inclusion functors I and J of Section 3.1, have right
adjoints and so the corresponding triangles of Definition 3.4 exist. Therefore both Tate cohomology
groups are defined. Now consider an F-complete flat resolution T X → F X → Z X � of X in D(Flat A).
By Proposition 3.8, we may (and do) assume that all terms of this triangle are complexes of projec-
tives. To prove the theorem, it is enough to show that T X ∈ Ktac(Proj A) and Z X ∈ Ktac(Proj A)⊥ . Since
T X is an F-totally acyclic complex of projectives, by [MS09], it is totally acyclic. Let L ∈ Ktac(Proj A).
Since the projective dimension of any flat module is finite, another application of [MS09] implies that
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L ∈ Dtac(Flat A). So by assumption, HomD(Flat A)(L, Z X ) = 0. But since L is a complex of projectives, we
may deduce that HomK(Proj A)(L, Z X ) = 0. Therefore Z X ∈ Ktac(Proj A)⊥ , completing the proof. �

The following result shows that, as expected, the flat dimension of complexes can be detected by
the vanishing of the F-Tate groups.

Theorem 4.5. Let X be a homologically bounded below complex of finite F-Gorenstein flat dimension. Then
the following are equivalent.

(i) fdA X < ∞.

(ii) Êxt
i
F(X, ) = 0, for some i ∈ Z.

(iii) Êxt
i
F(X, ) = 0, for all i ∈ Z.

If X is bounded above, the above properties are also equivalent to the following.

(iv) Êxt
0
F(X, X) = 0.

Proof. (i) ⇒ (iii). Consider the triangle 0 → F X → F X �. Since fdA X is finite, F X is a bounded below
complex of flat modules and hence belongs to Dtac(Flat A)⊥ . Therefore, this triangle is an F-complete
flat resolution of X . So (iii) follows.

(iii) ⇒ (ii). This is trivial.
(ii) ⇒ (i). Consider an F-complete flat resolution T X → F X → Z X � of X . By Proposition 3.8, we

may assume that T X is a complex of projectives. Set L = Im ∂ i
T X

and let P L be a projective resolution

of L. By assumption, we have HomD(Flat A)(T X ,Σ i P L) = 0. Therefore HomK(A)(T X ,Σ i P L) = 0, because
T X ∈ K(Proj A). Hence Hi HomA(T X ,Σ i P L) = 0. This implies that the induced complex

HomA
(
T i+1

X , L
) → HomA

(
T i

X , L
) → HomA

(
T i−1

X , L
)

is exact. Hence the morphism

HomA
(
T i+1, L

) → HomA(L, L)

is surjective. So the canonical injection � : L → T i+1 splits. Therefore L and hence Ker∂ i
T X

are projec-

tives. Hence Ker∂
j
T X

is projective for all j � i. But since F-GfdA X < ∞, Ker∂
j
Z X

is flat, for all j � 0.

Therefore, by Proposition 3.6, we may deduce that Ker ∂
j
F X

is flat, for all j � 0. Hence fdA X < ∞.
Now assume that X is bounded above. To complete the proof, we have to establish the implica-

tion (iv) ⇒ (i). Since Êxt
0
F(X, X) = 0, by definition, we have HomD(Flat A)(T X , Eρ(X)) = 0. But since

X is bounded above and we are in D(Flat A), we may replace Eρ(X) with F X and hence deduce
that HomD(Flat A)(T X , F X ) = 0. On the other hand, Z X in the triangle T X → F X → Z X � belongs to
Dtac(Flat A)⊥ . So we get HomD(Flat A)(T X , T X ) = 0. Therefore F X = Z X in D(Flat A). But finiteness of
the F-Gorenstein flat dimension of X means, by definition, that fdA Z X is finite. Hence, by Proposi-
tion 3.6, fdA F X and therefore fdA X is finite. �
Corollary 4.6. Let X be a bounded above, homologically bounded below, complex with both finite F-Gorenstein
flat dimension and finite injective dimension. Then its flat dimension is finite.

Proof. We show that Êxt
0
F(X, X) = 0, and the claim follows from the theorem. In view of our fixed no-

tations, Êxt
0
F(X, X) = HomD(Flat A)(T X , Eρ(X)). But we can consider T X to be a complex of projectives.

So HomD(Flat A)(T X , Eρ(X)) = HomK(A)(T X , Eρ(X)). But since X is bounded above, by 4.1, we may re-
place Eρ(X) by P X with P X bounded above. So L in the triangle P X → X → L �, is a bounded above
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complex which is acyclic. So HomK(A)(T X , L) vanishes. This implies that even we can replace P X

by X . This we do. On the other hand, consider the triangle X → I X → L′ �, in which I X is an in-
jective resolution of X . Since idA X < ∞, I X is bounded above. So L′ is an acyclic bounded above
complex. Therefore, HomK(A)(T X , L′) = 0. This implies that HomK(A)(T X , X) = HomK(A)(T X , I X ). Since
F-GdA X < ∞, X is homologically bounded below. Hence we may assume that I X is bounded below.

So it preserves acyclicity, that is HomK(A)(T X , I X ) = 0. Therefore Êxt
0
F(X, X) = 0, as claimed. �

Proposition 4.7. For complexes X and Y in K(A),

HomD(Flat A)

(
F X ,Σ i Eρ(Y )

) ∼= Exti
A(X, Y ),

for all i ∈ Z, where F X is a flat resolution of X .

Proof. Without loss of generality, we may replace F X by a projective resolution P X of X . Therefore

HomD(Flat A)

(
F X ,Σ i Eρ(Y )

) ∼= HomD(Flat A)

(
P X ,Σ i Eρ(Y )

)
∼= HomK(A)

(
P X ,Σ i Y

)
∼= Exti

A(X, Y ). �
4.8. Suppose that X admits an F-complete flat resolution T X → F X → Z X �. By applying the ‘Hom’
functor on this triangle and using the above theorem, we get an induced morphism on cohomology

ηi(X, Y ) : Exti
A(X, Y ) → Êxt

i
F(X, Y ).

Theorem 4.9. Let n ∈ Z be a fixed integer. With the above notations, F-GfdA X < n if and only if ηi(X, Y ) is
an isomorphism, for any cotorsion module Y and all integers i > n.

Proof. Consider the F-complete flat resolution T X → F X → Z X � of X . We can assume that all terms
in the triangle are projective. Let Y be a cotorsion R-module. It admits a flat resolution FY with
cotorsion flat terms and with cotorsion kernels. Let F ′

Y denote the corresponding augmented flat
resolution

F ′
Y : · · · → F −2

Y
∂−2−−→ F −1

Y
∂−1−−→ F 0

Y
∂0−→ Y → 0.

Since F ′
Y is an acyclic and bounded above complex of cotorsion modules with cotorsion kernels, the

complex HomA(Z X , F ′
Y ) is exact. Therefore Hi(HomA(Z X , FY )) � Hi(HomA(Z X , Y )). Now assume that

F-GfdA X < n. Hence, for all i < n, Hi(Z X ) = 0 and Ker∂ i
Z X

is flat. So, for any cotorsion module Y ,

Hi(HomA(Z X , Y )) = 0, for all i > n. Therefore, for these degrees, Hi(HomA(Z X , FY )) = 0. This implies
easily that the maps ηi(X, Y ) are isomorphisms for all integers i > n. To prove the converse, we
should show that Ker∂ i

Z X
is flat for all i < n. To this end, we show that Hi(N ⊗A Z X ) = 0, for all i < n,

where N is an arbitrary Aop-module. By using the adjoint duality of ‘Hom’ and tensor, it is enough
to show that Hi(HomA(Z X ,HomA(N, E))) = 0 for all i > n, where E is an injective cogenerator for A.
But this follows form our assumption in view of the fact that HomA(N, E) is cotorsion. �
4.10. Tate cohomology theory was initiated by Tate’s observation, that the ZG-module Z with the
trivial action, when G is a finite group, admits a complete projective resolution. Farrell [Fa77] gen-
eralized the theory to groups of finite virtual cohomological dimension. Mislin [Mi94], Benson and
Carlson [BC92] and Vogel (first publish account in [Goi92]), independently, generalized the theory
to all groups. Then it was shown that these theories are isomorphic, and complete cohomology is
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a common name for them. The theory has also been generalized to the setting of unbounded com-
plexes in [AS07]. The theory has been studied also in the context of modules over rings. Auslander
and Buchweitz [ABu89] studied maximal Cohen–Macaulay modules over Gorenstein rings. This class
of modules is a special case of modules in Auslander’s G-class. Using this class, Buchweitz [B86]
studied Tate’s theory for finitely generated modules over Gorenstein rings. Enochs and collaborators
generalized the theory to all modules, and introduced the notion of Gorenstein projective modules,
see e.g. [EJ95]. More recent expositions are in [AM02,AS06b,Jor05,Kra05]. An injective version of the
theory and comparison with the original one can be found in [N98]. See also [AS06a] for an injective
version of the theory in the setting of complexes.

5. Complete cohomology in the pure derived category

In this section we develop a cohomology theory in the pure derived category of flat modules
D(Flat A), which can be computed for any pair of complexes of modules and is compatible with
the F-Tate cohomology theory, introduced in the previous section, provided the complex in the first
argument is of finite F-Gorenstein flat dimension. We show that the flat dimension of complexes
can be determined by this theory. Since its construction is motivated by the theory of Vogel [Goi92],
known as complete cohomology, we shall use the same name.

Let F be the class of all morphisms f : F → F ′ that can be completed to a triangle F → F ′ → F ′′ �
in K(Flat A) with F ′′ ∈ Kp(Flat A). Known techniques tell us that F is a multiplicative system and that
the localization of K(Flat A) in F, i.e. F−1K(Flat A), is exactly the pure derived category of flats, i.e.
D(Flat A). We shall use this fact throughout the section.

5.1. Let X and Y be complexes of flat modules and let HomA(X, Y ) denote the Hom complex.
We consider the subcomplex consisting of all homotopically bounded below morphisms, denoted
HomA(X, Y )hbb . A morphism f is called homotopically bounded below if there exists morphism s
in F such that sf is null-homotopic in degrees small enough. More precisely, f ∈ HomA(X, Y )n , for
arbitrary integer n, is homotopically bounded below if there exists integer m and morphism s ∈ F,
such that the truncated morphism (sf )i

�m is null-homotopic. Since F is a multiplicative system and
hence has a calculus of fractions, we may deduce that the terms of the complex HomA(X, Y )hbb form
subgroups of the terms of the complex HomA(X, Y ). To see this, assume that h and h′ are homo-
topically bounded below morphisms from X to Y and s : Y → Z and s′ : Y → Z ′ in F are so that sh
and s′h′ are null-homotopic in small enough degrees. Since F is a multiplicative system, we can find
an object W and morphisms t : Z → W and t′ : Z ′ → W in F such that ts = t′s′ . This will imply that
(h + h′) is a homotopically bounded below morphisms.

Definition 5.2. Consider the complexes X and Y of A-modules. Let P X be a projective resolution
of X and FY be a flat resolution of Y , and let HomA(P X , FY )hbb be the subcomplex of HomA(P X , FY )

consisting of all homotopically bounded below morphisms. Consider the quotient complex

HomA(P X , FY )/HomA(P X , FY )hbb.

For any integer i, the ith F-complete cohomology of X and Y is defined to be the −ith cohomology

of this quotient complex, denoted Ẽxt
i
F(X, Y ).

5.3. The exact sequence

0 → HomA(P X , FY )hbb → HomA(P X , FY ) → HomA(P X , FY )

HomA(P X , FY )hbb
→ 0

of complexes induces, for any integer i, an exact sequence

Exti
F(X, Y )

ε−→ Exti
A(X, Y )

ζ−→ Ẽxt
i
F(X, Y ) → Exti+1

F (X, Y )



J. Asadollahi, S. Salarian / Journal of Algebra 353 (2012) 93–120 111
of cohomology groups, in which Exti
F(X, Y ), for any integer i, is the −ith cohomology of the complex

HomA(P X , FY )hbb .

5.4. We claim that Exti
F(X, Y ) is independent of the choice of the resolutions in both arguments.

Since any two projective resolutions of X are homotopy equivalent, the independence in the first ar-
gument follows easily. We shall discuss independence in the second argument. For this, it is enough
to compare the groups calculated via a projective resolution P Y and also via a flat resolution FY of Y .
There exists an isomorphism u : P Y → FY in D(Flat A). Let f ∈ HomA(P X , P Y )hbb . We show that the
image of f under the induced map by u is homotopically bounded below. By definition, there exists
a morphism s : P Y → Z in F such that sf is null-homotopic in small degrees. Since F is a multi-
plicative system, there exits s′ : FY → W in F and u′ : Z → W such that s′u = u′s. Hence s′u f = u′sf
is null-homotopic in small degrees. Therefore u f ∈ HomA(P X , FY )hbb . On the other hand, since u is
an isomorphism in D(Flat A), the complexes HomA(P X , P Y ) and HomA(P X , FY ) are quasi-isomorphic.
Therefore, if g : P X → FY is a cycle, there exists a morphism f : P X → P Y which is a cycle and maps
to g under the induced morphism by u, i.e. u f = g in K(Flat A). So g − u f is null-homotopic. If g
is homotopically bounded below, there exists s ∈ F such that sg is null-homotopic in small enough
degrees. Since g − u f is null-homotopic, it is easy to see that su f is also null-homotopic in small de-
grees. But u ∈ F and F is a multiplicative system, hence su ∈ F. Therefore f is homotopically bounded
below. This implies that Exti

F(X, Y ) is well defined.

Therefore Ẽxt
i
F(X, Y ) is also independent of the choice of resolutions of X and Y .

Theorem 5.5. Assume that X is a homologically bounded below complex. Then the following are equivalent.

(i) fdA X < ∞;

(ii) Ẽxt
i
F(X, ) = 0 for all integers i;

(iii) Ẽxt
i
F( , X) = 0 for all integers i;

(iv) Ẽxt
0
F(X, X) = 0.

Proof. (i) ⇒ (ii). It is enough for us to prove the claim for i = 0. Let Y be an arbitrary complex and
f ∈ HomA(P X , P Y )0. Since fdA X < ∞, there exists an integer n ∈ Z, such that (P X )�n is acyclic with
flat kernels, that is, (P X )�n belongs to Kp(Flat A). This implies that for any morphism f : P X → P Y ,
where Y is an arbitrary complex, the morphism of truncation complexes f�i : (P X )�i → (P Y )�i be-
comes zero in D(Flat A). Hence there exists s ∈ F such that s( f�i) = 0 in K(Flat A). This exactly means
that sf is null-homotopic in degrees small enough and hence f belongs to HomA(P X , P Y )hbb . So

Ẽxt
0
F(X, Y ) = 0.

(ii) ⇒ (iv). This is trivial.

(iv) ⇒ (i). The vanishing of Ẽxt
0
F(X, X) implies that the identity morphism on P X , a projective

resolution of X , should belongs to HomA(P X , P X )hbb . So there exists a morphism s : P X → Z in F
which is null-homotopic in degrees small enough. This means that, for any A-module M , the induced
map Hi HomA(M, P X ) → Hi HomA(M, Z) is zero in small degrees. On the other hand, since s ∈ F,
its mapping cone, say Y , is pure and hence by Lemma 3.5, for any finitely presented A-module M ,
Hi HomA(M, Y ) = 0. Therefore Hi HomA(M, P X ) = 0, for any finitely presented A-module M . The re-
sult now follows from Lemma 3.5.

The implications (i) ⇔ (iii) ⇔ (iv) follow similarly. �
Lemma 5.6. Let T and P be complexes of projective A-modules such that T is F-totally acyclic. Then the
complex HomA(T , P )hbb is acyclic.

Proof. By dimension shifting, it is enough to show that the complex is acyclic in degree zero. Let
f ∈ (HomA(T X , P Y )hbb)0 be a cycle. Since f is homotopically bounded below, there exists a morphism
s : P Y → Q in F, such that sf is null-homotopic in small enough degrees. Let n ∈ Z be such that
(si f i)i�n is null-homotopic, i.e. there exist maps (ti : T i

X → Q i−1)i�n+1 with the desired property.
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Now consider the hard truncation h Q i�n and construct a morphism g : T X → h Q i�n by defining gi = 0
for i < n, gn = sn f n − ∂n−1

Q tn and gi = si f i , for i > n.
Since T X belongs to Dtac(Flat A), HomD(Flat A)(T X , F ) = 0, for any flat module F . But since T X is

a complex of projectives, HomD(Flat A)(T X , F ) = HomK(A)(T X , F ). Therefore HomA(T X , F ) is acyclic, for
any flat A-module F . Standard techniques in hyperhomological algebra says that the same is true for
any bounded below complex F of flat modules.

So, since h Q i�n is a bounded below complex of flats, g : T X → h Q i�n which is a cycle, should be
a boundary. Hence it is null-homotopic; i.e. there exist maps (ti : T i

X → Q i−1)i>n+1 with the desired

property. By pasting these two class of ti ’s, we may conclude that sf is null-homotopic, that is, sf = 0
in D(Flat A). But, since s is an isomorphism in D(Flat A), we deduce that f = 0 in D(Flat A). On the
other hand, f is a morphism of projectives, so in fact f = 0 in K(Proj A), i.e. f is null-homotopic. This
means that f is a boundary. The proof is therefore complete. �
5.7. Let X be a complex admitting an F-complete flat resolution

T X → F X → Z X �,

with T X ∈ Dtac(Flat A). By Proposition 3.8, we may assume that all terms of this triangle are complexes
of projective A-modules. This we do. Let Y be a bounded above complex. Hence Eρ(Y ) (see (4.1)) is
a projective resolution of Y and so we denote it by P Y . Consider the short exact sequence

0 → HomA(T X , P Y )hbb → HomA(T X , P Y ) → HomA(T X , P Y )

HomA(T X , P Y )hbb
→ 0,

of complexes and apply the above lemma, to obtain the isomorphisms

Êxt
i
F(X, Y ) ∼= Hi

(
HomA(T X , P Y )

HomA(T X , P Y )hbb

)
.

On the other hand, by applying the functor HomA( , P Y ) to the above triangle we get the exact
sequence

Hi
(

(Z X , P Y )

(Z X , P Y )hbb

)
→ Hi

(
(F X , P Y )

(F X , P Y )hbb

)
→ Hi

(
(T X , P Y )

(T X , P Y )hbb

)
→ Hi+1

(
(Z X , P Y )

(Z X , P Y )hbb

)
,

of cohomology groups, where for simplicity we use parentheses instead of Homs.
This in particular implies that for any integer i, there is a morphism from the ith F-complete

cohomology group to the ith F-Tate cohomology groups, ψ i(X, Y ) : Ẽxt
i
F(X, Y ) → Êxt

i
F(X, Y ). Now, fol-

lowing the same argument as in the proof of part (i) ⇔ (ii) of Theorem 5.5, one can deduce that
Hi(

(Z X ,P Y )
(Z X ,P Y )hbb

) = 0, for any complex Y if and only if Ker ∂ i
Z X

is flat, for all i � 0. Therefore, it follows

that the above induced maps ψ i(X, ) are isomorphisms for any integer i if and only if F-GfdA X < ∞.

5.1. Rings of finite sfli

Related to the problem of extending the Farrell–Tate cohomology, two homological invariants
were assigned to a group Γ by Gedrich and Gruenberg; spli Γ , the supremum of the projective
lengths of the injective Γ -modules, and silpΓ the supremum of the injective lengths of the pro-
jective Γ -modules [GG87]. It is shown that the finiteness of these invariants for a group Γ , implies
the existence of complete cohomological functors, moreover, silp Γ � spli Γ with equality if spli Γ
is finite. The finiteness of these invariants has important geometric consequences, see e.g. [Ta05]
and [ASm01]. For a long time it was not known if the finiteness of silpΓ implies the finiteness of the
spli Γ . Recently, this was settled in the affirmative by Emmanouil. He proved that for any group Γ ,
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silp Γ = spli Γ , see [Emm10, Corollary 4.5]. While proving his interesting result, he applied a new
invariant sfli Γ , the supremum of the flat lengths of injective Γ -modules. Also, some recent results
of Benson and Goodearl, show that flat and projective modules over group rings have tight connec-
tions. For example, they show that when Γ is a finite group, a flat AΓ -module which is projective
as an A-module is necessarily projective over AΓ [BG00]. These results emphasize on the effective
role of flats in the study of (co)homology of groups. For more research in this direction, see [DTa08,
DTb08,ET10].

In this subsection, we provide a characterization of ring A for which the invariant sfli A is finite in
terms of the finiteness of the F-Gorenstein flat dimension of A-modules.

Remark 5.1.1. For a ring A, let silfc A denote the supremum of the injective length of cotorsion flat
modules. Assume that A is a ring with the property that every cotorsion flat module has finite in-
jective dimension. We claim that, in this case, silfc A is finite. Assume, otherwise, for any positive
integer n, we could have a cotorsion flat module of injective dimension greater than n. Take their
coproduct, say X , and let E be its cotorsion envelope. So E is cotorsion flat and hence is of fi-
nite injective dimension. But for any module C in this direct sum, the inclusion C → E is a pure
monomorphism and hence is split. Therefore C is a summand of E and so idA C � idA E , which is
a contradiction.

Theorem 5.1.2. Let n be a fixed integer. For an associative ring A, the following are equivalent.

(i) sfli A � n and silfc A is finite.
(ii) Any A-module M admits an F-complete flat resolution and the maps ψ i(M, N) are isomorphisms for any

A-module N and all i > n.
(iii) Any A-module M admits an F-complete flat resolution and the maps ηi(M, N) are isomorphisms for any

cotorsion A-module N and all i > n.
(iv) For any A-module M, F-GfdA M � n.

Moreover, when A is commutative and noetherian, the above conditions are equivalent to the following.

(v) sfli A � n.

Proof. The equivalence of (ii) and (iv) is proved in 5.7 and the equivalence of (iii) and (iv) is proved
in Theorem 4.9.

The statement (i) ⇒ (iv) follows by using a similar argument as the one used in [GG87, §4]. In
fact one can construct, for any A-module M , a complete resolution with the desired properties.

Now assume the equivalent statements (ii), (iii) and (iv) hold. Let F be a cotorsion flat A-module.

The definition of Tate cohomology implies that the Tate cohomology functors Êxt
i
F( , F ) are zero.

Therefore the fact that ηi is an isomorphism implies that the cohomology groups Exti
A( , F ) are zero,

for all i > n. This implies that idA F � n. So silfc A < ∞. Now, let I be an arbitrary injective module.

By (iii) we deduce that the Tate cohomology functors Êxt
i
F( , I) are zero, for any integer i. Therefore,

by Theorem 4.5, fdA I � n. This implies that sfli A � n. So (i) follows.
Assume that A is commutative and noetherian. The implication (i) ⇒ (v) is trivial For the con-

verse, let E be an injective cogenerator for A. Then any cotorsion flat A-module F is a summand
of Hom(Hom(F , E ), E ). But Hom(F , E ) is injective and so by our assumption has flat dimension less
then or equal to n. Therefore Hom(Hom(F , E ), E ) has injective dimension less then or equal to n. This
completes the proof. �
6. Applications to semi-separated noetherian schemes

In order to extend Tate cohomology to schemes which are not affine, Krause [Kra05] introduced
a Tate cohomology theory based on injective sheaves. This raises the question of how to extend the
projective side of the theory to arbitrary schemes, the problem being that in general there is no
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good notion of a projective quasi-coherent sheaf. For example, for a field k, the only projective quasi-
coherent sheaf over P

1(k) is the zero sheaf, [EEGO04, Corollary 2.3]. On the other hand, resolutions
by locally free sheaves exist on most schemes, and the category of quasi-coherent sheaves always
contains enough flats.

But another problem arises: flat resolutions fail to be unique in the homotopy category. This prob-
lem is solved in the PhD thesis of the Daniel Murfet, based on an idea of Amnon Neeman in [Nee08],
and this allows us to use flat resolutions to compute (co)homology. We use this fact and develop
a Tate cohomology theory in the category of quasi-coherent sheaves over semi-separated noetherian
schemes. We present some applications of this theory to characterizing Gorenstein schemes. Through-
out the section X will be a semi-separated noetherian scheme and sheaves are all quasi-coherent.
Recall that a scheme X is called semi-separated if there exists an open covering {Uλ}λ∈Λ of X such
that for all λ ∈ Λ, Uλ and all the pairwise intersections Uλ ∩ Uγ are affine, see [TT90] and [AJPV08].
Let us recall some general facts:

• The category of quasi-coherent sheaves on X is denoted by Qco X . The internal Hom in the cate-
gory Qco X is denoted by Homqc(−,−) and all Ext groups are calculated in the abelian category
Qco X . Since by [Ha77, II §7], an injective object in Qco X is just a quasi-coherent sheaf injective
in the larger category of all sheaves of O X -modules, Ext groups are the same in both categories.

• A monomorphism F → F ′ of (quasi-coherent) sheaves F , F ′ is said to be pure if F ⊗ N →
F ′ ⊗ N is a monomorphism for every sheaf N . An acyclic complex F of sheaves is pure acyclic
if F ⊗ N is acyclic for every sheaf N or, equivalently, if Zn(F ) → F is a pure monomorphism for
every n ∈ Z.

Let Flat X denote the class of flat sheaves on X . The full subcategory of the homotopy category
K(Flat X) consisting of pure acyclic complexes is denoted Kp(Flat X). This is a localizing subcategory
[Mu07, Lemma 3.2], and so the Verdier quotient D(Flat X) = K(Flat X)/Kp(Flat X) is a triangulated
category. In [MS09] a complex F of flat sheaves was defined to be F-totally acyclic if it is acyclic and
F ⊗ I is acyclic for every injective sheaf I . It is equivalent by [MS09, Theorem 4.18] that F belongs
to the intersection

Dtac(Flat X) := Dac(Flat X) ∩ ⊥(Flat X)

as an object of D(Flat X), cf. (3.2). Generalizing Definition 3.4 we use Bousfield localization triangles
to define complete flat resolutions and the Gorenstein flat dimension. Recall from (2.3) that a flat
resolution of a complex means a quasi-isomorphism to the complex from a K-flat complex of flat
sheaves.

Definition 6.1. Let X be a complex of sheaves with flat resolution F X . An F-complete flat resolution
of X is a triangle

T X → F X → Z X �, (6.1)

in D(Flat X), in which T F ∈ Dtac(Flat X) and Z F ∈ Dtac(Flat X)⊥ . If X is homologically bounded be-
low, we say that F-Gorenstein flat dimension of X is less than or equal n, a fixed integer, denoted
F-GfdX X � n if −n � inf X and for all i < −n, Coker ∂ i

Z X
is flat. If no integer n exists with

F-GfdX X � n, then we define F-GfdX X = ∞.

Remark 6.2. If U ⊆ X is an open subset then there is a restriction functor D(Flat X) → D(FlatU ). Since
flatness is a local property the direct generalization of Proposition 3.6 holds in D(Flat X). In particular,
it is well defined to speak about the flatness of cokernels of Z X even though this object is only
defined up to isomorphism in D(Flat X).

It is proved in [MS09, Theorem 4.24] that the inclusion Dtac(Flat X) → D(Flat X) has a right adjoint,
from which it follows that any complex of sheaves over X admits an F-complete flat resolution. On
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the other hand, by [Mu07, Theorem A.13], the inclusion functor F : K(Flat X) → K(Qco X) has a right
adjoint Fρ : K(Qco X) → K(Flat X). Based on these facts, for complexes F and G of sheaves, the ith

F-Tate cohomology group of F and G over X , denoted Êxt
i
F(F , G), is defined by

Êxt
i
F(F , G) := HomD(Flat X)

(
T F ,Σ iFρ(G)

)
.

As in the affine case, it is clear that is a well-defined abelian group.

Remark 6.3. By [Nee10, Theorem 3.2], the inclusion functor e : K(Flat A) → K(A) has a right adjoint eρ .
The commutativity of the following diagram of inclusion functors and their right adjoints

K(A)

eρEρ

K(Proj A)
j

E

K(Flat A)

jρ

e

implies that in affine case, for any complex Y ∈ K(A), Eρ(Y ) = eρ(Y ) in D(Flat A). Hence the definition
of F-Tate cohomology here is compatible with the one presented in Definition 4.2 when X is an affine
scheme.

6.4. It follows from the proof of Theorem A.13 of [Mu07] that in case G is a homologically bounded
above complex, Fρ(G) is a flat resolution of G .

Remark 6.5. Recall that a sheaf G is cotorsion if Ext1
X (F , G) = 0, for any flat sheaf F . We say that G

is cotorsion flat if it is both cotorsion and flat and denote by Cof X the full subcategory of cotorsion
flat sheaves in Qco X and by K(Cof X) the corresponding homotopy category. It is clear that Cof X is
closed under finite direct sums and direct summands.

For the proof of the next theorem we need the following observation.

Observation 6.6. In [Mu07, Proposition 3.19] it is shown that every sheaf F is isomorphic in D(Qco X)

to a bounded above complex of flat sheaves. In case F is cotorsion, this complex can be chosen so
that all its terms and also all its kernels are cotorsion. This follows from [Mu07, Corollary 3.21],
where it is shown that flat precovers exist and are epimorphisms. Therefore flat covers exist and are
epimorphisms. This means that, if one starts with a cotorsion sheaf and takes its flat cover, that flat
cover should be cotorsion with cotorsion kernel. In this way one can construct the desired resolution.

Theorem 6.7. Let F be a homologically bounded below complex of finite F-Gorenstein flat dimension. Then
the following are equivalent:

(i) fdX F < ∞.

(ii) Êxt
i
F(F , ) = 0, for some i ∈ Z.

(iii) Êxt
i
F(F , ) = 0, for all i ∈ Z.

If F is bounded above, the above properties are also equivalent to the following.

(iv) Êxt
0
F(F , F ) = 0.

Proof. Inspecting the proof in the affine case, i.e. Theorem 4.5, we see that only the implication
(ii) ⇒ (i) needs some explanation. Consider an F-complete flat resolution of F , say T F → F F →
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Z F �. Set L = Im ∂
j
T F

, for j sufficiently small. Using the argument of the proof of Lemma 3.11, we
may assume that L is cotorsion. Hence by Observation 6.6 we may assume that there exists a flat
resolution F L of L such that all of its terms are cotorsion.

This assumption, in view of 6.4, implies that HomD(Flat X)(T F ,Σ i F L) = 0. By the argument
given in the proof of Proposition 3.13 the complex F L belongs to Kp(Flat X)⊥ , so we deduce that
HomK(Qco X)(T F ,Σ i F L) = 0. Now one can follow the proof (ii) ⇒ (i) in Theorem 4.5 to complete the
proof. �
6.8. Tate cohomology using injectives. Let A be a locally noetherian Grothendieck category and sup-
pose that the derived category D(A) is compactly generated. A complex E of injective objects is
called totally acyclic if it is acyclic and remains acyclic after applying the functor HomA(I, ), for any
injective object I . Let Ktac(Inj A) denote the full subcategory of K(Inj A) consisting of totally acyclic
complexes of injectives. One can see that

Ktac(Inj A) = Kac(Inj A) ∩ (Inj A)⊥.

Let B be an object of A with an injective resolution I B . A complete injective resolution of B is a triangle

Z B → I B → T B �, (6.2)

in K(Inj A) with Z B ∈ ⊥Ktac(Inj A) and T B ∈ Ktac(Inj A). This triangle is unique up to isomorphism.
If, moreover, I B is homologically bounded above, we say that Gorenstein injective dimension of B ,
denoted GidA B , is finite if Ker∂ i

Z B
is injective, for i � 0.

It is proved by Krause [Kra05, §7] that the inclusion functor

G : Ktac(Inj A) → K(Inj A)

has a left adjoint Gλ . So one may deduce that any object B admits a complete injective resolution.
With such a resolution (6.2) given, we define for any object A in A the ith injective Tate cohomology
group of A and B , denoted êxti

A(A, B), by

êxti
A(A, B) := HomK(A)

(
Σ−i A, T B

)
.

We refer the reader to [Kra05, §7] for the properties of these Tate cohomology groups. Notice that
the category of (quasi-coherent) sheaves over a semi-separated noetherian schemes X is a locally
noetherian Grothendieck category, and D(Qco X) is compactly generated, so Krause’s applies. In this
case the Gorenstein injective dimension of a complex G of quasi-coherent sheaves will be denoted by
GidX G , and the Tate cohomology groups are denoted êxti

X (F , G).

The next theorem compares our (flat) Tate cohomology groups with those introduced by Krause,
see Theorem 6.12 below.

Lemma 6.9. Let U = {U0, . . . , Ud} be an affine open cover of X . Given a flat sheaf F we have Exti
X (F ,−) = 0

for i > d + dim(X).

Proof. Set e = dim(X) and let G be a sheaf. Take the Čech resolution

0 → G → C 0(U, G) → ·· · → Cd(U, G) → 0
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of G , in which, for any t , Ct(U, G) = ⊕
i0<···<ip

f∗(G|Ui0 ,...,it
), where f : Ui0,...,it → X is the inclusion of

the open set Ui0,...,it = Ui0 ∩ · · · ∩ Uit . Observe that for 0 � p � d

Exti(F , C p(U, F )
) =

⊕
i0<···<ip

Exti(F |Ui0,...,ip
, G|Ui0,...,ip

).

So Exti(F , C p(U, F )) vanishes for all i > e, because every affine open subset of X has Krull dimen-
sion � e, whence flat sheaves over such open subsets have projective dimension � e. From a short
exact sequence 0 → K → C d−1(U, G) → Cd(U, G) → 0 and its long exact Ext sequence we deduce that
Exti(F , K) = 0 for i > e + 1. Continuing in this vein we eventually deduce that Exti(F , G) = 0 for
i > d + e as claimed. �
Proposition 6.10. Let F be a complex of sheaves with flat resolution F F and let G be a cotorsion sheaf. Then
for all i ∈ Z,

Exti
X (F , G) ∼= HomD(Flat X)

(
F F ,Σ iFρ(G)

)
.

Proof. By 6.4, Fρ(G) can be taken to be a flat resolution F G of G . Since the complex F F is K-flat
it belongs to the left orthogonal of the subcategory Dac(Flat X) of acyclic complexes in D(Flat X), by
[Mu07, Proposition 5.2]. But there is a Verdier quotient

D(Flat X) → D(Qco X)

with kernel Dac(Flat X), so it follows that

HomD(Flat X)

(
F F ,Σ iFρ(G)

) ∼= HomD(Flat X)

(
F F ,Σ i F G

)
∼= HomD(Qco X)

(
F ,Σ i G

)
= Exti

X (F , G)

as claimed. �
Consider an F-complete flat resolution T F → F F → Z F � of F . Applying the functor

HomD(Flat X)( ,Σ iFρ(G)) we get induced morphisms on cohomology

ηi(X, Y ) : HomD(Flat X)

(
F F ,Σ iFρ(G)

) → Êxt
i
F(X, Y ).

Now assume that F is a homologically bounded below complex of finite F-Gorenstein flat dimension
and that G is a cotorsion sheaf. Using the straightforward generalization of Theorem 3.15 to schemes,
there exists a flat resolution F F of F and an integer n < inf F such that Ker∂n

F F
is F-Gorenstein flat.

Hence we get an F-complete flat resolution of F

T F → F F → Z F �

in D(Flat X), such that for all i < n, the terms of T F and F F are the same. Moreover, by Observa-
tion 6.6, G admits a flat resolution with cotorsion terms and kernels. Hence by Proposition 6.10 and
the same argument applied in Theorem 4.9, we have the following.

Theorem 6.11. Let n ∈ Z be a fixed integer and F a sheaf. Then F-GfdX F < n if and only if ηi(F , G) :

Exti
X (F , G) → Êxt

i
F(F , G) is an isomorphism, for any cotorsion sheaf G and all integers i > n.
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The following theorem is some kind of ‘balanced theorem’ for Tate cohomologies.

Theorem 6.12. Let F be a homologically bounded below complex of sheaves with F-GfdX F < ∞ and G be
a cotorsion sheaf with GidX G < ∞. Then for any integer i,

Êxt
i
F(F , G) ∼= êxti

X (F , G).

Proof. By Theorem 6.11, Êxt
i
F(F , G) ∼= Exti

X (F , G), for all i � 0. On the other hand, since GidA G < ∞,

by [Kra05, Proposition 7.10], êxti
X (F , G) ∼= Exti

X (F , G), for all i > GidA G . So for i big enough, we

have Êxt
i
F(F , G) ∼= êxti

X (F , G). Now the proof can be extended to any integer i, using the dimension
shifting trick. �

Towards the end of this subsection, we study F-Tate cohomology groups over locally Gorenstein
schemes. Recall that a noetherian scheme X is called locally Gorenstein if its local rings are all Goren-
stein rings.

Proposition 6.13. Suppose X is locally Gorenstein and has finite Krull dimension. Then:

(i) Any injective sheaf is of finite flat dimension.
(ii) Any flat sheaf is of finite injective dimension.

Proof. (i) Consider an affine open cover U = {U0, . . . , Ud} of X , where Ui = Spec(Ai) and let I be
an injective sheaf. For any i, set M̃i = I|Ui and let Ii be the injective envelope of the Ai -module Mi .
By the proof of Corollary 3.6 of [Ha77, Chapter III], there exists an injection I → ⊕ f∗( Ĩ i) of sheaves.
Here, for each i, f : Ui → X denotes the inclusion. Since I is injective, this injection is split. So it is
enough for us to show that, for all i = 0, . . . ,d, f∗( Ĩ i) has finite flat dimension. To see this, note that
since Ai is Gorenstein, fdAi Ii is finite, say t . Let 0 → Ft → Ft−1 → ·· · → F1 → F0 → Ii → 0 be a flat
resolution of Ii . Take˜and apply f∗ on the resulting sequence, give us a flat resolution of f∗( Ĩ i). This
completes the proof.

(ii) First assume that F is a cotorsion flat sheaf. By [MS09, Proposition 3.3] the pure monomor-
phism F → (F )+ = Homqc(Homqc(F , E ), E ) is split, where E is an injective cogenerator for Qco(X).
But Homqc(F , E ) is injective and hence by part (i) has finite flat dimension. Therefore id(F +) < ∞
and hence id F is finite. Now since dim X is finite, in view of Lemma 6.9, we may deduce that
the pure injective dimension of any flat O X -module is finite. This means that any flat sheaf F
admits a right resolution of finite length by cotorsion flat sheaves. This implies easily that id F is
finite. �

Our last corollary can be proved in view of the above proposition, Theorems 6.11 and 6.12 and
applying the ideas of [AS06a, Theorem 3.2] and [AS07, Proposition 3.3.1]. So we skip the proof.

Corollary 6.14. Suppose X has finite Krull dimension. The following are equivalent.

(i) X is locally Gorenstein.
(ii) The injective dimension of any homologically bounded above complex F of flat sheaves is finite.

(iii) The flat dimension of any homologically bounded below complex G of injective sheaves is finite.
(iv) The Gorenstein injective dimension of any homologically bounded above complex F of sheaves is finite.
(v) The F-Gorenstein flat dimension of any homologically bounded below complex G of sheaves is finite.

(vi) For any homologically bounded below complex F and any homologically bounded above complex G of

sheaves, we have Êxt
i
F(F , G) ∼= êxti

X (F , G), for all integers i ∈ Z.

(vii) The maps ηi(F , G) : Exti
X (F , G) → Êxt

i
F(F , G) are isomorphisms, for all integers i, any sheaf F and any

cotorsion sheaf G .
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