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Summary

Can the rapid stream of conscious experience be pre-
dicted from brain activity alone? Recently, spatial pat-
terns of activity in visual cortex have been successfully
used to predict feature-specific stimulus representa-
tions for both visible [1, 2] and invisible [2] stimuli.
However, because these studies examined only the
prediction of static and unchanging perceptual states
during extended periods of stimulation, it remains un-
clear whether activity in early visual cortex can also
predict the rapidly and spontaneously changing stream
of consciousness [3]. Here, we used binocular rivalry
[4] to induce frequent spontaneous and stochastic
changes in conscious experience without any corre-
sponding changes in sensory stimulation, while
measuring brain activity with fMRI. Using information
that was present in the multivariate pattern of re-
sponses to stimulus features, we could accurately
predict, and therefore track, participants’ conscious
experience from the fMRI signal alone while it un-
derwent many spontaneous changes. Prediction in
primary visual cortex primarily reflected eye-based
signals, whereas prediction in higher areas reflected
the color of the percept. Furthermore, accurate pre-
diction during binocular rivalry could be established
with signals recorded during stable monocular view-
ing, showing that prediction generalized across view-
ing conditions and did not require or rely on motor
responses. It is therefore possible to predict the dy-
namically changing time course of subjective experi-
ence with only brain activity.

Results

When dissimilar images are presented to the two eyes,
they compete for perceptual dominance so that each
image is visible in turn for a few seconds while the
other is suppressed. This phenomenon is known as
binocular rivalry [4]. Because perceptual transitions be-
tween each monocular view occur spontaneously with-
out any change in physical stimulation, neural re-
*Correspondence: haynes@fil.ion.ucl.ac.uk
sponses associated with conscious perception can be
distinguished from those due to sensory processing.
We measured brain activity while participants viewed a
novel binocular rivalry stimulus (see Figure 1 and Ex-
perimental Procedures) that consisted of two co-rotat-
ing orthogonal gratings (Figure 1A). This stimulus was
specially devised to ensure relatively long perceptual
dominance periods while strongly driving neuronal ac-
tivity in early visual cortex (Figures 1B and 1C). Re-
sponses from multiple concurrently recorded voxels in
early visual cortex were jointly analyzed with multivari-
ate pattern recognition applied directly to the raw
BOLD signal (Figure 2; see the Supplemental Data
available with this article online). The cortical BOLD re-
sponse pattern at each time point was assigned to one
of two groups, depending on the dominant percept at
the time it was acquired (Figure 2A; Figures S2 and S3).
One part of the data was then used to train a pattern
classifier (on a per-participant basis) to distinguish be-
tween the population responses during dominance of
either of the two percepts (Figure 2B). In a second step,
these trained classifiers were applied to independently
acquired test volumes to determine whether the time
course of rivalrous perception during their acquisition
could be predicted. Note that the data used for training
and testing were independent time series collected at
different times.

Response Patterns Reflect Dynamics
of Perceptual Dominance
We found that the detailed time course of rivalrous per-
ception could be predicted with remarkably high accu-
racy from brain activity in each scanning run (Figure
3A). Moreover, classification accuracy improved as pat-
terns of activity across larger numbers of voxels in V1
were taken into account and reached an asymptotic
value for around 20 voxels (Figure 3B). Activity from V1
was sufficient to predict with up to w80% accuracy
which of two possible rivalrous percepts a participant
was experiencing at any one time. There were no differ-
ences in predictive accuracy among signals from V1,
V2, or V3, but accuracy slightly increased to 85 percent
when signals from V1, V2, and V3 were combined. The
striking precision with which the detailed temporal dy-
namics of conscious perception were captured can be
seen in Figure 3C, which compares true and predicted
perceptual time courses for all participants. We exam-
ined the output of our classifier around the time of per-
ceptual transitions, and we found that when one of the
two percepts became perceptually dominant, the asso-
ciated pattern response was not transient, but instead
was elevated for a prolonged period (Figures 4A and
4B). This indicates that the pattern signal represented
the dominant monocular percept in a sustained fashion
and did not reflect only the transitions between percep-
tual phases. This is consistent with previous studies
that have suggested that signals in V1 can reflect per-
ceptual dominance during rivalry in a sustained fashion
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rFigure 1. Rotating Binocular Rivalry Stimulus
c(A) Stimuli comprised superimposed orthogonal red and blue grat-
tings, both rotating clockwise. They were viewed through red/blue

anaglyph glasses, so that the rotating blue grating was visible to a
the right eye and the rotating red grating to the left eye. i
(B) Participants used response buttons to continuously indicate w
during each 180 s period of scanning whether they currently per- tceived either the red or blue grating. The stimulus induced binocu-

blar rivalry during which perception alternated between the two
dmonocular views.

(C) As with previous studies on rivalry, the distribution of phase c
durations (shown here for all participants, collapsed across red and w
blue percepts) showed a skewed unimodal distribution that was a
well approximated with a γ function (solid lines). The mean phase aduration (indicated by the vertical arrow on the abscissa) was

iw10 s.
e
w

e[5]. In contrast to our successful predictions in early

visual cortex, prediction based on signals from voxels
in V5/MT was near chance level (Figure 3A). Prediction

Pwith two more-conventional analysis techniques was
Palso very poor (see Figure 3A, “combined mean” and
O“differential mean”).
“To further investigate the predictive pattern re-
csponses, we computed for each voxel an index of how
tmuch its response differed between the two perceptual
sdominance phases (for the training data sets). In many
ivoxels, the average fMRI signal intensity exhibited a
ssmall but significant bias toward one of the two per-
acepts (Figure S1). This is in accord with recent studies
tshowing that fMRI can be used to measure selective
dprocessing for features, such as orientation, that are
srepresented at a subvoxel scale [1, 2]. This probably
creflects a biased sampling by individual voxels of fea-
pture-selective cells that are spatially distributed in an

anisotropic fashion [1, 2]. Our rotating monocular stim- p
li differed in at least three featural properties: their oc-
larity, color, and relative phase. Both color and ocu-

arity are represented by neuronal activity in a spatially
istributed fashion in early visual cortex, and this distri-
ution has slight anisotropies [6, 7] that could give rise
o analogous sampling biases.

onsequences of “Eye Swapping”
o investigate the nature of such sampling biases, we
onducted a second “eye-swapping” experiment. Two
ubjects were exposed to rivalrous stimulation as be-
ore, but now the eyes to which the monocular colored
timuli were presented on each successive scanning
un were reversed. This resulted in two complementary
ata sets: one in which a red grating was presented to
he left eye and a blue grating to the right and one in
hich a blue grating was presented to the left eye and
red grating to the right. We trained classifiers with

dd runs and tested their ability to predict perception
n even runs in which the eye of stimulus origin had
een swapped (see Supplemental Data). If classifica-
ion was based on color alone, we reasoned that accu-
acy should be little changed in comparison to classify-
ng and testing on the same data set because only the
ye to which each stimulus was presented had been
wapped and not its perceived color. However, if pre-
iction depends on ocularity, then classification accu-
acy should reverse from above-chance to below-
hance performance when eye swapping occurred. In-
ermediate outcomes could reflect a balance of color
nd ocularity biases. For V1, classification accuracy did

ndeed reverse when testing and training data sets
ere from different stimulated eyes, indicating that

raining signals predicted perceptual dominance on the
asis of the eye of origin (Figure S4). In contrast, pre-
iction accuracy in V3 remained significantly above
hance after eye swapping, suggesting that prediction
as based on perceived color (Figure S4). V2 showed
n intermediate pattern of responses. These findings
re consistent with the macroscopic organization of V1

nto ocular dominance columns [7] and with the pres-
nce of color preferences in the majority of V3 cells,
hich, unlike V1, do not show strong monocular prefer-
nces [8].

rediction of Binocular Rivalry from Monocular
assive Viewing
ur data could be taken to represent a simple form of

mind reading,” in which brain responses were suffi-
ient to predict dynamic changes in conscious percep-
ion in the absence of any behavioral clues. However,
o far our method has only accomplished mind reading
n the narrowest sense because we did not demon-
trate generalization across different designs, stimuli,
nd subjects. As a first step toward such generaliza-
ion, we hypothesized that it might be possible to pre-
ict perception during rivalry on the basis of pattern
ignals acquired during stable presentation of mono-
ular images alone, in the absence of any rivalry. We
erformed a third experiment, during which two partici-
ants experienced rivalry alternating with stable pas-
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Figure 2. Full Description of Analysis Steps

(A) From each visual area (r) (V1, V2, V3, and V5/MT) and each run (i) we extracted activity from 50 voxels (defined as the 50 voxels most
strongly activated by a localizer stimulus; see Supplemental Data) to yield an activation vector for each time point (volume), xi,r(t). For each
scanning run, 140 whole-brain fMRI volumes were used. This panel shows the gray-scale-coded fMRI raw signal for each of the 140 volumes
of one run (x axis) for each of the 50 voxels entering the analysis (y axis; data from V1 of subject PS). The top row shows the perceptual time
course time delayed to account for the hemodynamic response function (for full details of this correction, see Figures S2 and S3). Each
vertical section (equivalent to data xi,r(t) from 1 time point) was labeled according to the percept that was dominant at the time it was recorded
(red = left eye, blue = right eye; see Figures S2 and S3).
(B) The data from nine runs were used to train a pattern classifier that found the projection m from the 50-dimensional space onto a single
dimension that maximally separated the responses to both categories (illustrated here with data from two voxels). This projection m was then
used for a blind categorization of data from an independent test run for which the labels were unknown. This yielded a graded measure of
categorization yi,r(t) that indicated for each time point how closely the test data xi,r(t) matched the blue or red exemplars. The graded
categorization measure is then smoothed and thresholded to yield a predicted time course (“prediction”), after which it was determined how
closely it matches the original perceptual time course. The example here shows the striking similarity between the predicted time course and
the true perceptual time course as indicated by the participant.
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Figure 3. Prediction of Perceptual Time Courses from Signals in Different Areas of Visual Cortex

(A) Classification was very accurate when based upon the multivariate spatial pattern of response areas V1, V2, or V3 (see left, “pattern”;
symbols encode the participants: circle = P.S., square = J.H., diamond = I.T., and filled circle = D.C.). Classification was even slightly better
when signals from all three early areas V1, V2, and V3 (“V1–V3”) were included. Classification based on the pattern of responses in V5/MT
was poor and barely exceeded chance level (dashed line). The figure also shows accuracy of prediction when classification was based on
the signal averaged across all stimulus-driven voxels in V1, V2, and V3 (“combined mean”), revealing that accuracy of prediction was very
low when the spatial pattern of responses was not taken into account (as would be the case for conventional voxel-based or region-of-
interest-based fMRI analyses). Accuracy was considerably better when signals were differentially averaged for all red-preferring and all blue-
preferring voxels (“differential mean”) and then entered into a 2-dimensional discriminant analysis. However, this did not reach the level of
the full multivariate classification. This is presumably because in contrast to the differential mean analysis, multivariate pattern recognition
takes the covariance between voxels into account and differentially weights each voxel by taking into account its “signal to noise” (SNR)
level, whereas the differential mean analysis can be adversely affected by strong contributions from low-SNR (i.e., low-discriminating) voxels.
All error bars represent the SEM.
(B) Prediction accuracy for signals combined from V1 to V3 (solid line) as a function of number of voxels used (averaged across participants;
error bars represent the SEM). Accuracy increased for up to w20 voxels and asymptotes at a level of around 85%.
(C) Comparison of predicted (red/blue) and true (dashed line) perceptual time courses for all participants with signals pooled across V1, V2,
and V3. The similarity between prediction and true perceptual time courses is striking, even across a time course as long as 180 s.
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Figure 4. Event-Related Pattern Responses
and Generalization of Prediction

(A) Event-related pattern signal for each sub-
ject and visual area. The raw unsmoothed
pattern signal yi,r(t) (see Figure 2B and Ex-
perimental Procedures) was averaged time
locked to perceptual changes (occurring at
0 s), with inverted polarity for red-blue and
blue-red transitions. The different visual
areas are shown in different colors (V1 = red,
V2 = green, and V3 = blue). The dashed line
shows a canonical transient BOLD response
to a single event at the time of reversal. The
pattern response switches polarity in a sus-
tained fashion, indicating that it is a correlate
of perceptual states rather than of percep-
tual changes.
(B) This becomes clear by comparing the
pattern signal (shown here for V1, averaged
across subjects, red line) to the time course
of a canonical transient BOLD response
(dashed black line). The transient model is
much shorter in comparison to the change in
the pattern signal. In contrast, a sustained
model (thick black line) more closely resem-
bles the temporal profile of the pattern re-
sponse. This model shows the expected re-
sponse if the signal reflected states rather
than changes (the sustained model was ob-
tained here by convolving the phase distri-
butions shown in Figure 1C with a canonical
hemodynamic response function, HRF,
whereas the transient model was computed
by convolving a delta-function at t = 0 s with
the same HRF).
(C) Prediction in a third experiment (see Sup-
plemental Data) with “cross training” that
used stable (monocular) stimuli that do not
require behavioral responses for training of
the pattern classifier. Average prediction
(across 4 runs) is plotted for each participant
for training and test on rivalry stimuli (black
bars), training on passively viewed stable
stimuli, and test on rivalry stimuli (white
bars), and for training and test on rivalry
stimuli recorded on two different days (gray;

error bars are one standard error). Prediction was still comfortably and significantly above chance even for cross training on different days
(Figure S6 shows why this can be expected).
(D) Example time courses from the two participants were obtained with training on stable and test on rivalrous stimuli and plotted with the
same conventions as for Figure 3C.
sive monocular viewing of each stimulus in successive
runs. Remarkably, this “cross training” procedure was
highly effective. Pattern responses to stable stimuli
were able to accurately predict the perceptual time
course elicited by subsequent presentation of rivalrous
dichoptic stimuli, with only slightly lower accuracy than
for classifiers trained on rivalrous stimuli alone (Figures
4C and 4D). There was also a close correlation between
the stimulus preference of individual voxels under sta-
ble viewing and rivalry conditions (Figure S5). This sug-
gests that our successful prediction was based on per-
ceptual (not motor) signals. Moreover, it may also in
principle permit the new possibility of prediction of fluc-
tuations in perception associated with binocular rivalry
in cases in which behavioral indicators of conscious
perception are difficult or even impossible to obtain,
for example in animals [9] or in patients suffering from
locked-in syndrome [10]. Finally, we investigated the
stability of prediction over time. When training and test
data sets were from the same subject scanned on dif-
ferent days, prediction accuracy was considerably
lower than for within-session training and test. How-
ever, accuracy was still significantly above chance (Fig-
ure 4C), indicating that generalization over time is pos-
sible (see Figure S6 for why this can be expected).

Discussion

In humans, signals from visual cortex distinguish be-
tween different dominant percepts during rivalry, sug-
gesting that the contents of visual consciousness are
reflected in the activity of visual cortex [5, 11–13]. How-
ever, these studies have relied on averaging samples
from different spatial locations (voxels) and across
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many individual measurements to improve signal qual- d
bity. This ignores any information that is present in the

spatial pattern of responses in individual samples of I
sbrain activity [1, 2, 14–17]. Importantly, by discarding

time-dependent information, these conventional pro- s
scedures could not predict the rapid dynamics with

which conscious states spontaneously change over f
itime. Recently, however, it has been shown that multi-

variate pattern recognition [1, 2, 14–17] applied to sig- a
onals from early visual cortex can be successfully used

to predict feature-specific stimulus representations for s
rboth visible [1, 2] and invisible orientation stimuli [2].

However, these studies examined only static and un- c
schanging perceptual states during extended periods of

stimulation, so it has remained unclear whether activity n
din early visual cortex can also predict the dynamic and

stochastically changing stream of conscious percep- w
mtion [3]. Our new data show that taking the full spatial

pattern of brain responses into account, it is possible p
to provide a fully automated algorithm that predicts the

Edynamically changing contents of conscious percep-
tion on a moment-by-moment basis, even under un-

Pchanging visual-stimulation conditions, such as during
Fbinocular rivalry.
s

Conceptually, our study is perhaps closest to the ob- l
servation that the interocular difference in amplitude of v

pthe visually evoked potential can be correlated with
dperceptual alternations in rivalry [18]. However, this in-
ptriguing observation unfortunately does not provide in-
sformation on the cortical sources of the underlying sig-
s

nals. Our finding significantly extends these results by p
demonstrating that there is enough information present
in the response patterns in specific early visual areas f
(V1 to V3) to allow a highly precise reconstruction of the A

ctime course of conscious perception from brain signals
aalone. Similarly, a human observer can predict the
[content of some single visual imagery trials from fMRI
1

measurements of brain activity in ventral visual areas p
[19], but this study did not address the dynamic as- r
pects of conscious perception investigated here. (

s
aImplications for Binocular Rivalry
D

In addition to demonstrating that brain activity alone
can be used to predict the time course of conscious

D
perception, our findings also shed some light on the T
biological mechanisms underlying binocular rivalry. Our f
novel rivalry stimulus engendered phase durations that V

awere substantially longer than in previous studies [5,
a11, 12]. This allowed us to demonstrate that rivalry-
wassociated activity in early visual cortex can reflect sus-
f

tained representations [5]. Thus, responses even in r
early visual areas could play a role in sustained encod- m
ing of certain low-level aspects of perception under ri-
valry in humans. Although we could predict dynamic
changes in rivalrous perception with early visual corti- S

Dcal activity alone, our data do not determine the ulti-
umate cause of these fluctuations. For example, top-
fdown influences from areas outside visual cortex may

give rise to such perceptual fluctuations [20, 21] through
Ainfluencing activity in early visual areas. Interestingly,

however, we found no clear increase in predictive accu- T
racy for brain activity taken from V1, V2, or V3. Our find- l

mings are compatible with a large and growing literature
emonstrating clear modulations of early visual cortex
y perceptual state during rivalry in humans [5, 11, 12].

n monkeys, in contrast, only weak effects of perceptual
tate are seen in V1, with stronger effects in higher vi-
ual areas [22]. This discrepancy may reflect the
tronger correlation of BOLD activity measured with
MRI with local field potentials rather than spiking activ-
ty [23]. However, it is noteworthy that we found that
ccurate prediction from V1 activity reflected the eye of
rigin of the stimulus rather than the percept. This may
uggest a reconciliation of monkey and human data if
ivalry-related signals in V1 were not directly related to
onscious perception, but to eye-specific control of vi-
ual input, for example by attenuating input from the
ondominant eye [24]. In contrast, we found that pre-
iction in V3 was dominated by the color of the percept,
hich might in turn point toward a stronger involve-
ent of higher visual areas in encoding our conscious
erceptual experience [22].

xperimental Procedures

articipants and Experimental Design
our healthy volunteers 30–34 years old gave written informed con-
ent to participate in the experiments, which were approved by the

ocal ethics committee. In the first experiment, four subjects
iewed rivaling red and blue grating stimuli (see Figure 1; see Sup-
lemental Data for full methods) presented continuously for 180 s
uring each run. In the second experiment (Figure S4), we again
resented rivalry stimuli to two of our subjects, but we now
witched the eye to which each stimulus was presented on succes-
ive scanning runs. In the third experiment (Figures 4C and 4D), we
resented rivalry and stable viewing stimuli in alternating runs.

MRI Acquisition
Siemens Allegra 3T scanner with Nova Medical occipital surface

oil was used to acquire functional MRI EPI volumes with 20 slices
t an isotropic resolution of 3 × 3 × 3 mm (TR = 1300 ms; echo time
TE] = 30 ms; flip angle = 60°). In the first experiment, we acquired
0 runs of 145 functional MRI volumes, in the second (“eye swap-
ing”), we acquired 8 runs of 125 volumes (4 rivalry with left eye
ed, right eye blue, 4 with the opposite ocularity), and in the third
“cross training”), we acquired 8 runs of 125 volumes (4 rivalry, 4
table). We also acquired a stimulus localizer, a motion localizer,
nd retinotopic mapping data for each subject (see Supplemental
ata).

ata Analysis
o identify stimulus-driven cortical regions, we modeled the data
rom the localizer runs voxel-wise with a general linear model [25].
1, V2, and V3 were identified from the retinotopic mapping data
ccording to standard definitions [26] together with segmentation
nd cortical flattening in MrGray [27, 28]. Area V5/MT was identified
ith a standard motion localizer. The pattern recognition was per-

ormed without SPM with linear discriminant analysis based on the
aw fMRI signal from every voxel and every scan. For full Experi-
ental Procedures, see Figure 2 and Supplemental Data.

upplemental Data
etailed Experimental Procedures and several supplemental fig-
res are available at http://www.current-biology.com/cgi/content/
ull/15/14/1301/DC1/.
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