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TO THE MEMORY OF IRVING REINER 

It is shown that well-known product decompositions of formal power series arise 
from combinatorially defined canonical isomorphisms between the Burnside ring of 
the infinite cyclic group on the one hand and Grothendieck’s ring of formal power 
series with constant term 1 as well as the universal ring of Witt vectors on the other 
hand. ir‘, 1989 Academic Press, Inc. 

1. 1~TRoDucT10N 

Let a = a(t) = 1 + C,“= I a, . t” E Z[[t]] be a formal power series with 
integral coefficients and with constant term 1. It is well known that there 
exist uniquely determined infinite sequences b = (b,, b,, . ..). q = (ql, q2, . ..). 

and d = (d,, dz, . ..) of integers such that 

(1.1) 
1 u(t)= fi - 

( > 
h 

n=, 1-t” 

=p, i$ 
= exp (j- f d.r”-‘dt) 

n=l 

and that for any n E N := { 1,2,3, . . . > the b,, q,,, and d, can be computed 
from the a,, . . . . a, by evaluating certain uniquely determined universal 
polynomials B(x,, . . . . x,), Q(x,, . . . . +Y~), and D(x,, . . . . x,) in Q[xl, . . . . x,1 
at x, = a, ) . ..) x,, = a,. Moreover any sequence b = (b,, b,, . ..) or 

1 
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q = (q,, q2, . ..) of integers can occur that way, while a sequence 
d = (d,, dz, . ..) of integers occurs that way if and only if 

(1.2) i dci,,,=x cp (y) dj=O (modn) 
i=l iln 

for all nrzN (cf. [DS2]bwhere (i, n) :=gcd(i, n) denotes the greatest 
common divisor of i and n and cp is the Euler function-or equivalently (cf. 
[Do] ) if and only if 

(1.3) (mod n) 

for all n E N-where p is the Mijbius function. 
For specific functions a = a(t) it has often proved rather useful to rewrite 

a from any one such form into another one. The formalism by which such 
rewriting can be achieved has also been studied and has been related to the 
universal ring of Witt vectors and the necklace algebra (cf. [C, MRl]). 
In this paper we want to propose a surprisingly simple combinatorial 
interpretation of the relations between the various parameter systems 
( a,, a,, . ..). (b,, b2, . ..). (q,, q2, . ..). and (d,, d2, . ..) associated with a given 
a = a(t). 

More precisely, let C denote the (multiplicatively written) infinite cyclic 
group with neutral element 1. A set X on which C is acting from the left 
will be called a cyclic set-as suggested by G.-C. Rota. The orbit of an 
element of the cyclic set X is a finite or an infinite cycle. Since cycles of 
equal length are isomorphic as cyclic sets we may denote the cycle of length 
n,nEN o. := N u {co }, by C(n). Note that every cyclic set decomposes 
uniquely into a disjoint union of cycles. 

A cyclic set X containing no infinite cycles will be called an almost finite 
cyclic set if in addition for every integer n there are only finitely many 
cycles contained in X which have length n. Since the disjoint union X, u X, 
and the Cartesian product X, x X, of two almost finite cyclic sets X, and X, 
again are almost finite cyclic sets, we may consider the Burnside- 
Grothendieck ring b(C) (of isomorphism classes) of almost finite cyclic 
sets. Often we shall identify an almost finite cyclic set X with the element 
[X] in b(C) represented by it. 

Note that the Burnside-Grothendieck ring Q(C) of finite cyclic sets is a 
proper subring of d(C). We shall see in a moment that b(C) is a complete 
topological ring with respect to a canonical topology which can be defined 
on it and that Q(C) is a dense subring of a(C) with respect to that 
topology. 

If one associates to an almost finite’ cyclic set X the number cp&X) of 
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those elements of X which are invariant under the operation of the unique 
subgroup C” of C which has the index n in C, then the map XI-+ rp&X) 
extends to a ring homomorphism ‘pc,,: d(C) + Z. The family of ring 
homomorphisms ‘pen provides us with another ring homomorphism 

(1.4) cj := n cpcn: d(C) -+ gh(C) := ZN with (@(x))(n) := cp&-u), 
IlEN 

where the ghost ring gh(Ctwel1 known from the context of Witt vectors 
(cf. [L])-is defined to be the ring of all maps a: N + Z with addition and 
multiplication defined componentwise. It follows easily from arguments 
already well known to Burnside that 4: b(C) + gh(C) is injective. It is also 
well known (cf. [Do, DS2, Dr3, tD]) that @ is not surjective and that 
dEgh(C) is in the image of 4 if and only if 

(1.5) i d(gcd(i,n))=xq(y).d(i)=O (modn) 
i=l iln 

or equivalently if and only if 

(1.6) (mod n) 

for all n E N. In particular, 6(C) is a complete topological ring with respect 
to the coarsest topology on d(C) for which all the maps yen from d(C) 
into the discrete ring Z are continuous and the image of Q(C) under the 
continuous injection @: d(C) + gh(C) is a closed subring of gh(C) if 
gh(C) z nF= I Z is provided with the product topology. Of course, it is this 
topology, for which Q(C) is a dense subring of d(C) (i.e., b(C) could also 
have been defined as the completion of Q(C), if Q(C) is provided with the 
coarsest topology, for which all the maps cpcn: Q(C) + Z are continuous). 
We prefer the definition in terms of almost finite cyclic sets, given above, 
since it does not need any topological considerations. 

The present paper will mainly be concerned with the commutative 
diagram 

NrW) 

(1.7) 

I interpretation 

W(Z) T ’ m3 SI A(Z) 

@ 
I 

@ 
I 

L 
I 

nz 
obvious 

- &CC) 
Identdicatmn , tzCCt,, 

N 
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where the upper horizontal arrows r and S, are combinatorially defined 
canonical isomorphisms and the vertical arrow interpretation as well as 
the lower horizontal arrows obvious and identification are canonical 
isomorphisms resulting from inspection. As usual W(Z) denotes the univer- 
sal ring of Witt vectors and ,4(Z) = 1 + tZ[ [t]] is the multiplicative group 
of formal power series with integer coefficients and constant term 1 which 
can be considered as the additive group of a commutative ring whose 
multiplication has been introduced by A. Grothendieck in terms of certain 
universal polynomials (cf. [Gr]). The ring homormorphism @ has been 
defined by P. Cartier in [C] and the functorial mapping Lz is given by 
logarithmic derivative (cf. [E, Gal), i.e., by 

(l-8) 
a’(t) a(t)uL,(a(t)):=t.-$loga(t)=t.- 
a(t) ’ 

Moreover, the composition W(Z) -% A(Z) coincides with the 
isomorphism E: W(Z) --) A(Z) which has been defined by P. Cartier in [C] 
in a purely formal way. 

It will turn out that the above diagram is closely related to the rewriting 
procedures for formal power series mentioned above. More precisely, for a 
sequence b = (b,, b,, . ..) of integers let 

(1.9) X(b) := f 6, -C(n) E d(C) 
n=l 

denote the almost finite (and in case 6, < 0 for some n only ,,virtual”) cyclic 
set with exactly b, cycles of length n. In other words, if I+ := 
{n EN 1 b, > 0} and I- := {n E N 1 b, < 0}, then X(b) is the formal difference 
of the two almost finite cyclic sets 

(1.10) X+(b) := u b, .C(n) 
nEI+ 

(1.11) X-(b) := u (-b,).C(n), 
lIEI- 

considered as elements in d(C), where-as usual-for an integer b E N and 
a cyclic set X the product b. X denotes the disjoint union of b copies of X. 

Recall that the necklace algebra Nr(Z) with integer coefficients as defined 
by N. Metropolis and G.-C. Rota in [MRl] is the set ZN of infinite 
sequences of integers with addition defined componentwise while the nth 
component of the product of two sequences b = (b,, b,, . ..) and b’= 
(b;, b;, . ..) is given by 

(1.12) (b . b’), := c (i, j) . bib;, 
[i,j]=n 
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where-as usual-[& j] := lcm(i, j) is the least common multiple of the 
integers i. It will be easy to deduce from this definition our first theorem: 

THEOREM 1. The interpretation map 

ZN --+ LyC) 

b w X(b) 

defines a ring isomorphism 

itp = interpretation: Nr(Z) -+ d(C). 

It was this interpretation of the necklace algebra in terms of cyclic sets 
which started our investigations in this field. 

The next results provide combinatorial interpretations of more formally 
defined isomorphisms between Nr(Z), A(Z), and W(Z), studied in [MRl]. 
Here we have 

THEOREM 2. Iffor the sequence b= (b,, b,, . ..) of integers the (virtual) 
cyclic set X(b) is defined as above and IT 

& = cp,OV)) = cPcdX+(b)) - cp,G-(b)) 

for n = 1, 2, . . . . i.e., if 

d=(d,,d,,...)Egh(C)=ZN 

is the image of X(b) under the map 

t$ := n cpcn: d(C) + gh(C) 
tlEN 

as defined above, then the sequence d is related to the sequence b by 

Moreover the composition Nr(Z) itp 1 . - Q(C) -% gh(C) coincides module the 
obvious identification of the ghost ring and nN Z with the map 

gh: Nr( Z) -+ n Z 
N 

b = (b,, b,, . ..) H gh(b) = 6, where (6), := 1 i. bi. 
i/n 



6 DRESS AND SIEBENEICHER 

Similarly let F(X) denote the nth symmetric power of the cyclic set X, 
i.e., the set of all maps g: X+ N 0 := N u { 0} with finite support and with 
C,, X g(x) = n, which is a cyclic set via the canonical action of C on F(X) 
given by 

(1.13) c x S”(X) 4 F(X) 

(z, g) H (z . g: X + No) with z . g defined by (z . g)(x) = g(z-‘x). 

Note that S”(X) is almost finite if X is almost finite and that 

(1.14) S”(X, l-l X,) z u S’(X,) x Sj(X,) 
i+j=n 

(see, for instance, [DS2]). On the level of the Burnside ring, the relation 
(1.14) can be interpreted as follows: associate with any almost finite cyclic 
set X the formal power series 

(1.15) s,(X) := 1 + f cpc(S”(X)) . t” 
n=l 

= 1 + (p&3’(X)). t + cpc(S2(X)). t2 + . . . E A(Z). 

Then 

(1.16) SAXI l-i X*) = st(X,) .st(X2). 

Hence, the map s, extends naturally to an additive/multiplicative 
homomorphism, also denoted by s, from a(C) into A(X) satisfying 

(1.17) S,(Xl +x2) = St@,) -s,(x2). 

We claim 

THEOREM 3. Zf A(Z) = 1 + tZ[ [t]] is provided with Grothendieck’s ring 
structure, then 

s,: B(C) + A(Z) 

becomes a ring isomorphism. Moreover, if a = (a,, a,, . ..) and b = (b,, b,, . ..) 
are two sequences of integers as above, then 

s,(X(b)) = 1 + 2 a,. t”, 
“=I 

i.e., 

cpdS”Gf(b))) = anr 
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if and only if 

!,(j--$)bn=l+ f a;t”. 
n=l 

In particular, the isomorphism s, maps the cycle C(n) of length n onto the 
series l/( 1 - t”) = 1 + t” + t*” + . . . 

Finally, the canonical isomorphism t: W(Z) + b(C) will be defined in 
such a way that for a given (universal) Witt vector q = (q,, q2, . ..)E 
W(Z)-i.e., for any infinite sequence q = (ql, q2, . ..) of integers, interpreted 
as an element of the universal ring W(Z) of Witt vectors according to 
[B, C], or [L]+one has 

(1.18) 

if and only if 

z(q) = X(b). 

To define r consider for any q1 E N, the set q$” of congruence maps from 
C into the finite set 41 := { 1, 2, . . . . ql}, i.e., of such maps g: C + G for 
which there exists some integer neN such that g(z,)= g(z*) for all 
z,,z,~C for which zrz;’ EC” = {z”jz~C}. Note that 41” is an almost 
finite cyclic set with respect to the canonical C-action on qic’ given by 

(1.19) c x q!C’ -+ q!C’ 

kg) t-+ (=. g: c + 4,) with (z g)(Y) = g(z-‘z’) 

and that moreover 

(1.20) (ql . q;)‘C’ 2 q\C’ x q;‘? 

One easily checks that 

(1.21) q+“(p) = # (G’c’) = # (G(“)) = q; 

and that the map 

(1.22) N + L?(C) 

41 H 9’IC’ 
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has a canonical extension Z + d(C) (also denoted by q1 H 4:“) such that 

(1.23) %dq?) = 4; 

for all q, E Z. 
Obviously 

(1.24) @Gf’) = (41,& ..-> 4;, -.I 

and therefore 

(1.25) s,(qic)) = exp f q;t”-‘dt 
tl=l 

1 
c-c 

l-41t 
1+ 2 4;. t”. 

ll=l 

To extend the map Z + d(C): q, H qic’ to a map from W(Z) into L&C) 
one has to observe that for any almost finite cyclic set X and any integer 
n E N one has another almost finite cyclic set ind,X defined by induction 
with respect to the nth power map on : C + C: z H z”. To define ind,X one 
considers the Cartesian product C x X as a cyclic set relative to the C-action 

(1.26) cx(cxx)+cxx 

(24, (z, x)) H (ZUP, 24x). 

Then ind,X is defined as the set of C-orbits (Iz, XII := C . (z, x) in C x X 
with respect to this action. The group C acts again on this orbit space via 

(1.27) Cxind,X+ind,X 

(2’9 llz, XII I++ llz’z, XII. 

On can show that ind, is well-defined and additive, i.e., that 

(1.28) ind,(X, u X,) z ind,X, u ind,X, 

and that 

(1.29) ind,(C(i)) z C(ni), 

which shows that these two properties could also have been used to define 
ind,X in a purely formal way. In particular ind, induces an additive map, 
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also denoted by ind, from d(C) into itself such that X(b) is mapped onto 
X(b'), where 

(1.30) b’(j) = ;(jh) if n divides j 
otherwise. 

One can also show that 

(1.31) cp&ind,X) = 
n. Vpl4-V if n divides m 
o 

otherwise 

and therefore 

(1.32) 
if n divides m 
otherwise. 

Combining all this one can define a (well defined!) map from the set 
W(Z) := {q = (ql, q2, . ..)I qiE Z} into h(C), namely the map 

(1.33) T: W(Z) + B(C) 

q = (ql, q2, -1 H f in4,(q~c’) 
n=l 

which satisfies 

(1.34) cPcm(T(q))= 1 d.qT’d, 
d Im 

and one has 

if and only if 

(1.35) z(q) = X(b). 

In other words, we claim: 

THEOREM 4. For a sequence q = (ql, q2, . ..) of integers let T(q) denote the 
well defined (!) virtual cyclic set C,“=, ind,(qi”)E&C). Then z: ZN + 
4(C) is a ring isomorphism, zf Z” is considered as the universal ring of Witt 
vectors W(Z) with coefficients in Z as defined in [C] or [L]. Moreover, for 
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a given sequence b = (b, , b,, . . . ) of integers, as above, we have r(q) = X(b) if 
and only if 

As a consequence we get in view of (1.34), (1.5), and (1.6) (or (1.2) and 
(1.31)) the following 

COROLLARY. Given a sequence d = (d,, d2, . ..) of integers, there exists a 
sequence q = (q,, q2, . ..) of integers with 

d,,, = 1 i. qmli 
ilm 

for all m = 1, 2, . . . if and only if 

f dc,,,= C up (y)*di~O (modm) 
i= 1 ilm 

for all m = 1, 2, . . . if and only if 

(mod m) 

for all m = 1, 2, . . . . 

Remark. As shown in [DS2], the isomorphism r: W(Z) + d(C) can be 
used to introduce the concept of Witt vectors and to prove the essential 
fact that addition and multiplication in ZN = W(Z) are described by 
universal polynomials with integral coeffkients and therefore induce a 
canonical ring structure on AN = W(A) for every commutative ring A 
satisfying all the functorial properties described in [Cl. 

Another obvious, but worthwile observation concerning almost finite 
cyclic sets is that for any such X the cyclic set res,X which-as a set- 
coincides with X while C acts on res,X via nth powers, i.e., via 

(1.36) C x res, X+ res, X 

(z, x) H z”x, 

is also almost finite. Moreover the obvious isomorphisms 

(1.37) res,(X, u X,) z res, X, u res, X, 
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and 

(1.38) res,(X, x X,) z res, X, x res, X, 

show that res, induces a ring endomorphism, also denoted by res,, of 
d(C). The following theorem relates restriction and induction to Frobenius 
and Verschiebung operators, well known in the context of Witt vectors, 
and provides combinatorial proofs of the usual identities for Frobenius and 
Verschiebung. 

THEOREM 5. ( 1) res, C(m) z (n, m) . C( [n, ml/n). 

(2) ind, C(m) E C(nm). 

(3) Ker(res,)= (?c~fi(C)I(~c~(x)=O for all multiples m ofn}. 

(4) Im(ind,) = {x E d(C) 1 q,&x) = 0 for all m not divided by n}. 

(5) If the Frobenius operators f,: Nr(Z) -+ Nr(Z) and the Verschie- 
bung operators u,: Nr(Z) + Nr(Z) are defined according to [MRl] by) 

(b,, b2, . ..)H 1 (n, i)bi, 1 (n, i)bi, . . 
[n,i] =n [n, i] = Zn 

and 

(b,, b,, . ..)H ( 0, . . . . 0 , b,, 0, . . . . 0 , b,, 0, . . . . 0 , b,, . ..). 
n - 1 times n ~ 1 times n - I times 

respectively, then the diagrams 

Nr(Z) 
mterpretatmn , fi(c) 

WZ) 
interpretatton , d(C) 

f, I I ind, 

WZ) 
interpretation ) fitcl 

WZ) 
interpretation , fitcl 

are commutative. 

(6) res, 0 res, = res,, and therefore f, ofy = f,.,. 

(7) ind, 0 ind, = ind,, and therefore v, 0 v, = v,. 

(8) Frobenius reciprocity for restriction and induction: 

ind,(res,(x) y) = x . ind,( y) for all x, yESi 

and therefore 

u,(f,(x). Y) =x. U,(Y) for all x, y E Nr(Z). 
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(9) Mackey’s subgroup formula for restriction and induction: 

res,o in4 = (r, s) indCr,sl,r~ resCr,sl/s 

and therefore 

f, 0 0, = (r, s) qr,sllr~f~r,sj,s. 

As observed already by J. F. Adams [A], the fact that 

(1.14) S”(X, l-l X2) s u 9(X,) x Sj(X*) 
i+j=n 

can be used to define additive endomorphisms $” of d(C) (n = 1,2, . ..) such 
that for any (virtual) cyclic set X the identity 

(1.39) t.-$og f S&Y).r” = 
( ) 

C,“= 1 n . F(X). t” 

n=l 1 + c,“= 1 S”(X). t” 

holds in the ring &C)[[t]] of f ormal power series with coefficients in 
b(C). The Adams operations II/” have already proved useful in many situa- 
tions. In our context we have: 

THEOREM 6. The nth Adams operation Ic/“: b(C) + h(C) coincides with 
the restriction map res,: d(C) + d(C). Hence in particular, 9” is multi- 
plicative and I/PO II/“‘= $“” holds for all n, m EN, i.e., b(C) is a so-called 
special I-ring with respect to the i-ring structure defined by symmetric 
powers of cyclic sets. 

Remark. While for any group symmetric powers provide a &ring 
structure for the associated Burnside ring (cf. [DS2]), these L-rings turn 
out to be special brings if and only if the group is cyclic. (Cf. [S] for the 
case of finite groups. The argument given there generalizes immediately to 
the infinite case.) 

Finally, we will show directly, i.e., without using the ghost ring as above 
(cf. (1.25)), that the number of C-invariant elements of the nth symmetric 
power of the cyclic set qcc) equals q”. This provides a combinatorial proof 
of the so-called cyclotomic identity (cf. [MR2]) 

(1.40) 

where M(q, n) denotes the number of n-cycles in qcc). We will show that 
this identity is a simple consequence of a more general and more precise 
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result characterizing the cyclic sets q”’ (virtual if q < 0) among all (virtual) 
cyclic sets. For this purpose define for any element XE 6(C) the formal 
power series 

(1.41) S,(X) := 1 + f Sri(X). t” 
n=l 

in Grothendieck’s ring A(fi(C)) of formal power series with coefficients in 
d(C) and constant term 1. Then we have 

THEOREM 7. A (oirtuaf) almost finite syclic set x E d(C) is of the form 
qcc) for some q E N,, (q E Z) if and only if for every n E N the two (virtual) 
almost finite cyclic sets X” and S’(x) are isomorphic, i.e., if and only if 

S,(x) = 1 + f F(x). t” = 1+ f 
1 

X”p = - 
fl=l n=l 1 -xt 

holds in A(&C)), in which case the decomposition 

x = q(C) = f Mq, n) . C(n) 
n=l 

leads to 

1 _ ~ccjt = S,(q”‘) = fi S1(C(n))M(q,n). 
n=l 

In particular, applying cpc to the coefficients of both sides yields 

L= fi (-L)“‘““‘. 
1-e n=l 

We want to point out that Gauss already used the cyclotomic identity 
for the enumeration of the number of irreducible polynomials of degree n 
and leading coefficient 1 over the finite field F, with q elements (cf. [Gal). 
A combinatorial interpretation of his reasoning may be given in terms of 
cyclic sets: Consider the algebraic closure F, of the field F,. It becomes an 
almost finite cyclic set via the Frobenius automorphism F: z H zq, of P,. 
The C-invariant elements of F, are just the elements of the unique (!) 
extension field F, of F,, which has degree n over F,; hence their number 
equals q”-in other words, F, and qcc) are isomorphic as cyclic sets. 
Moreover two elements in F, lie in the same cycle of length n if and only 
if their minimal polynomials coincide and have degree n. Hence the number 
M(q, n) of cycles of length n in q (‘) z F coincides indeed with the number 4 
of irreducible polynomials of degree n. 
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This leads one to consider more generally for an arbitrary algebraic 
variety V over the finite field F, the set V(P:,) of points over the algebraic 
closure F,. As observed above in case V is the afline line, this set is an 
almost finite cyclic set via the Frobenius automorphism XHX~ of F, and 
it follows from the above considerations that the infinite power series 
s,( V(F,)) coincides with Andre Weil’s zeta function Z,(f) of the variety V 
(cf. [We], [DSl]). 

We also want to point out that the symmetric powers of almost finite 
cyclic sets are closely related to partitions. Recall that-as defined 
above-an element L E Y(X) is a mapping 1: X -+ N, with finite support 
and with Cxcx L(x) = n. Such a map is C-invariant if and only if it is 
constant on the cycles contained in X, so in particular it has to be zero on 
cycles of length greater than n. Consequently if X= X(b) for some sequence 
b = (b, , b2, . ..) of non-negative integers then a C-invariant element 
i E P(X) defines a partition J. = (l”l2’*. . . nAfl) of the integer n, given by 
Ik := ww IL,, n(x), where xk c X denotes the union of all k-cycles of 
X-Say bk x C(n) &%Xk with trivial C-action on b-together with n 
functionsf, : & + N, (k = 1, . . . . n) satisfying 

(1.42) ? f,(j) = A,, 
j=l 

(well!) defined byf,(j) := n(x) if x~X is in thejth k-cycle of X. If we call 
such an object (h; fi, . . . . f,) satisfying (1.42) a b-partition of n, then 
cp,-(S”(X(b))) equals the number pt,(n) of b-partitions of n, i.e., we have 

(1.43) cpc(S”(JD))) =A&) 

= c 
A=(1112i2....in) k=l 

where the summation is taken over all partitions li. of n. Obviously the 
above considerations imply for the generating function for b-partitions: 

(1.44) 

In particular in case b = (1, 1, . ..) the b-partitions are just ordinary parti- 
tions, so one gets once again Euler’s formula (cf. [E] ) 

(1.45) 

Our paper is organized as follows. In Section 2 we collect and prove 
some generalities on cyclic sets, where the concept of a group acting on a 
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set is the organizing principle. This leads to the definition of the Burnside 
ring h(C) of almost finite cyclic sets and to a proof of Theorem 1. Next we 
prove Theorem 5 in Section 3, Theorem 2, Theorem 3, and Theorem 6 in 
Section 4, and Theorem 4 in Section 5. In the final Section 6 we prove 
Theorem 7 and discuss some related material. 

2. SOME GENERALITI~ CONCERNING CYCLIC SETS 

(2.1) As explained already above, a cyclic set X is understood to be just 
a set X together with a group action of the (multiplicatively written) 
infinite cyclic group C from the left on this set. In this section we want to 
collect the basic facts concerning cyclic sets. Our discussion will be very 
short since we are treating here (in a way) a very special case of the more 
general situation considered already in [DS2]. 

(2.2) For any r E N let 

(2.2.1) 0,: c+c 

‘HZ’ I 

denote the rth power map which maps every element of C onto its rth 
power. This map is an injective homomorphism and its image is the unique 
subgroup C’ of C which has index r in C. Note that every subgroup of C, 
except the trivial subgroup { 1 }-which we may interpret as the unique 
subgroup C” of infinite index in C-is of this type so that we may 
parametrize these subgroups by the set N of positive integers-and hence 
the set of all subgroups by the set N, := N u {co }. 

Since the stabilizer group C, := {z E C 1 zx = x} of an element x in a cyclic 
set X is uniquely determined by its index in C-it may be finite or 
infinite-the isomorphism class of its orbit C .x := {zx 1 z E C} is uniquely 
determined by its cardinality. In other words, the orbit of an element of a 
cyclic set is either infinite-and hence isomorphic to the infinite cycle 
C( co) := C/( 1 > = C/C-or finite and isomorphic to one of the finite coset 
spaces C(n) := C/C”; such an orbit will be called a cycle of length n. 

(2.3) Recall that disjoint unions and Cartesian products of cyclic sets 
again are cyclic sets in a natural way and that the set YX of all maps from 
the cyclic set X into the cyclic set Y becomes a cyclic set if-as usual-one 
defines for a map f: X-r Y and an element z E C the map Z. f by 
(2. f)(x) := zf(z-‘x) for all x E X. Note that the set ( Yx)c of C-invariant 
elements in YX coincides with the set Hom,(X, Y) of C-mappings from X 
to Y, i.e., those maps f: X+ Y with f(zx) = zf(x) for all z E C and x E X. 
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Note also that for any cyclic sets X, X,, A’,, Y, Y,, Y, one has canonical 
C-isomorphisms 

(2.3.1) (Y,x Y2)xz Y;“x Y2” 

(2.3.2) yx1 u x2 g yx1 x yxz 

and 

(2.3.3) ( yx1 )X2 r yx1 x x2. 

(2.4) Since the orbits of two elements of a cyclic set are either disjoint or 
coincide, a cyclic set decomposes uniquely into a disjoint union of cycles. 

(2.4.1) DEFINITION. Let X be a cyclic set. X will be called almost finite 
if the following two conditions are satisfied: 

(1) Every cycle in X has finite length. 

(2) For every n E N there are only finitely many cycles contained in 
X which have length n. 

If X is an almost finite cyclic set and if b,(X) denotes the number of 
cycles contained in X which have length n, then X is isomorphic-as a 
cyclic set- to the disjoint union UneN b,(X) -C(n), where b,(X) .C(n) 
denotes the disjoint union of b,(X) copies of the n-cycle C(n). Note that 
two almost finite cyclic sets X and Y are isomorphic if and only if b,(X) = 
b,(Y) for all II EN. Since disjoint unions and Cartesian products of almost 
finite cyclic sets are almost finite again, these operations induce an addition 
and a multiplication on the set of isomorphism classes of almost finite 
cyclic sets, providing this set with the structure of a commutative half ring. 
The associated Grothendieck ring is called the (completed) Burnside ring of 
the infinite cyclic group and will be denoted by d(C). It is well known and 
goes back at least to Burnside (cf. (2.6.2) below) that the set of 
isomorphism classes of almost finite cyclic sets is mapped injectively into 
d(C). Usually we shall not distinguish between an almost finite cyclic set 
and its image in d(C), so that C(n) denotes at the same time the cycle 
C/C” of length n, iss isomorphism class, and its image in d(C). Obviously 
every element in Q(C) can be represented uniquely as an infinite linear 
combination C,, E N b, . C(n) with integer coefficients 6,. More generally, if 
for every n EN and every b E Z an element xc+) E d(C) of the form 

x(,,,,=b-C(n)+b’.C(n+l)+b”.C(n+2)+ ... 

(i.e., with b,(x( n,b)) = 0 for m <n and b,(x (n,bJ) = b and with arbitrarily 
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given b’, b”, . . . ) is specified, then the family x = (.x~,,~))(~,~)~ N x z of elements 
in d(C) defines a canonical bijection 

(2.4.2) p, : ZN -+ si( C) 

(bra),, N t--+ c X(Wb,)J 
?ltN 

an observation which will be useful for us in various instances. 

(2.5) In order to determine the multiplicative structure of L&C) one has 
to calculate the product of any two cycles. Since every element in 
C(r) x C(s) has the stabilizer group C’n C” and since C’n C” = Crcxl, we 
have necessarily 

(2.5.1) C(r) x C(s) g nr,s . C( Cr, 31) 

for some integer n, s = b cr.s,(C(r) x C(s)). Moreover, counting cardinalities 
and using the identity r .s = (r, s)[r, s]-where, as usual, (r, s) denotes the 
greatest common divisor of r and s-one immediately gets 

(2.5.2) 

i.e., 

q = (r, ~1, 

(2.5.3) C(r) x C(s) z (r, s) .C( [r, s]). 

This observation leads quickly to 

(2.5.4) THEOREM 1. Let Nr(Z) := ((br)rsNI b,EZ} denote the necklace 
algebra, as defined in [MRl], i.e., put 

(b,),, N + (b:),, N := (br + b:)r, N 

and 

(br),, N . tb:),, N := 
( 

1 (s, t) -b,b: 
[s,r]=r ) rtN 

fir (br)rcNr (b:LN in Nr(Z). Then the interpretation map 

itp = interpretation: Nr(Z) + d(C) 

(br),, N ++ 1 b,-C(r) 
reN 

deji’nes a canonical isomorphism between Nr(Z) and d(C). 

(2.6) There is another way to characterize almost finite cyclic sets up to 
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isomorphism. Consider for a cyclic set X and a positive integer n the set 
Xc” of elements of X which are invariant under the action of the subgroup 
C” of C and let (p&X) := #(Xc”) denote its cardinality. Note that 

(C(s))C”= {z .C”c c~c”czc”z-’ = CS} 

i 
C(s) ifs divides n 

= 
0 otherwise. 

Therefore for a cycle of length s one has 

(2.6.1) 
ifs divides n 

otherwise. 

Note also that a cyclic set X is almost finite if and only if every cycle in X 
has finite length and (p&X) is finite for all n E N. 

Since 

and 

cpcuu Y) = (Pc4JJ + rpcd Y) 

(Pc4xx Y) = (Pc?(-J4. cpc4 n 

the map XH cp&X) can be extended uniquely to a ring homomorphism 
cpc”: L&C) + Z. Using an appropriate recursion argument one shows easily: 

(2.6.2) PROPOSITION (Burnside). Two almost finite cyclic sets X and Y 
are isomorphic if and only if (pen(X) = cpcn( Y) for all n E N. 

This result implies immediately that the family cpc” of ring 
homomorphisms provides us with an injective ring homomorphism 

(2.6.3) $? := fl cpo”: b(C) + gh(C) := ZN with ($(x))(n) := q&x) 
IlEN 

of the Burnside ring into the ghost ring (cf. the Introduction, (1.4)). 
If x=C,“=r b,.C(s) one has by (2.6.1) 

(2.6.4) @(x)(n) = q+(x) = c bj. j. 
iln 

Comparing this with the ghost ring embedding 

gh: A+(Z) -+ n Z 
N 

as defined in [MRl] one has 
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(2.6.5) PROPOSITION. The diagram 

WZ) 
interpretation btCj 

2 

i I 

c? 

! ”  

identification ghtCl 

is commutative. 

(2.7) Remark. As has already been mentioned in the Introduction 
(cf. (1.5), (1.6)) the injection 4: d(C) + gh(C) of the Burnside ring into the 
ghost ring is not surjective. However, the image of @ can be characterized 
by canonically arising congruences. If X = Ck E N b, . C(k) then 

(2.7.1) (p&X) = c j. 6,. 
iln 

If p: N + Z denotes the Mobius function-as usual-then Mobius inver- 
sion (cf. [HW]) implies 

(2.7.2) 

and hence 

(2.7.3) (mod n) for every n EN. 

Dold shows in [Do] that an element d E gh(C) is in the image of 4 if and 
only if 

(2.7.4) (mod n) for every n E N. 

These congruences are equivalent to the congruences 

(2.7.5) ,f dW(j, n)) 
j=l 

= (mod n) for every n E N, 

which arise in a natural way in the theory of Burnside rings of arbitrary 
groups (cf. [D3]). The well-known identity 

C v(j) = n 
IIn 
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for the Euler function and its Mobius inverse provide a means to go from 
one system of congruences to the other equivalent system. 

(2.8) Remark. For an almost finite cyclic set X it is in general not 
useful to consider its cardinality, since 

#X= #(xc”)= 4oP(m=cp{,)(w 

may be infinite. Bur for finite cyclic sets the map XH #A’ provides a ring 
homomorphism (porn : Q(C) -+ Z of the Burnside-Grothendieck ring 
Q(C)c&C) of finite cyclic sets. It obviously does not extend naturally 
to d(C). 

3. RESTRICTION AND INDUCTION 

(3.1) The rth power homomorphisms er : C + C, z H zr, r E N, induce 
restriction and induction functors from the category of almost finite cyclic 
sets into itself. Restriction res, with respect to (T, is defined by assigning to 
a cyclic set X the cyclic set res, X which has X as underlying set and where 
the C-operation is defined via rth powers, i.e., 

(3.1.1) (2, x) k+ z’x. 

Note that 

and 

res,(X, u X,) g res,(X,) u res,(X,) 

res,(X, x X,) 2 res,(X,) x res,(X,). 

Hence res, is uniquely determined by its values on cycles: 

res, C(s) g (r, s) C( [r, s]/r) 

res,C(cc)rr C(co). 

The first isomorphism is verified by noting that ZE C acts trivially on 
res, C(s), if and only if Z’ E C” if and only if z’ E C” n C’ = Cc’,“‘, i.e., if and 
only if z~Ct~,‘~/‘. Hence res, C(S) z kC([r, s-J/r) for some integer k and 
so, comparing cardinalities, one gets k. [r, s]/r = s and therefore k = 
rs/[r, s] = (r, s). To show the second isomorphism note that the cosets of 
C modulo C’ are the C-orbits of res, C( cc). If one agrees that (r, co) = r 
and [r, co] = cc one may collect both formulas in one: 

(3.1.2) res, C(s) Z (r, s) C( [r, s]/r). 
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If X is an almost finite cyclic set, then obviously res, X is almost finite, 
too. Hence res, defines a ring homomorphism d(C) +6(C) also denoted 
by res,., and by (3.1.2) we have 

(3.1.3) cp&res,X)= #{x~XJz’x=xforallz~C~~} 

= #{xEXIz’Sx=xforalizEC) 

= qc&n 

and this fully determines the restriction homorphism. Note also that (3.1.3) 
implies the useful formula 

(3.1.4) cpdx) = cadres, Xl. 

(3.2) Now recall the definition of the Frobenius operators f,, r E N, as 
defined in [MRl] for the necklace algebra by 

(3.2.1) f,: Nr(Z) -+ Nr(Z) 

(bs)ssNw 
( 

1 (r, s)b, 
[r,t] = ,s > lEN 

and for the ghost ring (as usual in the context of Witt vectors, cf. [L, B]) 

(3.2.2) .fr: gh(C) --f i&(C) 

(ds)s, N w  (drs)s, N 

Comparing (3.1.2) with (3.2.1) and (3.1.3) with (3.2.2) one gets 

(3.2.3) PROPOSITION. For every r E N one has commutative diagrams 

Nr(Z) itp B(C) Nr(Z) gh gh(C) d(C) -f---+ gh(C) 

h 
i 

res, h 
I P i= 1/; 

Nr(Z) It’ + L!(C) M(Z) * gh(C) d(C) --f-+ gh(C) 

(3.3) In order to define the induction functor with respect to the rth 
power map a,-which will be the left adjoint of the restriction functor 
res,-one considers for an almost finite cyclic set X the Cartesian product 
C x X. This becomes a cyclic set by the mapping 

(3.3.1) cx(cxx)~cxx 

(24, (z, x)) H (ZUpr, ux). 

Let ind, X denote the set of C-orbits of C x X with respect to this opera- 
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tion. C acts again on this set by left multiplication, i.e., if /z, XII denotes the 
image of (z, x) in ind, X under the canonical projection onto the orbit 
space, then one defines 

(3.3.2) z’ ((z, x[( := (Iz’z, x1(. 

Obviously, this operation is well defined: if I(zr, x,(1 = llz, XII then one has 
z1=zu -’ and x1 = ux for an appropriate u E C and therefore (/z’z, , x1 I( = 
llz’z, XII. 

Clearly, ind, X is an almost finite cyclic set and one has 

(3.3.3) ind,(X, u X2) z ind,(X,) u ind,(X,). 

Therefore ind, induces an additive homomorphism &C)--&(C), also 
denoted by ind,. Again ind, is completely determined by its values on the 
finite cycles. One has 

(3.3.4) ind, C(j) z C(rj). 

Proof: Note first that C operates transitively on ind, C(j), since for 
lb, we’ll and lIzI, w,C$ in ind, C(j) one has 

((z,z-l)(ww;l)-r) I/z, WC’11 = )Iz,, w,cq. 

Furthermore if z’ [lz, wC’I[ = J/z, wC’[I, then for some UE C one has 
(z’zzcr, UWC’) = (z, WC’), which implies UE Cj and therefore z’ = 
deco. m 

By (3.3.4) we have 

(3.3.5) cpc4W C(i)) = cpdC(rj)) 

ti if jr divides s 
= 

1 0 otherwise 

if r divides s 
otherwise. 

Therefore, by linearity, we have 

(3.3.6) cpcs(ind, x) = i’ (pctir(x) if r divides s 
otherwise. 

= es(W)) . (Pi&). 

Note that the first factor of the last expression is zero if s/r $ N. 
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(3.4) Now recall the definition of the Verschiebung operators, delined in 
[MRl] for the necklace algebra by 

(3.4.1) II,: Nr(Z) + Nr(Z) 

(b,L N H (bs,r), E N with b,,, := 0 if s/r # N 

and for the ghost ring by 

(3.4.2) ur: gh(C) -+ gh(C) 

(d,)s, N H (r . ds,,),, N with d,+ :=Oifs/r$N. 

Comparing (3.3.4) with (3.4.1) and (3.3.6) with (3.4.2) one gets 

(3.4.3) PROPOSITION. For every r E N one has commutative diagrams 

Nr(Z) ifp d(C) WZ) gh b gh(C) b(C) --f--+ gh(C 

0, 
I 

rnd,j or] /+ p, b 

Nr(Z) a QC) WZ) gh gh(C) d(C) -% gh(C ‘) 

(3.5) Hence we are now in a position to use the large variety of 
canonical isomorphisms describing the interplay between restriction and 
induction functors-which result from functoriality, adjointness, Frobenius 
reciprocity, and Mackey’s subgroup theorem (cf. [DS2])-to derive the 
well-known identities for the Frobenius and Verschiebung operators and to 
provide combinatorial interpretations for them. More precisely one has 

(3.5.1) PROPOSITION. ( 1) res, 0 res, = res,X and therefore fr of, = f,,. 

(2) ind, 0 ind, = ind, and therefore v, 0 u, = v,. 

(3) ind,(res, x . y) = ind, x . y and therefore u,(fr(x) . y) = D,(X). y 
(Frobenius reciprocity). 

(4) res,oinds = (r, s) indCr,sllr . rqr.sl/s and therefore fr 0 v, = 
(r, s) vCr,sllr ~fcr,sl~s (Mach's &wvformula). 

Note that by the above considerations we have proved Theorem 5 except 
for the statements (3) and (4). To prove these note that by (3.2.3) (resp. 
(3.4.3)) one has $0 res, = f, 0 q? (resp. 4 0 ind, = u, 0 @). Since @ is injective, 
an element XE L&C) lies in Ker(res,) (resp. in Im(ind,)) if and only if 4(x) 
is in Ker(f,) (resp. Im(o,)). The definition of Frobenius and Verschiebung 
in the ghost ring yields (3) and (4). 
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4. SYMMETRIC POWERS OF CYCLIC SETS 

(4.1) We now want to study symmetric powers of almost finite cyclic sets 
on the level of Burnside rings (cf. also [DSl I). For a cyclic set X its sym- 
metric algebra-or, rather, its symmetric monoid--S(X) is defined to be 
the set of all maps from X to N, := N LJ (0) vanishing almost everywhere, 
i.e., of those maps f: X+ N,, for which supp(f) := {x~Xlf(x) #O} is 
finite, or, in other words, the free commutative monoid generated by X. 
C acts on S(X) in the usual way by 

(4.1.1) c x S(X) -+ S(X) 

(Z,f)HZ-f, where (z .f)(x) :=f(z-lx). 

Note that evidently 

(4.1.2) S(X, LJ X,) E S(X,) x S(X,) 

for any two cyclic sets X, and X,. 
(4.2) It is easy to see that for an almost finite cyclic set X the cyclic set 

S(X) contains only cycles of finite length. Moreover, for every n E No the 
C-subset 

(4.2.1) r(X) := {f E S(X) ( c f(x) = n} 
JE x 

of S(X), the n th symmetric power of X, is an almost finite cyclic set. 
Obviously, the stabilizer group C, contains n, E supp(f) C, for every f E S(X), 
so every cycle in S(X) has finite length. So, by using restriction (cf. (3.1.4)), 
it is enough to show that (P(X)) ’ is finite. But f~ S(X) is C-invariant if 
and only if it is constant on the cycles of X. HencefE (Sn(X))c can be non- 
zero only on the finite number of those cycles of X which have length n at 
most. Since in addition one hasf(x) <n for allfE P(X), the set (S(X))’ 
must be finite. 

The same argument shows in particular that for 
(cf. ISI) 

(4.2.2) 
if k divides n 
otherwise. 

X= C(k) one has 

It follows from (4.1.2) that for the disjoint union X, u X, of any two 
almost finite cyclic sets X1 and X2 one has 

(4.2.3) S”(X, u X2) z u 9(X,) x 9(X,). 
i+j=n 
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(4.3) Note that there is another way of describing symmetric powers of 
cyclic sets. To see this consider the canonical projection 

p: X” + S”(X) 

of the nth Cartesian power X” = Xx . . . x X of the cyclic set X onto its nth 
symmetric power. It is defined by mapping an element x = (x1, . . . . x,) of X” 
to the map p(x): A’+ N, which maps an element y in X onto the number 
of those indices Ian = { 1, . . . . n} for which xi= y, i.e., p(x)(y) = 
# {i E n 1 xi = y }. Obviously p is a surjective C-map which is compatible 
with the canonical action of the symmetric group Z, on A’“. It factors over 
the set Z,\X” of C,-orbits of X” and therefore induces a C-map 

(4.3.1) 7c: /T”\Y + FyX), 

which is well known to be a C-isomorphism. 
(4.4) Let us now consider the formal power series 

(4.4.1) S,(X) := 1 + f Y(X). t” 
?I=1 

as an element in the ring b(C)[ [ t] ] of formal power series with coef- 
ficients in h(C). Since by (4.2.3) one has 

(4.4.2) six1 l-l X2) = six, 1. (X*1 

it follows that the map XH S,(X) induces a homomorphism 

(4.4.3) s,: h(C) + A@(C)) 

of the additive group of the Burnside ring into the multiplicative group of 
formal power series with constant term 1 and coefficients in d(C). 

Combining S, with the multiplicative map 

(4.4.4) A(%): 4~(C)) + A(Z) 

l+ f X,Pt-+ l+ f cp&,)t” 
n=l “=l 

resulting-by functoriality-from the homomorphism ‘po : h(C) + Z, we 
get a map 

(4.4.5) s, := A(cp#-)a s,: h(C) + A(Z). 

We claim: 
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(4.4.6) THEOREM 3. The homomorphism s,: d(C)+A(Z) is an iso- 
morphism of abelian groups. It becomes an isomorphism of rings if A(Z) is 
supplied-up to a sign-with the ring structure defined by A. Grothendieck in 
[ GR]. Moreover 

s,@‘(b)) = 1 + f a,. t” 
fl=l 

for some sequence b = (b,, b,, . ..) of integers if and only if 

[l (A)“= 1+ f an-t”. 
PI=1 

ProojI By (4.2.2) we see that 

s,(W)) = 4c~c)oS,(W)) 

= 1 + f cp,-(S”(C(k))) . t” 
n=l 

= 1 + f tnk 
II=1 

Since the family {l/( 1 - tk) 1 ke N) is a topological Z-basis of A(Z) it 
follows immediately that s, is an isomorphism from the additive group of 
L&C) onto the multiplicative group A(Z) and that 

s,(Wb)) = fl s,(C(n))bn = ng, (A)“. 
n=l 

In order to show the remaining part of the theorem we have to consider 
the logarithmic derivative 

LA:A(A)+tA[[t]] 

a’(t) a(t)ut-$loga(t)=t.- 
a(t) 

which is defined for any commutative ring A with unit element 1 and which 
provides a natural homomorphism from the multiplicative group A(A) of 
formal power series with constant term 1 and coefficients in A into the 
additive group tA[[t]] of formal power series with constant term 0. 
Defining-with Hadamard-the product of two power series in tA[[t]] 
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componentwise, i.e., identifying tA[ [t]] with the product ring & A = AN 
via the obvious ident$cation (d,, dZ, . ..) H I,“= r d, t”, then Grothendieck’s 
ring structure can be characterized as the unique ring structure on A(A) for 
which the logarithmic derivative becomes a natural ring homomorphism 
L,: A(A) + rA[[t]] (cf. [AT]). Specializing this to the ring Z of integers 
and using the obvious identification of gh(C) with tZ[[t]] as above, the 
second half of the above theorem will evidently be implied by the following 
proposition: 

(4.4.7) PROPOSITION. The diagram 

LZ 
i 

gh(C) a WCtll 

is commutative. 

Proof One has 

Lzos,(W)) = Lz j+ ( > 

= ktk + ktZk + ktJk + . . 

On the other hand, by (2.6.1) one has 

cp(W)) = (‘?cdC(k)))n,N 
= ( 0, . . . . 0 , k, 0, . . . . 0 , k, 0, . . . . 0 , . ..). 

k - I t,mes k - 1 times k - 1 times 

Hence modulo the obvious identification the maps L, o s, and 4 agree on 
a topological basis of L&C) and therefore coincide. 1 

Note that Proposition (4.4.7) together with the results of Section 2 
provides as well a proof of Theorem 2. 

(4.5) Remark. Dold already established in [Do] an isomorphism 

Lg: d(C) + A(Z), 
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of abelian groups by associating to an almost finite cyclic set X its 
Lefschetz power series Yt(X), which is formally defined in such a way that 

- t . f log Z(X) = f cpc?Z(X) . t”. 
n=l 

Obviously this implies that Zr(X) = l/s,(X). Note that originally Grothen- 
die&s ring structure on A(Z) had been defined in such a way that 
Yt-which is related to exterior powers-rather than s, becomes a ring 
homomorphism. Since in the context of group actions on sets-rather than 
on vector spaces-there is no completely satisfying definition of exterior 
powers (cf. [S]), we preferred to change Grothendieck’s ring structure on 
A(Z) slightly, hereby avoiding lots of unnecessary minus signs in our 
formulas (compare [C] and [B]). 

(4.6) Now recall that combining 

s,: d(C) -+ A@(C)) 

with 

one gets the associated Adams operations I,P: fi(C) + fi(C), defined 
implicitly by 

(4.6.1) Jh(C, 0 S,(x) =: f q(x) ’ t’. 
,=l 

We claim 

(4.6.2) THEOREM 2. The maps @: L&C) + d(C) coincide with the maps 
res,: fi(C) -+ d(C), i.e., for every XE f&C) one has 

f res, x . t’= L~~c~oS,(x). 
r=l 

Therefore the $’ are ring homomorphisms satisfying $’ 0 II/” = @’ = II/” 0 II/’ 
and hence, according to [AT], d(C) is a special n-ring with respect to the 
L-structure, defined by S,: d(C) + A(fi(C)). 
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Proof: It is enough to show that 

(4.6.3) LA1 + f cpd~‘(C(~)))~ 0 
r=l 

for all j, s E N. But 

(4.6.4) cp,,(res, C(s)) = cpc14C(s)) = ’ 
if s dividesjr 

0 otherwise 

and therefore 

(4.6.5) 

while 

.g, cp,,(res, C(S)) . tr = f 3. trsi(i~s), 
r= 1 

(4.6.6) 1 + f cp,,(S’(C(s))) . t’= 1 + f cp&res, Sr(C(s))) . t’ 
r=l r=l 

=A(cp,) l+ f Y(resjC(s)).t’ 
( r=l > 

= s,(res, C(s)) 

and therefore 

= s,((.L s) W(j, s))) 

= (s,(W/(j, s)))P’ 

= ( 1 _ :-(/J’s’ 

(4.6.7) L, (1 + f %As’(W))) . f) = t .; log ((I _ ;S,(j,SI)‘*“) 
r=l 

= (j, ~1. 
s/( j, S) . fl(j,s) 

1 _ pl(i.s) 

s . pl(i3) 
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(4.7) Finally, observe that, since ind, C(n) = C(m), one has 

s,W, C(n)) = &. 

This implies for an arbitrary x in d(C) that 

(4.7.1) s,(ind, x) = s,,(x). 

Moreover, since res, C(n) = (n, r) C( [n, r]/r), one has 

s,(res, C(n)) = ( 1 _ t~n,r,,r)lr’“). 

If one defines maps 

u,: A(Z) + A(Z) and f,: A(Z) --i A(Z) 

by oA4t)) = 4f) andfJ4t)) as usual (cf. [Cl), one has the commutative 
diagrams 

f&C) SI A(Z) 

(4.7.3) 
I 

ind, u, 

I 

QC) --LA(Z) 

Note that the formula for f,(a(t)) 
a(t) = l/( 1 - a, t”); here one has 

&C) --fL A(Z) 

I 

res, h 

I 

fi(C) SI A(Z) 

is simple only for series of the form 

(4.7.4) 
1 \(r,s) 

f~(~)=(~~o~r..l’..~c’..l”l . 
s 

For the general case see [C, B] or do the calculations in the ghost ring and 
then go back to A(Z) by integration and exponentiation. 

5. WITT VECTORS 

(5.1) Recall from (2.3) that for two cyclic sets X and Y the set Yx of 
maps from X to Y is again a cyclic set in a canonical way. But note also 
that for two almost finite cyclic sets X and Y the cyclic set Yx is in general 
not an almost finite cyclic set. However, there is an interesting situation 
where new almost finite cyclic sets arise by exponentiation. We claim: 

(5.1.1) DEFINITION AND LEMMA. Zf X and Y are cyclic sets and if 
u: X + Y is a map, then u will be called a congruence map if there is a 



BURNSIDE RING OF THE INFINITE CYCLIC GROUP 31 

C-map p: X-+ F into a finite cyclic set F and a map ti: F-t Y such that 
u = li 0 p, i.e., if u can be factored via a C-map over a finite cyclic set. Denote 

by Y ‘x) the cyclic subset of Yx which consists of all congruence maps from 
X to Y. If Y is finite and if the cyclic set X contains only finitely many 
cycles-of finite or infinite length-then Ycx) is an almost finite cyclic set. 

Proof: Note first that Y ‘U = Yx if both X and Y are finite and that 
Ycx) g Y’xl) x Y’x2’ if X= X, u +‘*. Hence the lemma will follow if we can 
show that Y”‘“)’ is an almost finite cyclic set for any finite cyclic set Y. To 
this end note that if u: C(co) + Y is a congruence map and u = tie p a 
factorization of U, then for z E C and x E C( co ) one has 

(5.1.2) (Z’U)(X)=ZU(Z~‘X)=z(a’Jp)(z~‘x)=zti(z~’p(x)) 

= ((z . li) 0 p)(x) 

and hence 

(5.1.3) z.u=(z.ti)op. 

Since li is a map between finite cyclic sets, its C-orbit is finite, so the 
C-orbit of u is finite, too. 

Furthermore one has 

(5.1.4) cpcn( Ycccm’~) = cpc(res,( Ycccm”)) 

= qc((res, Y)‘resnc’m’)) 

= # Hom,(res, C( oo), res, Y) 

= # Hom,(n . C( co), res, Y) 

= ( # Hom,(C( co), res, Y))n 

= cp[,)(res, Y)” 

= (# Yy. 

Hence qcJ Ycc’Oo~) ) is finite for every n E N and this implies that Y’c’oo)) is 
an almost finite cyclic set. 1 

(5.2) Remark. If X= UkcN, xk .C(k) and Y= jJleN y,.C(f), where for 
both cyclic sets only finitely many of the coefficients are non-zero positive 
integers, then we claim 

(5.2.1) > 
‘n,k)..xt 

cpc4 YCX)) = n 1 Y, . cpcWl(C(1)) 
keN, IEN 

= ,,nN ( 1 I. y,)“-, 
m r,‘gT, 

607.78;1-3 
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where-with the conventions of (3.1.2)-[n, k] := cc and (n, k) :=n if 
k = co. In particular cpcn( Y@“) is a polynomial with integer coefficients in 
the coordinates y, of the finite cyclic set Y. 

Proof: One has 

qcn( Ycx)) = qc(res,( Y’“))) 

= cpc(res, Ycresn X)) 

= # Hom,(res, X, res, Y) 

= # Horn, (re% ( U x,C(k)), res, Y) 
ksN, 

= *,“, # Homc(xk res, C(k), res, Y) 

-,QQ # Hom,(xk.(n,k)C(Cn,kl/n),res, Y) 

=ki‘( (PC[“.klin(res,, y))(n’k).xk 

02 

(5.3) The construction Y H YcX) extends to a map between Grothendieck 
rings, i.e., we have 

(5.3.1) THEOREM. Let X be a cyclic set with only finitely many C-orbits. 
Then there exists a well defined map zx: Q(C) -+ d(C) from the Burnside 
ring Q(C) of finite cyclic sets into the Burnside ring of almost finite cyclic 
sets such that zj-X=UkEN, xk’C(k) and y=UIEN ~,-C(I)ES~(C), one has 

Proof Consider for y= UIEN y,.C(l) in Q(C) and X= UkcN, xp’C(k) 
the element q = (~1~)~~ N E gh(C) with 

(5.3.2) 
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We will show that q is the image of an element d(C) under 4. This will 
be done by showing that q satisfies the congruences (2.7.4). If Y is an 
actual and not only a virtual finite cyclic set then the element q = (r],),, N 
is by (5.2.1) contained in the image of b(C) in the ghost ring and hence the 
congruences (2.7.4) are satisfied for the components qn of 11, i.e., one has 

(5.3.3) (mod n) 

for all n E N. But since q,, = q,,(y,) is an integral polynomial in the coor- 
dinates y, of y, (5.3.3) must hold for all y,~ Z. It follows that q is contained 
in the image of h(C) in gh(C), whether y is an actual or a virtual finite 
cyclic set. 1 

(5.3.4) THEOREM. With the notations of Theorem (5.3.1) one has 

Tx(y.y’)=Tx(y).T”(y’) 

for y, y’ E Q(C). Similarly if X= X, u X2 one has 

for all y~Q(c). Moreover, if X is finite, then z”(y) is already contained in 
G(C) c d(C), so for any other cyclic set X’ with ordyfinitely many C-orbits 
one may consider z”‘(z”(y)) and one has 

TX'(TX(y))=T"'""(y). 

Proof If Y is an actual finite cyclic set the proof is obvious and it can 
be carried over to virtual cyclic sets in a routine manner. u 

(5.3.5) Remark. Note the particularly simple form of the components 
of the image of the element z”“‘(q, .C(l)) =: qic’ in the ghost ring. By 
(5.3.2) we have 

(5.3.6) 

Hence one has 

(PC&p) = 4;. 

(5.3.7) 

and 

(5.3.8) 

M&P)) = * 
1 

1 
s,(q’,C’) = - 

1 -q,t’ 
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On the other hand, (5.3.6) implies that 

MF) = (P&F’) = 41. 

Hence b,(ind, 9”‘) = 0 for m < n and b,(ind, 4”‘) = q, so (2.4.2) implies 

(5.3.9) THEOREM. For any x~d(C) there exists a unique sequence 

q=(qnLsN E ZN such that 

x = z(q) := 5 ind, sic), 
n=l 

i.e., the Teichmiiller map 

z: ZN + d(C) 

q l-b r(q) 

is bijective. 

Note that (5.3.8) together with (4.7.1) allows one to determine the series 
s,(z(q)). Indeed one has 

s,(z(q)) = fi s,(ind, qLc’) = fi s,“(qL’)) 
II=1 n=l 

In other words, X= X(b) E d(C) is the image of q = (qn)nG N with respect to 
z according to Theorem (5.3.9) if and only if 

(5.3.10) 

(5.4) Moreover we have for the components of the image of r(q) in the 
ghost ring 

cpc?(~(q)) = cpcr ( f ind, q!,‘)) 
n=l 

= f, cpdC(n)). 4oc&?c’) 

= f cpc4w))~q~ 
II=1 
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and since q&C(n)) = 0 unless n divides r we have 

(5.4.1 

Hence if one considers according to E. Witt and P. Cartier (cf. [L, C]) 
the well (!) defined ring structure on the set W(Z) := ZN of Witt vectors for 
which all the maps 

CD,: W(Z) + z 

are ring homomorphisms, we get 

(5.4.2) THEOREM. The Teichmiiller map 

7: W(Z) + d(C) 

9 -7(q) 

is an isomorphism of rings. 

Note that by the above considerations we have proved Theorem 4. Note 
also that in addition our approach provides a new proof for the fact that 
the ring structure on W(Z) is well defined, i.e., that for q = (qn)ncN and 
q=(4n)neN in W(Z) the sequences s=(s,),EN,d=(d,),GN, and p= 

(Pn)“, NY defined recursively by 

(54.3) 1 nqr + C nijLi” - nQ” , 
nlr nlr = > fllr 

flfr 

(5.4.4) - 1 nqL/” - 1 nd:“), 
nlr nlr n#r 

and 

are integer valued. As mentioned already in the Introduction, it is shown in 
[DS2] in a much more general context that one can use our interpretation 
of Witt vectors in the context of Burnside rings to prove the important and 
much deeper fact-due to E. Witt- that (5.4.3), (5.4.4), and (5.4.5) define 
s,, d,, and pr as integral polynomials in ql, . . . . q, and ql, . . . . qr. 
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(5.5) Theorem (5.4.2) has many interesting applications. To mention just 
one, note that the Teichmiiller map z: W(Z) + L&C) transports Frobenius 
and Verschiebung operators, which are defined for Witt vectors in the 
usual way, into restriction and induction maps on the Burnside ring. More 
precisely, one has commutative diagrams 

w(z)- si(C) W(Z)2 B(C) 
h 
I 

j% “,I jid 

W(Z)2 LyC) W(Z)& d(C) 

for all n EN. 
Note also that Cartier’s formally defined map E: W(Z) --* A(Z) coincides 

with the composition S, 0 z: W(Z) + A(Z). 

6. THE CYCLOTOMIC IDENTITY 

In this section we want to study in more detail the (virtual) almost finite 
cyclic sets q(‘), q E Z. 

(6.1) We first determine the coefficients of the canonical decomposition 

(6.1.1) 4 CC) = 2 M(q, k) .C(k) 
k=l 

of qCC’ into cycles. Applying ‘pen to (6.1.1) provides 

(6.1.2) q”= c k-Wq,k) 
kin 

and hence, by Mobius inversion (cf. [HW] ), 

n. M(q, n) = 1 p 
kin 

Therefore the coefficients M(q, n) are integer valued polynomials in q with 
rational coefficients, the so-called necklace polynomials (cf. [ MRl ] ). 

(6.2) Remark. N. Metropolis and G.-C. Rota established a number of 
identities for these necklace polynomials. These identities are almost 
immediate consequences of the exponential construction (cf. (5.3.4)), which 
provides 

(6.2.1) (q. qy’ = q(c). q’(c), 



BURNSIDE RING OF THE INFINITE CYCLIC GROUP 37 

the identity 

(6.2.2) res, 4 (Cl = (qr)(c), 

and the interplay of restriction and induction. Evaluating both sides of 
(6.2.1) leads to 

(6.2.3) Jwq.q’,n)= 1 (kj).M(q, i).Wq’,j) 
[i,j]=n 

while evaluation of both sides of (6.2.2) leads to 

(6.2.4) Mq’, n) = c (i r) wq, 3. 
jcN 

Ci. rllr = n 

A twofold application of Frobenius reciprocity yields 

(6.2.5) in% x .ind, Y = fr, ~1 indCr.sl(res~r,sl~rx -reqr,sllr YX 

a formula which is also well known in the context of Witt vectors (cf. [B]). 
Specializing to x = q”’ and y = q”” leads to 

(6.2.6) ind, q(c). ind, q’cc) = (r, s) . indC,.,,(q[r~s]/r. q’[r,sllr)(c) 

and evaluation of both sides provides 

(6.2.7) (r, s) ~(qc’.“l/‘~ q’c’.“l/“, n) = 1 (ir, @I WC?, 9 Wq’, A. 
i,jsN 

[ir,js]/[r,s] =” 

(6.3) We already know that s,(qCc’) = l/( 1-q’). Hence the decomposi- 
tion of qtc’ into cycles provides 

(6.3.1) 

the so-called cydotomic identity, which has been useful for several different 
enumeration problems (cf. [Ga, MO, Wi2, Hi, MRl]). 

Note that up to now we have given only a formal proof for this identity, 
using the logarithmic derivative. But, to complement the work of 
N. Metropolis and G.-C. Rota, who succeeded to give a set theoretic 
derivation of the cyclotomic identity without using ghosts (cf. [MR2]), we 
want to show directly that 

(6.3.2) cpcww9) = 4” 

thereby establishing another combinatorial proof of the cyclotomic identity. 
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If we make use of the canonical representation (4.3.1) of the symmetric 
powers as quotients of Cartesian powers modulo the operation of the 
symmetric group and the fact that 

S”(q’C’) = c n \(q’C’)” z z \(q”)‘C’ n - 

then Eq. (6.3.2) is an immediate consequence of the following lemma, 
applied with respect to Z := L’:, and its canonical action on T := q”. 

(6.3.3) LEMMA. Zf T is afinite .&et (for an arbitrary group C), then the 
number of C-invariant elements of the orbit space .E\TcC’ is equal to the 
number of elements of T, 

ProoJ It is remarkable that it does not seem to be possible to construct 
a canonical bijection between T and the set (z\T(‘))’ of C-invariant 
Z-orbits in T”‘. Instead (cf. also [MR2]) we construct a canonical 
bijection between C x T and Z x (L’\T(‘))‘. 

Since T is finite, we may assme Z to be finite too. One verifies easily that 
the X-orbit ,Z + h of an element h in T(‘) is C-invariant if and only if 
C . h c C . h. Hence, if g denotes a generator of C, then Z. h is a C-invariant 
orbit in T”’ if and only if there exists an element ~JE ,X such that 
g ~ ‘h = ah. This is equivalent with 

(6.3.4) g-‘h(g’)=h(g’+‘)=ah(g’) forall iEZ 

and consequently with 

(6.3.5) h(g’)=dh(l) for all i E Z, 

where of course 1 denotes the neutral element of the group C. So we see 
that h is completely determined by the pair (0, h( 1)) E Z x T. Hence, if we 
define the mapping 

(6.3.6) H:CXT+T’~’ 

(~9 t) I-+ H(w) with H(,.,,(g’) := a’t 

then the composition of H with the quotient map Ttc) + C\T’C’ provides 
us with a surjection of Cx T onto the subset of C-invariant elements in 
X\T’C’. We claim that the libres of this map all have cardinality #Z, 
which will prove the lemma. 

If (a, t) and (r, t’) are elements of the fibre of H over the element 
h E TcC), i.e., if Hc,,Ij = h = H,,.,.,, then 

(6.3.7) aif = tit’ for all iE Z. 
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In particular one has t = t’, and in view of the following lemma, (6.3.7) is 
equivant to 

(6.3.8) 

(6.3.9) LEMMA. Let T be a C-set, let c and z be elements of .E, and let 
t be an element of T. Then the following conditions are equivalent: 

(1) a’t=z’tfor all iEZ, 

(2) c-’ TE n;,z Ch(g’). 

Before proving Lemma (6.3.9) we note that indeed, since there are 
#(C/Z,) elements in the Z-orbit of h, there are #C, . #(C/C,) = #C 
elements in Zx T which are mapped onto the element C. h in (C\Tcc’)c. 
Hence 

is the canonical bijection mentioned in the beginning. 
To prove Lemma (6.3.9) assume first that a’t = s’t for all iE Z. Then 

~cr’t = dt = za't and therefore (T- 'T E z’,,, = Ch(g,) for all i E Z. Vice versa, if 
CITE r)itZ Colt, then using induction with respect to Ii 1 we may assume 
that o't = tit for some ie Z to conclude that also 

(6.3.10) (~~+l).t=~+‘(~‘t)=~~l(,~t)=(a”‘).t, 

Equation (6.3.2) allows one to generalize the cyclotomic identity from an 
identity in A(Z) to an identity in ,4(@C)): Since 

(6.3.11) cpcr(S”(q”))) = cpc(res, s”(q”‘)) = cpc(S”(res, 9”‘)) 

= cpc(Sn((qr)(C))) = q”’ 

we have the following consequence of (6.3.2): 

(6.3.12) COROLLARY. An element x~fi(C) is of the form x= qcc’ for 
some q E Z if and only ifits nth symmetric power Sri(x) coincides with its nth 
power x” for all n E N. 

Proof The above formula (6.3.11) implies that for .x=q”’ one has 
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@(P(x)) = 4(x”) and therefore F(x) = xn for all HEN. Vice versa, if 
S”(x) = x” for all n E N then 

s,(x) = 1 + f (p&P(x)). t” = 1 + f cpc(x”) . t” 
n=l II=1 

=l+ f (‘C(X))..t~=l-~~(X).t 
n=l 

= wPcwP). 
Therefore by the injectivity of S, we have x = (cp,-(x))“! 1 

The result (6.3.12) implies in turn 

and therefore one has as another consequence: 

(6.3.14) COROLLARY. The cyclotomic identity 

1 
= ; (&(C(n)))-*n) 

l-q(C).t “=1 

hokis us an identity in ,4(&C)). 

Note that by the above discussion we have proved Theorem 7. 
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