Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

Manish Sharma a, Y.K. Awasthi b,*, Himanshu Singh c, Raj Kumar d, Sarita Kumari e

a Department of Electronics Engineering, Banasthali University, Rajasthan & Aravali College of Engineering and Management, Faridabad, India
b Department of Electronics & Communication Engineering, Antenna Fabrication & Measurement Laboratory, Manav Rachna University, Faridabad, Haryana 121003, India
c Department of Electronic Science, Sri Aurobindo College, (University of Delhi) Malviya Nagar, New Delhi 110017, India
d Department of Electronics & Communication Engineering, M R K Institute of Engineering & Technology, Rewari, Haryana 123401, India
e University of Rajasthan, Jaipur, Rajasthan 302004, India

A B S T R A C T

In this paper, small printed urn-shape triple notch ultra-wideband (UWB) monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz), WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz), and X-band downlink satellite system (7.25–7.75 GHz) and other multiple wireless services as close range radar (8–12 GHz) in X-band & satellite communication (12–18 GHz) in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz) and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz). In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

1. Introduction

Since the Federal Communication Commission (FCC) introduced the unlicensed ultra-wideband (UWB) from 3.1 to 10.6 GHz with 109.5% fractional bandwidth for commercial communication applications, many types of UWB antenna have been reported. Additional extra frequency band at 2.4 GHz (Bluetooth band) and two frequency notch-bands (WiMAX/WLAN) are created by inserting the stubs of quarter-wavelength to the ground plane near the feed line. The impedance bandwidth is increased by beveling lower edge of the slot near the feed line by an angle \(\alpha \) [1]. A T-shaped stub in the radiating patch and two U-shaped stubs beside the feed line are realized to obtain dual-band-notch characteristics. Impedance bandwidth is tuned by optimizing the gap between radiation patch and ground plane. The beveled ground plane provides smooth transition from one resonance mode to another ensuring good impedance bandwidth and stable gain [2]. Additional resonance is excited and bandwidth is improved by cutting an inverted Fork-shaped slit on the ground plane. The notch for the desired bands is achieved by electromagnetically coupling between coupled inverted U-ring strip and cross-shaped radiating patch. By cutting an inverted T-shaped slot impedance bandwidth at high frequency is obtained [3]. Moreover, C-shaped slot surrounding T-shaped slot and adding an inverted T-shaped parasitic structure inside the inverted T-shaped slot on the radiating patch yields dual band-notch function [4]. As reported, a T-shaped slot in the radiating patch provides strong notch band rejections up to VSWR = 26 which is tunable over a wide frequency range from 3.55 GHz to 6.80 GHz [5]. A microstrip-line feed beak-shaped monopole-like slot UWB antenna finds its applications in UWB, Bluetooth, GSM and GPS wireless communication systems. Two rectangular slot in the beak-shaped radiator and the hexagonal-shaped DGS are used to obtain GPS (1.520–1.590 GHz), GSM (1.770–1.840 GHz) and Bluetooth (92.385–2.490 GHz). Furthermore, bandwidth of the antenna is enhanced by etching a triangular slot at the junction of patch and feed line [6]. As reported in [7], multi-band planar monopole is obtained firstly by etching center portion of the radiating patch which is diamond-like shape and secondly by inserting quarter wavelength slits on the central part of radiating patch. Quarter wavelength slits corresponds to frequency bands of 1.3 GHz (GPS), 1.8 GHz (GSM), 2.4 GHz (Lower band WLAN) and diamond-shape radiating patch corresponds to UWB band.
monopole antenna which operates in dual band (WLAN/UWB) is reported for Multi-Input–Multi-Output/Division applications consisting U-shaped patch along with T-shaped monopole patch and pentagonal wide slot ground plane. The metallic surfaces of microstrip antennas cause a large RCS values. But RCS reduction in the ultra-wideband range is difficult. So an Octagonal-shaped antenna with reduced Radar Cross Section (RCS) is reported to cover extended UWB (2.5–18.0 GHz) with 151% fractional bandwidth [9]. However, promising mechanical and thermal properties of thermoplastic acrylonitrile butadiene styrene polycarbonate (ABC-PC) substrate has been reported for integration in molded interconnects devices technology [10]. Due to reduction in size and symmetric in shape, monopole and quasi-monopole antennas are easily incorporable solutions for portable devices [11]. Therefore, Vivaldi antenna with the dimensions of $42 \times 36 \times 1.6 \text{ mm}^3$ is reported. Structural modification in the radiating fins has increased the electrical length thereby reducing the lower operating frequency from 5.2 GHz to 3.7 GHz and antenna maintains -20 dB co-polarization to cross-polarization ratio throughout the bandwidth [12]. A switchable monopole antenna in UWB band and dual-band mode is triggered by LED. In the switch-off mode, antenna operates in UWB band while in switch-ON state the configuration converts to dual-band antenna due to extended ground plane [13]. A single notch UWB antenna is reported in [14] which consist of fractal patch with an array of fractal unit cells oriented to resemble the branches of tree. To obtain WiMAX (IEEE 802.16) and C-band systems, T-shaped stub is embedded on the fractal patch. Electromagnetic coupling theory (ECT) can create band-notch function by butterfly-shape parasitic element on backplane of radiating patch and 155% bandwidth enhancement is achieved by rectangular shaped slots on ground plane [15]. A conical shape monopole antenna for UWB applications has been reported with multiple wireless applications including close range radar & satellite communication [16–18]. Fractal Koch along with T-shaped stub results in triple-notch band which are centered at 2 GHz, 3.5 GHz and 5.8 GHz respectively for Personal Communication Systems (PCS), Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) is reported in [20]. Reported antenna has maximum gain of 6.5 dBi. Introduction of two arc shaped elliptical slots on the circular ring radiating patch with a pair of rectangular single split ring resonators near the feed line can band notch WiMAX/WLAN/X-band downlink satellite system [21–29]. Furthermore, by incorporating an inverted U-slot and an inverted C-slot etched on radiating patch with a U-slot on the microstrip feed line are responsible for tri-band notch characteristics (3.3–3.8, 5.15–5.825, 7.1–7.9 GHz) [30]. Moreover, tri-notch band characteristics is also obtained on semicircular radiating patch and a modified ground plane with two bevels at upper edge by etching two round shape slots in radiating patch and pair of rotated V-shaped slot in ground plane [31]. Uniform omnidirectional patterns and stable linear polarizations can be developed by introducing a ground-cooperative radiating structure (GCRS) into the metal ground of a prototype defected hexagonal monopole antenna (HMA) [32]. Multimode-resonator filter consisting of a single-wing element is combined with the modified slot UWB antenna providing a 6 dB increase in the realized gain near 10 GHz [33]. A CPW fed monopole with spiral slot etched on the patch is reported. Tri-notch bands can be obtained by varying the length of a single spiral slot and dual polarization UWB achieved by slotted monopole antenna [34–35]. Thus, the microstrip UWB antenna designs have promising application values because of its low profile, easy fabrication and low production cost.

The design of UWB antenna with triple notch in low profile has two critical problems. One is to introduce triple band-notch in very small size; the second is to preserve radiation properties of antenna in the whole operation band. To overcome these problems, we present a very small high rejection triple band-notch UWB antenna, reducing the size $(20 \times 20 \times 0.787 \text{ mm}^3)$ by 55% in comparison with the previously published work as compares in Table 2 and also wider bandwidth for multiple wireless services including close range radar: 8–12 GHz in X-band & satellite communication: 12–18 GHz in Ku-band is obtained (2.49–19.41 GHz) by embedding dual identical ellipse on hexagonal radiating patch. A T-shape stub along with two C-shape slots in the radiating patch is responsible for triple band-notch characteristics. Meanwhile, this antenna exhibits excellent time domain analysis with almost constant group delay of variation less than 1.0 ns. These merits make it qualified as a compact multifunctional antenna to reduce the number of antennas installed in compact wireless devices for wireless applications. The radiation patterns and scattering characteristics are simulated and experimentally verified.

2. Antenna design and analysis

Geometry of proposed antenna with the capability adding rejecting bands is shown in Fig. 1. The proposed antenna is printed on Rogers RT/Duroid 5880 substrate of thickness 0.787 mm with relative permittivity $\varepsilon_r = 2.33$, tan $\delta = 0.012$. From Fig. 1(a), antenna has compact dimensions of $W_{\text{sub}} \times L_{\text{sub}} = 20 \times 20 \text{ mm}^2$ or about 0.28λ × 0.28λ at 4.2 GHz (λ corresponds to first resonance frequency at 4.2 GHz) which is fed with 50Ω microstrip line with optimized dimensions of $W_r \times L_r$. The basic antenna structure consisting radiating patch as shown in Fig. 1(b) comprises of basic hexagonal shape, each side of 8 mm merged with two identical ellipses of major radius 9 mm by eccentricity ratio of 0.33 is embedded for wider bandwidth and ground plane dimensions of $W_g \times L_g = 20 \times 5 \text{ mm}^2$. Fig. 1(c) represents front view of antenna with triple band-notch function. A T-shape stub is inserted on the radiating patch for WiMAX band and two C-shaped slots for WLAN and X-band downlink satellite system. The parameters of proposed antenna are optimized using ANSYS High Frequency Structural Simulator (HFSS). The length of the first, second and third notches are calculated by using following equations and width of stub and slots is optimized with 0.5 mm. The value of $f_{\text{Notch}1}$, $f_{\text{Notch}2}$ and $f_{\text{Notch}3}$ are calculated at center notched frequency of 3.56 GHz, 5.58 GHz and 7.47 GHz respectively.

\[L_{\text{Notch}1} = \frac{c}{2 \times f_{\text{CenterFrequency}}} \]
\[e_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + \frac{12}{W_f} \frac{\lambda}{\lambda_f} \right] \]

where c is speed of EM wave in free space and is given by $c = 3 \times 10^8 \text{ m/s}$. From Ref. [19], effective relative permittivity of substrate is calculated $e_{\text{eff}} = \frac{W_f}{\varepsilon_r \varepsilon_f}$, f_{eff}. Optimized parameter of the proposed antenna are as follows: $W_{\text{sub}} = 20 \text{ mm}$, $L_{\text{sub}} = 20 \text{ mm}$, $W_g = 0.787 \text{ mm}$, $W_f = 8 \text{ mm}$, $W_{\text{eff}} = 9.71 \text{ mm}$, $W_r = 2 \text{ mm}$, $L_r = 6.0 \text{ mm}$, $L_g = 20 \text{ mm}$, $L_f = 5 \text{ mm}$, $S_1 = 12 \text{ mm}$, $S_2 = 6 \text{ mm}$, $T_1 = 5 \text{ mm}$, $T_2 = 11 \text{ mm}$, $W_1 = 9 \text{ mm}$, $W_2 = 7 \text{ mm}$, $W_3 = 3.00 \text{ mm}$, $W_4 = 2.75 \text{ mm}$, $L_1 = 4.75 \text{ mm}$, $L_2 = 3 \text{ mm}$, $t_1 = 0.5 \text{ mm}$, $t_2 = 0.5 \text{ mm}$, $t_3 = 0.5 \text{ mm}$, $L_p = 10 \text{ mm}$.

Length of each side of polygon patch is calculated by Eq. (3).

\[L_p = \frac{c}{4 \sqrt{2/(1 + e_{\text{eff}})}} \]

where f corresponds to first resonance frequency and e_{eff} is the effective permittivity. Fig. 2 shows the structure of various antennas used for simulation studies and corresponding VSWR is represented in Fig. 3. The proposed antenna with hexagonal shape radiating patch and rectangular ground plane covers partial bandwidth.
(2.97–11.14 GHz) which is shown in Fig. 3. As illustrated in Fig. 2(b), dual ellipse is embedded on the hexagonal shape radiating patch which results in extension of impedance bandwidth from 2.42 GHz to 19.12 GHz. As depicted from Fig. 3, antenna exhibits good impedance match for VSWR ≤ 2 in the entire operating band.

A inverted T-shape stub on the radiation patch as shown in Fig. 2(c) results in removal of WiMAX from 3.25 to 3.82 GHz. The WLAN band is eliminated by etching C-shape slot as shown in Fig. 2(d) removing 4.83–5.99 GHz. According to Fig. 2(e), X-band is eliminated confirming the removal of 7.18–7.72 GHz band.

From Fig. 3, simulated proposed antenna shows high band rejection at 3.56 GHz with VSWR = 9.90, 5.58 GHz with VSWR = 32.36 and 7.47 GHz with VSWR = 9.90.

3. Parametric study of high band rejection

The proposed antenna is optimized and investigated by full wave EM solver, Ansoft HFSS. The centre frequency of notch bands along with peak value of VSWRs is controlled by the length of inverted stub and slots, as described below:

3.1. Effect of stub length (T₁)

Fig. 4(a) represents simulated parametric variation of T₁ with constant value of T₂ (11 mm) for WiMAX band. By varying T₁ of T-shaped stub, wide shift of band-notch is observed from 3.17–3.89 GHz to 4.95–5.97 GHz which infers that length T₁ is alone capable of covering both WiMAX and WLAN bands with VSWR varying from 55.81 to 12.87 respectively. The length of T₁ from 2.0 mm to 5.0 mm is varied and shifting of band can be seen from higher to lower frequency side. The length T₁ is tuned to 5 mm with maximum VSWR of 55.81 to achieve intended notch band.

During optimization of T₁, it has been observed that impedance bandwidth is maintained in the entire band (2.49–19.41 GHz) significantly.

3.2. Effect of stub length (T₂)

Fig. 4(b) represents simulated parametric variation of T₂ with constant value of T₁ (5 mm) for WiMAX band. By varying T₂
of T-shaped stub, wider shift of band-notch is observed from 3.35–3.85 GHz to 4.89–5.89 GHz which infers that length T_2 is alone capable of covering both WiMAX and WLAN bands with VSWR varying from 78.81 to 15.20 respectively. The length of T_2 from 3.0 mm to 11.0 mm is varied and shifting of band can be seen from higher to lower frequency side. The length T_2 is tuned to 11 mm with maximum VSWR of 55.81 to achieve intended notch band. The total length of the stub is given by $L_{First\ Notch} = T_1 + T_2$ and optimized values of T_1 and T_2 results in WiMAX band (3.25–3.82 GHz). During optimization of T_2, it has been observed that impedance bandwidth is maintained in the entire band (2.49–19.41 GHz) significantly.

3.3. Effect of slot length (W_4)

For the second notch as shown in Fig. 4(c), centered at 5.58 GHz, length of the second slot is calculated as $L_{Second\ Notch} = W_4 + 2(W_4 + L_1)$ mm. By varying W_4 from 2.75 mm to 3.25 mm, VSWR curve shifts from higher to lower frequency band. Also by optimizing $W_4 = 2.75$ mm desired WLAN band (4.83–5.99 GHz) is achieved. VSWR values at notch varies from 31.72 to 32.44. Impedance bandwidth in the entire band (2.49–19.41 GHz) is also maintained appreciably throughout optimization of W_4.

3.4. Effect of slot length (W_3)

For the third notch as shown in Fig. 4(d), centered at 7.47 GHz, length of the second slot is calculated as $L_{Third\ Notch} = W_3 + 2(W_3 + L_2)$ mm. By varying W_3 from 2.0 mm to 3.0 mm, VSWR curve shifts from higher to lower frequency band. By optimizing $W_3 = 3.0$ mm desired X-band (6.89–8.10 GHz) is achieved. VSWR values at notch varies from 5.83 to 10.23. Impedance bandwidth in the entire band (2.49–19.41 GHz) is also maintained appreciably throughout optimization of W_3.

UWB devices did cause interference to the station when they were operated in close proximity and particularly within the main lobe of the antenna of the satellite receiving station. More UWB devices also caused more interference because of their aggregated effect. If UWB devices with output power spectral density of -41.3 dBm/MHz are to operate at the X-band, we should not allow such devices to go near to the X-band TV satellite receiver. If they are moved to 10 m away, the interference effect can be negligible. So, preferable a “No UWB Device” zone with radius at least 10 m should be declared surrounding the dish antenna of satellite receiver and hence the interference is mitigated. But in the latest technology 10 m radius is too large. Therefore, to avoid interference we introduced notch in X-band so that the UWB devices can be installed in close vicinity. So, the third notch (X-band: 7.25–7.75 GHz) is required.

3.5. Effect of stub width t_1, slot width t_2 and t_3

Table 1 represents simulated parametric variation of stub width t_1, slot width t_2 and t_3. Optimized values are given below.

The reason behind optimization analysis for three notch bands is due to the interferences of these narrow bands communication system with UWB systems should be avoided for better performance as well as increasing the level of power emission. However, the use of band stop filter requires more space to integrate, and it also increases the cost and complexity of the system. A better way
to avoid interference is using UWB antenna with band notch characteristics.

4. Analysis of current distribution, input impedance and time domain analysis

In order to understand the phenomenon behind this triple band-stop performance, the simulated current distribution for the proposed antenna at the notch frequencies (3.56, 5.58 and 7.47 GHz) presented in Fig. 5.

As illustrated in Fig. 5(a) for the first notched-band current density is concentrated more at the inverted T-shaped stub (WiMAX), for the second notched-band current density distribution is concentrated at the inner and outer edge of the larger C-shaped slot (WLAN) as shown in Fig. 5(b) and Fig. 5(c) represents current density concentration at the smaller C-shaped slot (X-band). Furthermore, the strong current distributions around stub/slots at the notched frequency leads to near field radiation counteracted, due to which high energy is reflected back to the input port and the band-notched characteristics achieved. It is also can be noticed that in Fig. 5(a)–(c) there are very low mutually coupling at notch frequencies, which indicate that each rejected band can be controlled independently. In addition it is also observed that at entire frequency pass band except triple band-notch, the surface current is distributed uniformly over antenna.

It can be observed from Fig. 6(a), impedance bandwidth from 2.90 to 19.32 GHz. It is clear from Smith chart in Fig. 6(b) that all the three notch band for WiMAX (3.24–3.83 GHz), WLAN (4.86–5.99 GHz) and X-band (7.18–7.76 GHz) are rejected. For remaining UWB band the smith curve is well below VSWR = 2.0.

The simulated input signal and impulse response for the proposed antenna is shown in Fig. 7(a). Pulse distortion which is one of the characteristics of UWB signals is essentially determined by their wide bandwidth. To overcome minimize reflection loss and to avoid pulse distortion good impedance match has to be maintained throughout the operating band. The main reason between the signal distortion as shown in Fig. 7(a) is due to mismatch between source pulse and the antenna.

As a result, some frequency components cannot be transmitted effectively by the monopole, leading to the distortions of the received signal. Fig. 7(b) represents the group delay of proposed antenna without and with notch. Group delay is an important parameter for UWB and other communications since it can judge the distortion of transmitted pulses. For the perfect pulse transmission, the group delay should be closed to a constant within the entire band. It can be also concluded that the proposed antenna has perfect performance in this aspect, which makes it quite suitable for UWB as well as other high band wireless communication.

Table 1
Parametric variation of notched-bandwidth by varying width of stub and slots (t_1, t_2, & t_3 as shown in Fig. 1c).

<table>
<thead>
<tr>
<th>t_1 (mm)</th>
<th>BW (GHz)</th>
<th>t_2 (mm)</th>
<th>BW (GHz)</th>
<th>t_3 (mm)</th>
<th>BW (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.62</td>
<td>0.25</td>
<td>0.613</td>
<td>0.25</td>
<td>0.720</td>
</tr>
<tr>
<td>0.50</td>
<td>0.53</td>
<td>0.50</td>
<td>0.688</td>
<td>0.50</td>
<td>0.813</td>
</tr>
<tr>
<td>0.75</td>
<td>0.48</td>
<td>0.75</td>
<td>0.930</td>
<td>0.75</td>
<td>1.182</td>
</tr>
</tbody>
</table>

Table 2
Comparison of the proposed antenna with several existing designs.

<table>
<thead>
<tr>
<th>Impedance bandwidth (GHz)</th>
<th>Notched bands</th>
<th>Bandwidth of notched bands</th>
<th>Maximum peak VSWR at center frequency</th>
<th>Maximum Gain (dBi)</th>
<th>Size (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50–11.85 GHz</td>
<td>WiMAX</td>
<td>3.20–3.90 GHz + 0.70 GHz</td>
<td>7.00 at 3.50 GHz</td>
<td>9.00</td>
<td>30 x 35</td>
</tr>
<tr>
<td>2.80–10.70 GHz</td>
<td>WLAN</td>
<td>5.30–6.20 GHz + 0.90 GHz</td>
<td>6.64 at 5.60 GHz</td>
<td>8.80</td>
<td>30 x 30</td>
</tr>
<tr>
<td>2.59–11.16 GHz</td>
<td>X-band</td>
<td>5.20 GHz + 6.20 GHz + 1.00 GHz</td>
<td>4.40 at 5.50 GHz</td>
<td>5.20</td>
<td>30 x 30</td>
</tr>
<tr>
<td>2.49–19.41 GHz</td>
<td>WiMAX</td>
<td>3.29–3.61 GHz + 0.32 GHz</td>
<td>5.80 at 3.40 GHz</td>
<td>5.65</td>
<td>30 x 30</td>
</tr>
<tr>
<td></td>
<td>WLAN</td>
<td>4.65–5.49 GHz + 0.84 GHz</td>
<td>6.30 at 5.30 GHz</td>
<td>5.90</td>
<td>30 x 30</td>
</tr>
<tr>
<td></td>
<td>X-band</td>
<td>7.30–8.41 GHz + 1.11 GHz</td>
<td>6.70 at 8.20 GHz</td>
<td>5.90</td>
<td>30 x 30</td>
</tr>
</tbody>
</table>

* Proposed antenna.

Fig. 5. Current density distribution (a) 3.56 GHz (b) 5.58 GHz (c) 7.47 GHz.
Fig. 6. Simulated input impedance on Smith chart (a) Proposed antenna bandwidth. (b) Triple band-notch UWB antenna.

Fig. 7. (a) Simulated time domain analysis (input signal and impulse response). (b) Simulated group delay of without and with notch of proposed antenna.

Fig. 8(a). Measured and simulated VSWR of the proposed antenna.

Fig. 8(b). Measured gain and simulated radiation efficiency of antenna.
Fig. 9. Simulated & Measured radiation pattern of E and H-plane in dB at (a) 4.0 GHz (b) 6.5 GHz (c) 10.0 GHz (d) 15.0 GHz (e) 18.0 GHz.
5. Experimental results

To demonstrate the above-discussed design strategy, an antenna prototype is fabricated. With comparison, both the measured and simulated VSWR characteristics of the proposed antenna are in good agreement within the entire band as depicted in Fig. 8 (a). The fabricated antenna has frequency band of 2.49 to over 19.41 GHz with three rejection bands around 3.17–3.89, 4.87–6.19 and 7.30–7.86 GHz. A discrepancy between the measured data and the simulated results exists, which could be due to the effect of the SMA port. By carefully performing the manufacturing and measurement process more accurate results can be obtained.

Measured gain of the proposed antenna and simple UWB-Ku band is shown in Fig. 8(b). A drop in peak gain is noted in notch measurement process more accurate results can be obtained.

The radiation of the fabricated UWB is presented in two principle planes (H-plane and E-plane). They are referred as E-plane (γ–z plane) and H-plane (x–z plane). Fig. 9 shows the normalized simulated & measured radiation pattern in E-plane and H-plane at frequencies of 4.0, 6.5, 10.0, 15.0 & 18.0 GHz.

The measured radiation pattern at the pass band frequencies shows that the antenna is able to retain its omni-directional behavior in H-plane at lower frequencies while there is a little variation at higher frequencies due to cross-polarization. However, radiation pattern at higher frequencies deteriorates due to change in area of radiation.

6. Conclusion

In this paper, a compact urn-shape antenna is successfully presented and designed with the dimensions of $20 \times 20 \times 0.787$ mm3. The antenna shows the good impedance matching characteristics within operating band from 2.49 to 19.41 GHz including three high rejection notch bands WiMAX, WLAN, and X-band downlink satellite system in UWB and multiple other wireless services as close range radar in X-band & satellite communication in Ku-band. Structural modification in the radiating patch increases the impedance bandwidth to 154.56% and achieved 55% size reduction. Proposed antenna is a good candidate for UWB and higher band communication applications.

Acknowledgement

The Authors are thankful to Krishna Ranjan Jha, Advance Microwave Antenna Testing Laboratory URL:delhi.gov.in/wps/wcm/con nect/doit_gbpec/GBPEC/Home/List+of+Labs, G. B. Pant Engineering College, Delhi for providing Antenna Measurement Facility.

References

