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A B S T R A C T

Interleukin (IL)-11 is a member of the IL-6 family of cytokines that is defined by the shared use of the

GP130 signal transducing receptor subunit. In addition of its long recognized activities as a hemopoietic

growth factor, IL-11 has an emerging role in epithelial cancer biology. Through the activation of the

GP130-Janus kinase signaling cascade and associated transcription factor STAT3, IL-11 can confer many

of the tumor intrinsic ‘hallmark’ capabilities to neoplastic cells, if they express the ligand-specific IL-

11Ra receptor subunit. Accordingly, IL-11 signaling has recently been identified as a rate-limiting step

for the growth tumors arising from the mucosa of the gastrointestinal tract. However, there is less

appreciation for a potential role of IL-11 to support breast cancer progression, apart from its well

documented capacity to facilitate bone metastasis. Here we review evidence that IL-11 expression in

breast cancer correlates with poor disease outcome and discuss some of the molecular mechanisms that

are likely to underpin these observations. These include the capacity of IL-11 to stimulate survival and

proliferation of cancer cells alongside angiogenesis of the primary tumor and of metastatic progenies at

distant organs. We review current strategies to interfere with IL-11 signaling and advocate that

inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Interleukin (IL)-11 is a member of the IL-6 family of cytokines
that comprises nine secreted soluble ligands; IL-6, IL-11, leukemia
inhibitory factor (LIF), oncostatin-M (OSM), ciliaryneurotrophic
factor (CNTF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine
(CLC), interleukin-27 (IL-27) and interleukin-31 (IL-31) [1–10].
Each ligand interacts with a specific non-catalytic transmembrane
receptor or receptors, commonly referred to as the receptor alpha
chain. Importantly, the family is defined by their shared use of the
ubiquitously expressed transmembrane protein glycoprotein-130
beta-subunit (GP130, also known as IL6ST or CD130) [4,11,12].
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4.0/).
IL-11 was purified as 19 kDa soluble factor in supernatants from
a stromal cell line that promoted the proliferation of a
plasmacytoma cell line that was otherwise dependent on IL-6
[10]. Although crystallization of the 178 amino acid human IL-11
protein revealed the characteristic type 1 four-helix bundle, its
structure shows some distinct differences to that of its closest
relative IL-6 [13]. Meanwhile the 7 kb human IL11 gene comprises
five coding exons and is localized to chromosome 19q13.3–
19q13.4 [14].

Traditionally, IL-11 is recognized for its capacity to promote
maturation of platelet producing megakaryocyte progenitors in

vitro and in the bone marrow in vivo [15,16]. In order to boost
platelet production, numerous clinical trials have been conducted
with recombinant IL-11 in patients with breast cancer to reduce
thrombocytopenia associated with chemotherapy [17,18]. This
culminated in the recent FDA approval of Oprelvekin, as a modified
more stable form of IL-11, to reduce chemotherapy-induced
thrombocytopenia at lower doses [19,20]. Despite these striking
activities within the hematopoietic system, studies in knockout
e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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mice have revealed that IL-11 is not essential for hematopoiesis,
but instead is critical within the endometrial tissue of the pregnant
adult female, as genetic deficiency of the IL-11 receptor subunit
prevented formation of a decidua and hence resulted in abortion of
5 day old mouse embryos [21]. More recently, the use of Il11ra-null
mice has revealed an unprecedented role for IL-11 signaling as a
‘‘gate keeper’’ for the growth of adenomas and possibly more
advanced tumors derived from the gastrointestinal mucosa [22],
and these findings have recently been reviewed [1]. Here we will
focus on emerging insights into the role of IL-11 in the
development and progression of breast cancer.

2. IL-11 signaling

IL-11 binds to its specific transmembrane receptor, IL-11 receptor
alpha (IL-11Ra) [23]. It is believed that the IL-11/IL-11Ra dimeric
complex interacts in turn with GP130 potentially as a tetrameric
complex [24] (Fig. 1). In turn, and in analogy to IL-6 signaling, it is
believed that these complexes transition into a high affinity ligand-
binding and signaling-proficient hexameric complex comprising a
2:2:2 ratio of ligand, IL-11Ra and GP130 [25]. The formation of this
larger order complex initiates signaling through juxta-positioning of
the intracellular Janus (JAK) family tyrosine kinases JAK1, JAK2 and
TYK2, which are constitutively associated with a proline-rich
intracellular domain of GP130, and enables kinase activation in
response to trans-phosporylation [12]. Activated JAK kinases in turn
phosphorylate the various cytoplasmic tyrosine residues in GP130 to
provide docking sites for the signaling molecules signal-transducer
and activated of transcription-3 (STAT3), STAT1, SHP2 and the
negative regulator suppressor of cytokine signaling (SOCS3), in
addition to JAK-mediated tyrosine phosphorylation of the former
molecules [12]. Genetic evidence suggests that activation of STAT3 is
the most important event for the transduction of a majority of
biological responses to GP130-family cytokines [26] (Fig. 2). While
most of these effects depend on transcriptional regulation of target
genes upon the binding of tyrosine-phosphorylated STAT3-dimers to
regulatory DNA sequences, non-canonical activities of serine-
phosphorylated STAT3 also appear to promote its oncogenic capacity
by facilitating glycolysis and oxidative phosphorylation in the
Fig. 1. Schematic representation of the major the cellular sources of IL-11, which for
mitochondria [27]. However, most of tumor-cell intrinsic ‘Cancer
Hallmark’ activities elicited by STAT3 depend on its canonical role
as a transcriptional modulator of target genes that affect cell
proliferation, survival, motility and invasion [28,29] (Fig. 2). A key
STAT3-induced target gene encodes the SOCS3 protein, which
terminates GP130 signaling. SOCS3 binds to a membrane-proximal
phosphotyrosine residue in GP130 to mediate formation of an E3
ligase scaffold with elongin BC and a cullin protein resulting in
ubiquitination of the receptor complex and its proteasomal
degradation [30].

Besides activation of STAT3, and to a lesser extent also STAT1,
engagement of GP130 also triggers signaling through the RAS–
RAF–ERK pathway following GP130 association and subsequent
JAK-dependent phosphorylation of the tyrosine phosphatase
SHP2/PTPN11 [31]. Finally, GP130 has also the capacity to activate
the phosphatidylinositol 30 kinase (PI3K)–AKT–mTORC1 pathway,
although in contrast to engagement of the STAT and SHP2/ERK
signaling cascades, the former does not require tyrosine phos-
phorylation of GP130 [32] (Fig. 2).

3. Expression of IL-11 and relationship to outcome in breast
cancer

3.1. IL-11 expression

Carcinomas comprise neoplastic epithelial cells intermingled
with various non-transformed stromal cell types (Fig. 1). Individ-
ually, and in concert with one another, these non-transformed cell
types collectively comprise the tumor microenvironment, and
influence most if not all aspects of cancer cell behavior. In turn,
tumor cells influence the composition and function of the tumor
microenvironment [33,34]. Although expression of IL-11 has not
been evaluated as extensively as that for IL-6 in whole breast
tumors, most information regarding cell-type specific expression
can be extrapolated from studies of other cancer types [35], or from
analysis of human breast cancer cell lines [36–41]. In the majority
of primary tumor lesions of all breast cancer sub-types and stages,
IL-11 expression is elevated when compared to adjacent normal
breast tissue, (Fig. 3A, B). Furthermore, analysis of expression
ms a hexameric 2:2:2 signaling complex comprising IL-11, IL-11Ra and GP130.



Fig. 2. Schematic representation of the pro-tumourigenic activities elicited through the IL-11/GP130/STAT3 signaling cascade.

Fig. 3. IL-11 is elevated in breast cancer tissue irrespective of grade or hormone receptor status. (A) ‘Gluck’ [119] and (B) ‘Finak’ [120] Oncomine data is presented. *P < 0.05,

**P < 0.001, ***P < 0.001.
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profiling data from The Cancer Genome Atlas (TCGA) and from the
Curtis datasets through the Oncomine portal (http://www.
oncomine.org, [42]) revealed elevated IL-11 transcript levels in
both primary ductal and lobular breast adenocarcinoma (Table 1),
suggestive of a potential role in breast carcinogenesis [43,44].

In the healthy mouse, IL-11 mRNA is detected at low abundance
in thymus, spleen, heart, gastrointestinal tract, kidney, brain, testis,
uterus, ovaries and bones [45,45], where production increase in
response to infection, injury and inflammation [46]. Subepithelial
myofibroblasts are a major source of IL-11 [47], as well as the
gastrointestinal epithelium and both cell types are likely to
Table 1
Expression of IL-11 and IL-11Ra mRNA in normal breast and breast cancer: an analysi

Gene Type F.C. P 

IL11 I.D.C. 1.75 5.80E�11 

IL11 I.L.C. 1.46 1.32E�4 

IL11 I.D.C. 1.04 1.43E�7 

IL11 I.L.C. 1.02 n/s 

IL11 Mucinous 1.01 n/s 

IL11RA I.D.C. �3.87 2.35E�51 

IL11RA I.L.C. �2.69 1.24E�17 

IL11RA I.D.C. �3.33 9.47E�117 

IL11RA I.L.C. �2.49 2.25E�54 

IL11RA Mucinous �3.81 2.20E�21 

P values were determined using Student’s t-test.

F.C., fold change; Refs., references; IDC, invasive ductal carcinoma; ILC, invasive lobula
contribute IL-11 to cancers alongside the carcinoma cells, tumor-
associated macrophages (TAMs) and T cells [2] (Fig. 1). In a neo-
adjuvant trial of breast cancer patients undergoing chemotherapy,
administration of epirubicin plus cyclophosphamide plus doc-
etaxel enhanced IL-11 expression in primary breast tumors
(Table 2), although no further investigations were carried out to
determine the cellular origin of IL-11 [48]. However, this
observation was not confirmed in a similar larger chemotherapy
neo-adjuvant trial [49]. In response to chemotherapy, expression
of IL-6, but not IL-11, was induced in thymic endothelial cells in a
mouse model of Burkitt lymphoma and promoted survival of
s using Oncomine data.

Sample size Platform Refs.

Normal (61), cancer (389) RNA-Seq TCGA [43]

Normal (61), cancer (36) RNA-Seq TCGA [43]

Normal (144), cancer (1556) Array Curtis [44]

Normal (144), cancer (148) Array Curtis [44]

Normal (144), cancer (46) Array Curtis [115]

Normal (61), cancer (389) RNA-Seq TCGA [43]

Normal (61), cancer (36) RNA-Seq TCGA [116]

Normal (144), cancer (1556) Array Curtis [44]

Normal (144), cancer (148) Array Curtis [44]

Normal (144), cancer (46) Array Curtis [44]

r carcinoma; TCGA, The Cancer Genome Atlas.

http://www.oncomine.org/
http://www.oncomine.org/


Table 2
Association of IL-11 mRNA levels in primary breast ductal tumors with patient outcome and other clinical parameters: an analysis using Oncomine data.

Gene Parameter F.C. P N Platform Refs.

IL11 Neo-chemo 2.61 7.43E�8 Control (32), treated (25) Array Stickeler [48]

IL11 3 yr RFS 1.77 4.23E�5 No relapse (124), relapse (32) Array Desmedt [63]

IL11 3 yr DMFS 1.77 2.00E�4 No metastasis (138), metastasis (19) Array Desmedt [63]

IL11 5 yr RFS 1.53 0.002 No relapse (105), relapse (47) Array Desmedt [63]

IL11 5 yr DMFS 1.44 0.022 No metastasis (123), metastasis (29) Array Desmedt [63]

P values were determined using Student’s t-test.

F.C., fold change; N, sample size; Neo-chemo, Neo-adjuvant chemotherapy; RFS, relapse-free survival; DMFS, distant metastasis-free survival; yr, year; Refs., references.
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residual tumor cells in the thymus [50]. IL-6 was also induced in
doxorubicin-treated human umbilical vein endothelial cells,
suggesting that the vascular endothelium may also be a potential
source of IL-6 related cytokines in certain clinical contexts.

In colorectal tumors, carcinoma-associated fibroblasts (CAFs)
appear to be the principal source of IL-11, where IL11 gene
expression was activated in response to exposure to tumor cell-
derived TGF-b [35]. The latter is consistent with the identification
of two AP-1 motifs in the 50 region of the IL11 gene that are
essential for TGFb1-induced transcriptional activation. Mean-
while, additional cis-regulatory elements in the gene promoter
comprise, among others, binding sites for SP-1, STAT3, CTF/NF-1
and possibly NFkB thereby confirming a role for IL-11 during
inflammatory processes and both autocrine and paracrine
enforcement of STAT3-dependent signaling [10,51].

3.2. IL-11Ra expression

Interrogation of microarray data reveals relatively broad
expression of IL-11Ra mRNA in breast cancer cell lines (Johnstone
C.N., unpublished observation), which we also observe in human
breast tissue biopsies (Fig. 4). Published investigations at the
protein and transcript level showed minimal IL-11Ra expression in
normal mammary gland, although expression of IL-11Ra alongside
its ligand were increased in a subset of primary breast cancers
[40,52]. However, expression of IL-11Ra was down-regulated in
the ductal, lobular and mucinous histotypes of human breast
cancer (Table 1). The former comprises the most common
histological subtype and is further divided into the estrogen
receptor alpha (ERa)-positive, HER2-positive and triple-negative
(negative for ERa, progesterone receptor (PR) and HER2) clinical
subtypes [44]. A recent meta-analysis of 21 breast cancer gene
expression datasets proposed that triple-negative tumors can be
further divided [53]. This includes a mesenchymal stem cell-like
(MSL) subgroup, which is characterized by IL-11Ra expression as
an identifying marker [53]. This subtype has undergone epithelial-
to-mesenchymal transition (EMT) and is particularly aggressive
with a poor patient outcome [53,54]. Since EMT often correlates
Fig. 4. IL-11 is produced by a range of cell populations in human primary breast tumors 

with mammary epithelial cells and STAT3 activation (right panel). Scale bar = 100 mm.
with therapy resistance, it has been suggested that the breast
cancer prognostic marker miRNA-30c targets IL-11 expression via

an actin binding protein [55]. High miRNA-30c expression
inversely correlated with low IL-11 expression and improved
survival in breast cancer patients [55]. Surprisingly, despite
accumulation of SOCS3 transcripts [36,37], triple negative tumors
show very low levels of SOCS3 protein [56], possibly resulting in
sustained JAK–STAT signaling. Thus, similar to observations in
other epithelial cancers, IL-11Ra expression is down-regulated
in most primary breast tumors with the notable exception of
elevated expression in the MSL-like subgroup of triple-negative
cancers.

3.3. IL-11 signaling and patient outcome

Levels of IL-11 transcripts, rather than of IL-11Ra transcripts,
generally correlate positively with breast cancer progression.
These associations are reminiscent of reports for hepatocellular
carcinoma [57], gastric carcinoma [58] and renal cell carcinoma
[59], and more recently IL-11 has also been implicated in poor
survival of patients with non-small cell lung adenocarcinoma
[60]. Similarly, there is also a trend toward higher IL-11 expression
in tumors from patients with local or distant recurrence, as well as
in patients who died from breast cancer, although these associa-
tions did not reach statistical significance possibly due to the small
sample size [52]. Meanwhile, Sotiriou et al. [61] reported in a
cohort of 89 patients a statistically highly significant association
between IL-11 expression in primary tumors and an increased risk
for development of bone metastasis. In support of this, IL-11
protein levels in the serum and primary tumors were significantly
higher in patients with bone metastasis compared to those without
distant metastasis [62]. Moreover, in the cases with bone
metastasis, serum IL-11 levels were positively associated with
reduced disease-free survival [62]. Similarly, higher IL-11 tran-
script levels have been observed in breast cancer patients that
relapsed 3–5 years after initial diagnosis when compared to a
relapse-free cohort [63]. While there is less compelling evidence
between IL-11 expression and breast cancer patient outcome using
(left panel), with IL-6R and IL-11Ra expression (middle panel) primarily associated



Table 3
Association of IL-11 and IL11RA mRNA levels in primary breast tumors with patient outcome and other clinical parameters: Kaplan–Meier analyses.

Gene Subgroup Dataset Survival H.R. 95% C.I. N P Refs.

IL11RA L.N. metastasis negative 26 datasets DFS 0.7961 0.6433–0.9852 1183 0.0357 Madden [64]

IL11 All Cardiff DFS NR NR ? 0.0100 Hanavadi [52]

IL11 All UNC337 RFSa 2.3763 NR 337 0.0002 Bockhorn [55], Prat [117]

IL11 All Oxford DMFSb 2.6620 NR 210 0.0210 Bockhorn [55], Buffa [118]

IL11 All UC PFSb 1.7524 NR 44 0.0375 Bockhorn [55]

H.R., hazard ratio; C.I., confidence interval; N, sample size; Refs., references; L.N., lymph node; DFS, disease-free survival; RFS, relapse-free survival; DMFS, distant metastasis-

free survival; PFS, progression-free survival; NR, not reported.
a Gene expression values were dichotomized and allocated into high and low groups split at the median.
b Gene expression values were used as a continuous variable.
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the BreastMark meta-analysis algorithm (http://glados.ucd.ie/
BreastMark/index.html) to survey survival data from 26 datasets
on 12 different microarray platforms [64], such data may be
limited by the frequent incorrect annotation of IL-11/IL-11Ra on
some microarray platforms. Nevertheless, BreastMark analysis
revealed an association between higher IL-11Ra expression and
prolonged patient survival specifically in lymph node metastasis-
negative patients (Table 3).

4. Molecular activities of IL-11 in breast cancer

4.1. Proliferation and Apoptosis

IL-11 acts as a potent growth factor for various hematopoietic
progenitors, and the growth of tumors of the gastrointestinal
mucosa is fueled by IL-11 [22], consistent with the capacity of
STAT3 to transcriptionally induce genes that promote cell cycle
progression (Fig. 2). Likewise, a second cancer hallmark activity of
STAT3, namely to promote cellular survival through both the
induction of Bcl-2 survival proteins as well as, possibly through
indirect mechanisms, suppression of their BH3-only protein
antagonists, is a prominent IL-11 activity [22]. Indeed we have
identified the latter as the major mechanism that confers
resistance of the colonic epithelium to experimentally induced
acute colitis, as well as a mechanism by which IL-11 antagonists
suppress the growth of gastrointestinal tumors in mice [22]. Con-
sistent with these observations, Bockhorn et al. [55] also found a
role for IL-11 in chemotherapy-induced apoptosis of MDA-MB-
231 triple-negative breast cancer cells. Specifically, siRNA-
mediated knockdown of IL-11 sensitized the cells to paclitaxel-
induced cell death, while anti-IL-11 antibody added to culture
medium increased doxorubicin-induced apoptosis. Indeed higher
IL-11 expression was associated with reduced progression-free
and overall survival in a cohort of 25 patients treated with
doxorubicin, suggesting that IL-11 may also antagonize pro-
apoptotic pathways in vivo [55]. Whether this is limited to the cell
intrinsic apoptotic pathway or may also affect the tumor necrosis
factor (TNF) superfamily dependent extrinsic pathway, remains to
be fully elucidated.

4.2. Tumor hypoxia and angiogenesis

Cancers require a vascular network to both provide nutrients
for growth and to remove harmful by products of proliferation and
cellular metabolism. Indeed, stimulation of new blood vessels
(angiogenesis) is required if tumors are to reach a size greater than
a few mm3 [65]. Hypoxia near the center of actively growing
tumors results in stabilization of the transcription factor hypoxia-
inducible factor-1a (HIF-1a), which in concert with STAT3
activates expression of the key angiogenic growth factor vascular
endothelial growth factor (VEGF) to stimulate angiogenesis
[66]. Interestingly, IL-11 rather than IL-6 was induced by hypoxia
in a range of cancer cell lines [67]. Induction by hypoxia was
mediated by the HIF-1a and AP-1 transcription factors. Similarly,
in vitro experiments showed that IL-11 expression enhanced the
tumorigenicity of PC-3 prostate cancer cells under hypoxic, but
not normoxic, conditions and this was associated with STAT1
rather than STAT3 phosphorylation [67]. Consistent with this,
short-hairpin RNA (shRNA)-mediated stable knockdown of IL-11
attenuated the growth of PC-3 xenografts [67]. Furthermore, loss
of IL-11 increased apoptosis of tumor cells primarily at early time
points, consistent with a key role for IL-11 in the enhanced
survival of tumors while emerging in a hypoxic microenviron-
ment. Interestingly, while these investigators did not observe
differences in microvessel density in IL-11 silenced tumors,
others reported that exclusion of the IL-11-producing tumor
subclone in a polyclonal xenograft was associated with a
reduction of vessel growth [68]. Human umbilical vein endothe-
lial cells express IL-11Ra and respond to stimulation with IL-11
[69], thus raising the possibility that IL-11 may have direct
effects on tumor endothelium.

4.3. Cancer stem cells and tumor heterogeneity

An emerging concept in breast cancers and tumors of other
origins is the dynamic equilibrium between cancer stem cells
(CSCs) and their non-cancer stem cells (NCSCs) progenies [70]. CSCs
have the ability to initiate de novo tumors when transplanted,
whereas NCSCs do not [70]. Since CSCs often divide more slowly
than the bulk population of the tumor, they may escape
chemotherapy-induced cell death and enable tumor recurrence
at a later time point. At the molecular level, breast cancer stem cells
are defined as bearing a CD44+CD24� surface marker phenotype
[71], or being positive for the enzyme aldehyde dehydrogenase
(ALDH1) [72], and both of these populations form tumors in mouse
models. Phenotypically, breast CSCs have been described as
undifferentiated, or possessing a mesenchymal phenotype [73],
and thus might be generated from NCSCs by epithelial-to-
mesenchymal transition [74]. Indeed, Iliopoulos et al. [75] have
shown that the conversion of NCSCs to CSCs is enhanced by IL-6.
Several other studies identified critical roles for the JAK-STAT
pathway and canonical STAT3 signaling in the maintenance of the
CSCs population in breast cancer [76]. The STAT3 inhibitors LLL12
or STATTIC, for instance, reduced the viability of breast CSCs and
inhibited the growth of xenograft tumors in mice that were formed
by an inoculum enriched in CSCs [77]. Complementary studies
have shown that IL-6 signaling mediates stem cell maintenance
through STAT3-dependent mechanisms [78,79]. Polyak and
colleagues delineated an IL-6/JAK2/STAT3 pathway in breast CSCs
where the JAK2-specific inhibitor NVP-BSK805 caused tumor
regression in triple-negative tumor xenografts in mice [79]. Mean-
while in the HER2+ breast cancer subtype, resistance often
emerges to the standard-of-care anti-HER2 antibody (Trastuzu-
mab) adjuvant therapy through mutational activation of the PI3K/
AKT signaling pathway [80]. Since the latter results in increased
production of IL-6, IL-8 and CCL5 [81] it is likely to also induce
expression of IL-11, although this was not experimentally
confirmed. Elevated IL-6 secretion stimulated the expansion of
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the CSC population in several human breast cancer models,
through engagement of the downstream JAK/STAT3 pathway, and
is also likely to be associated with NFkB signaling, which is an
inducer of IL-6. Importantly, growth of Trastuzumab-resistant
tumors was entirely dependent on sustained IL-6 signaling, as
administration of the anti-IL-6R antibody Tocilizumab eliminated
tumor growth in vivo [81].

Tumor heterogeneity and clonal cooperation are important
concepts in our understanding that within a lesion the cancer cells
may behave as a community and collectively confer increased
aggressiveness to polyclonal tumors. Using a candidate approach
of overexpressing cancer-promoting factors in individual sub-
clones of MDA-MB-468 triple-negative breast cancer cells,
Marusyk and colleagues identified IL-11 and vascular endothelial
growth factor-D (VEGF-D) as the two factors that reproducibly
conferred metastatic behavior to the corresponding polyclonal
xenografts [68]. Furthermore, the IL-11 expressing subclone(s)
acted as non-cell autonomous driver(s) of xenograft growth, most
likely also promoting expansion of the VEGF-D producing clone to
ensure sufficient (lymph-)angiogenesis. Indeed, the continuous
presence of IL-11 appeared to ensure that all subclones maintained
a certain equilibrium, which collectively retained aggressiveness of
the xenograft. Removal of the IL-11 producing clone, on the other
hand, prevented further growth of the xenografts and often
resulted in their necrotic collapse. Surprisingly, neither IL-11 (nor
VEGF-D) acted directly on the cancer cells. These data suggest a
hitherto unrecognized capacity whereby IL-11 in the tumor
microenvironment may not only promote tumor progression by
maintaining an equilibrium among the most aggressive subclones,
but also controls tumor angiogenesis, which may occur by both
direct and indirect mechanisms [82].

4.4. Aromatase expression

Aromatase (CYP19A1) belongs to the cytochrome P450 group of
enzymes and catalyzes the biosynthesis of estrogens. While in
premenopausal women, the ovaries have the highest aromatase
expression [83], in post-menopausal women with breast cancers,
aberrant transcription of the CYP19A1 gene in CAFs increases intra-
tumoral estrogen levels and promotes tumor growth [84]. Accord-
ingly, aromatase inhibitors are currently used to treat Tamoxifen-
resistant ERa-positive tumors. While the mechanism for enhanced
CYP19A1 transcription in response to tumor-secreted factors
involves the PII gene promoter normally utilized for ovarian
transcription [85], the adipose tissue-specific PI.4 promoter
contributes to local CYP19A1 expression in the tumor microenvi-
ronment [86]. PI.4-mediated transcription is stimulated by TNFa
and, in synergy with the activated glucocorticoid receptor, the
GP130 cytokines IL-11 and oncostatin-M [87]. Consistent with this
the PI.4 promoter contains specific GAS sequence to facilitate
STAT1/3 binding, and its close proximity to a glucocorticoid
response element molecularly underpins the synergistic effect
between dexamethasone and IL-11 stimulated aromatase expres-
sion [87–89]. It remains to be established whether this mechanism
also contributes to the breast cancer risk posed by chronic and
obesity-associated inflammation, because accumulation of CD68+
macrophages in breast adipose tissue of obese women correlates
with increased aromatase levels [90]. Thus, tumor-associated
macrophages, via the secretion of cytokines such as oncostatin-M
and IL-11, may contribute to elevated aromatase activity in breast
cancer.

4.5. Metastatic dissemination

While IL-11 is likely to be only a lesser driver of cancer cell
proliferation [35,39,91,92], evidence has accumulated for IL-11 to
facilitate metastatic dissemination of cancer cells to distant sites.
As mentioned above, clinical data strongly implicates IL-11 in
metastasis to bone. IL-11 is produced by bone marrow stromal
cells where it can stimulate osteoclast development from
progenitor cells [93] (Fig. 1). Unlike in prostate cancer, where
the bone lesions are osteoblastic, breast cancer bone metastases
are usually osteolytic, resulting in net bone destruction through
breast cancer cell-released mediators, including IL-11 and
parathyroid hormone-related protein (PTHrP), which activate
osteoclasts [94].

Osteoclast-mediated bone remodeling in turn releases bone
matrix-associated TGF-b and other growth factors into the local
environment, and TGF-b readily induces expression of IL-11 and
other osteoclast differentiation factors in breast cancer cells
thereby further increasing the rate of bone loss [91]. Accordingly,
ablation of the TGF-b-signaling node SMAD4 attenuated the
capacity of breast cancer cells to produce IL-11 and to metastasize
to bone [95]. IL-11 over-expression alone failed to increase the
rate by which MDA-MB-231 cells formed bone metastases,
suggesting that IL-11 may not be involved in the homing of
disseminated cancer cells to bone. In this model, however, ectopic
IL-11 expression co-operated with over-expression of the
chemokine receptor CXCR4 to drive experimental osteolytic
metastasis [39].

Advanced colorectal cancer has a high propensity to metasta-
size to the liver via the portal vein. Primary colorectal tumors
produce high levels of TGF-b [35], though unlike breast cancer cells
they mostly lack the ability to respond to TGF-b signaling owing to
frequent mutational inactivation of components of the TGF-b
pathway [96]. Calon and colleagues identified a pro-metastatic
pathway involving TGF-b mediated induction of IL-11 expression
in the CAFs associated with primary tumors. They further proposed
that paracrine stimulation of cancer cells with IL-11 activates
STAT3 to facilitate metastatic colonization mainly through evasion
of apoptosis, and this was inhibited by silencing GP130 expression
on cancer cells. Although it was not formally proven that the
colorectal cancer cells express IL-11Ra, it is reminiscent of findings
demonstrating that the growth of primary colonic adenomas is
impaired in bone marrow chimeras where the host, but not the
bone marrow, lack IL-11Ra expression [22]. It remains unclear
whether TGF-b can induce IL-11 expression in CAFs irrespective of
the site of the emerging micrometastasis. Interestingly, while
colorectal cancer cell lines engineered to produce IL-11 displayed
enhanced spontaneous metastasis from the orthotopic site in the
cecal wall to multiple organs, ectopic over-expression of IL-6 only
marginally enhanced metastasis [35]. The latter is most likely
attributable to the low abundance of IL-6Ra on these cells, and also
suggests the absence of significant IL-6 trans-signaling, whereby
cells lacking the trans-membrane IL-6Ra can respond to a
preformed soluble complex comprising IL-6 and the cleaved
form of the extracellular domain of IL-6Ra [97].

An alternative, and not mutually excluding mechanism
suggests that TGF-b may also elevate IL-11 levels by stabilizing
its mRNA through induction of the long non-coding RNA lncRNA-
ATB in hepatocellular cancer cells. The latter appears to also
sequester miR-200 family microRNAs [92]. Inhibition of miR-200
family miRNAs promoted epithelial-to-mesenchymal transition
and cell invasion, while the increased IL-11 production resulted in
autocrine STAT3 activation, although without modulating inva-
sion. Similar to the aforementioned study from Calon et al., Yuan
et al. [92] also observed that lncRNA-ATB expression in two
different models of experimental metastasis, promoted tumor cell
survival during the early phases of metastatic colonization though
an IL-11/STAT3-dependent mechanism. Finally, IL-11 mRNA levels
are significantly higher in portal vein tumor thrombi than in
matched primary liver cancers from the same patient, which
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coincides with the capacity of hepatocellular carcinomas to
metastasize intra-hepatically via the portal vein.

Finally, it is worthwhile to consider that IL-11 may also promote
metastasis indirectly owing to its capacity to stimulate platelet
production [98,99]. Platelets can coalesce with circulating tumor
cells in the bloodstream to both protect them from the immune
system as well as assist cancer cell extravasation into tissue
parenchyma [100].

5. Therapeutically targeting IL-11 signaling in cancer

To date, only a few studies have been published that document
therapeutic targeting of IL-11 signaling in pre-clinical models of
cancer. The viability and largely normal physiological response of
adult Il11ra-null mice, with the lack of decidua formation in
pregnant females being the most obvious defect [101], suggests
that targeting of IL-11 signaling in cancer patients is likely to avoid
major deleterious systemic side effects [102]. Likewise, prolonged
treatment of mice with an antagonistic form of IL-11, designated
mIL-11 Mutein and possessing over 20-fold higher affinity for
mouse IL-11Ra than wild-type mIL-11 [103], did not result in a
drop in blood platelets or affect blood coagulation [22].

IL-11, rather than IL-6, was shown to drive the growth of
gastrointestinal cancers in mouse models [22]. In a genetically
engineered model of inflammation-associated gastric cancer, IL-11
acted directly on tumor cells to drive STAT3 activation, cellular
proliferation and invasion. Moreover, administration of mIL-11
Mutein reduced gastric tumor burden in these mice coinciding
with reduced proliferation and enhanced apoptosis of tumor cells
and a reduction in both tumor-associated inflammatory cells and
cytokine levels [22]. Treatment with mIL-11 Mutein also reduced
tumor size and multiplicity in a mouse model of carcinogen-
induced sporadic colorectal cancer and attenuated growth of DLD-
1 colorectal cancer xenografts [22]. Inhibition of tumor growth
using this strategy is likely to require sustained administration of
the therapeutic as the growth of gastric tumors rebounded
following withdrawal of mIL-11 Mutein. It is possible that
combination therapy using mIL-11 Mutein in conjunction with
standard chemotherapy may result in complete tumor remissions,
although this has not been formally evaluated experimentally.

Several antibodies that bind to and inhibit IL-11 [104], IL-11Ra
(Putoczki T.L., unpublished observations) or GP130 have been
developed and shown efficacy in various mouse models. Likewise,
antibodies targeting human IL-11 (R&D Systems), IL-11Ra
(Putoczki T.L., unpublished observations) or GP130 [105] are
being developed for preclinical evaluation, on the back of the
clinical success of antibodies targeting IL-6 (Siltuximab) or IL-6Ra
(Tocilizumab). Indeed, targeting IL-11 or IL-11Ra may prevent
unwanted side-effects arising from targeting GP130, given the
embryonic lethality of gp130 knockout mice [106], although GP130
epitopes have been identified that allowed for the development of
GP130 antibodies that specifically inhibit IL-11 signaling [107]. The
IL-11Ra has also been used to exploit chimeric antigen-receptor
(CAR) strategies to mediate cytotoxic T-cell killing of a human
osteosarcoma cell line [108].

Using in vivo phage display on patient-derived prostate cancer
tissue, Pasqualini and colleagues identified peptides with ability to
bind to tumor vascular endothelium [109,110]. One peptide bound
to IL-11Ra expressed on endothelial cells [110] because it
mimicked a motif in IL-11 that binds the receptor. Conjugation
of this peptide motif to an apoptosis-inducing peptide sequence
yielded a peptidomimetic, which targeted bone metastases and
showed promising anti-tumor activity in pre-clinical models of
prostate cancer and osteosarcoma [111,112]. While these studies
used cell surface IL-11Ra as means for delivering therapeutics to
tumors, they do not address the exact nature of the IL-11
responsive cell type(s) that serve(s) as the Achilles heel for the
growth and survival of the tumors. However, these studies did
suggest the involvement of IL-11 signaling in tumor angiogenesis
and in light of the aforementioned insights from the study by
Marusyk et al. [68], this is likely to be a mechanism by which
inhibition of IL-11 signaling in breast cancer may confer clinical
benefit.

A more generic approach of interfering with GP130-mediated
signaling is afforded by the various small molecule kinase
inhibitors currently being either in advanced clinical trial or
following repurposing of the FDA-approved JAK2 inhibitors for the
treatment myeloproliferative and other hematological diseases
[113]. It is likely that development of additional novel JAK tyrosine
kinase inhibitors that better distinguish between the four highly
related family members are likely to reduce the dose-limiting
toxicity, including thrombocytopenia that is often observed with
the current compounds [114].

6. Conclusions

Analysis of the recent literature strongly indicates a complex
multi-faceted pro-tumorigenic role for IL-11, including for breast
cancer. IL-11 has now been implicated in several unrelated aspects
of tumor biology. These include the promotion of angiogenesis,
survival under hypoxic conditions, apoptosis and chemoresistance,
as well as growth and survival of early micro-metastatic colonies in
bone and soft tissues including liver and lung. Further investiga-
tions are required to pinpoint the precise mechanisms by which IL-
11 confers each of these activities.

Based on the observations summarized here, blockade of IL-11
signaling either through targeting of the ligand or of its cognate
receptor, and in a more general approach through one of the many
small molecule JAK tyrosine kinase inhibitors currently in clinical
trials, is likely to generate collateral interference with processes
that govern tumor homeostasis and progression. Key to this will be
the careful assessment of the effect of anti-IL-11 therapeutics on
primary tumors and distant metastasis in well-characterized
xenograft and syngeneic mouse models of breast cancer. Eventual
translation of this approach to the clinical setting will require
selection of patients most likely to benefit from anti-IL-11 therapy.
Since IL-11 can promote cancer progression through both direct
action on cancer cells and indirectly via effects on the tumor
microenvironment, screening of patients for IL-11/IL-11Ra ex-
pression or other appropriate surrogate markers may need to be
considered in the fullness of time.
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