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Abstract

In this paper we consider two inverse problems on a closed connected Riemannian manifold (M,g). To formulate the first one,
assume that M is divided by a hypersurface Σ into two components and we know the eigenvalues λj of the Laplace operator
on (M,g) and also the Cauchy data, on Σ , of the corresponding eigenfunctions φj , i.e. φj |Σ,∂νφj |Σ , where ν is the normal
to Σ . We prove that these data determine (M,g) uniquely, i.e. up to an isometry. In the second problem we are given much less
data, namely, λj and φj |Σ only. However, if Σ consists of at least two components, Σ1, Σ2, we are still able to determine (M,g)

assuming some generic conditions on the spectra of the Laplacian in subdomains of M obtained by cutting along Σ .
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article, nous considérons deux problèmes inverses sur une variété Riemannienne (M,g) connexe, compacte et sans bord.
Dans le premier, soit M divisée en deux composantes par une hypersurface Σ . On suppose qu’on connaît les valeurs propres λj

de l’opérateur de Laplace sur (M,g) ainsi que les données de Cauchy, sur Σ , de fonctions propres correspondantes φj , i.e.
φj |Σ,∂νφj |Σ où ν est le champ normal de Σ . Nous démontrons que ces données déterminent (M,g) de manière unique, i.e.
à une isométrie près. Dans le deuxième problème nous avons moins d’information : seuls λj et φj |Σ sont connus. Cependant, si Σ

a au moins deux composantes Σ1, Σ2, nous pouvons encore déterminer (M,g) en supposant que certaines conditions génériques
portant sur le spectre du laplacien sont satisfaites sur les sous-variétés de M qui sont obtenues en coupant M suivant Σ .
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

In this paper we consider some inverse spectral problems on a closed connected Riemannian manifold (M,g). The
first motivation to consider inverse problems on Riemannian manifolds comes from spectral geometry. The famous
problem here, posed by Bochner and formulated by Kac in the paper “Can one hear the shape of a drum?” [14], is
the problem of identifiability of the shape of a 2-dimensional domain from the eigenvalues of its Dirichlet Laplacian.
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More generally, the question is to find the relations between the spectrum of a Riemannian manifold (M,g), i.e. the
spectrum of the Laplace–Beltrami operator −�g on it, and geometry of this manifold. In particular, one can ask,
following Bochner–Kac, if the spectrum of −�g determines the geometry. However, already in 1966, it was known
that, in higher dimensions, the answer to this question is negative. Indeed, in 1964 Milnor [27] found the first counter-
example, a pair of Riemannian flat tori of dimension 16 which are isospectral, i.e. the spectra of their Laplacians
coincide, but not isometric. As for the original Bochner–Kac problem in dimension 2, the answer was found only
in early 90th. Namely, in 1985 Sunada [32] introduced a method of producing examples of non-isometric isospectral
compact connected Riemannian manifolds. Although in this paper Sunada did not give the answer to the Bochner–Kac
problem, in 1992 Gordon, Webb and Wolpert [10] extended Sunada’s method and settled in the negative this famous
problem by constructing two simply connected non-isometric plane domains which are isospectral. Since then there
was much activity in this direction with many beautiful mathematical results regarding relations between the spectrum
and geometry, see e.g. [11] and [36] for the current state of art in this area.

It is clear from the above that, in order to determine geometry of a closed Riemannian manifold, further spectral
information is needed. The nature of this information can be found if we look at inverse boundary problems. In this
case, the data given is the trace on ∂M of the resolvent of the Laplacian with, say, Neumann boundary condition.
Depending on whether this information is given for one or many values of the spectral parameter, these inverse
boundary problems were originally posed by Calderon [7] and Gel’fand [9]. These inverse boundary problems were
solved, at least on the level of uniqueness and sometimes conditional stability, for the Laplace–Beltrami operator and
also the other types of scalar operators, in e.g. [1–6,16,18,19,21,23–25,28–30,33,34] and monographs [13] or [17]
with further references therein.

As the first inverse problem considered in this paper is an analog of the Gel’fand inverse boundary problem, we first
reformulate the Gel’fand problem in an equivalent form which, however, has more “spectral” flavor. Namely, let λj

and φj be the eigenvalues and normalized eigenfunctions of the Laplace operator with Neumann boundary condition,

(−�g − λj )φj = 0 in M, ∂νφj |∂M = 0; (φj ,φk)L2(M) = δjk, (1)

where ∂ν is the normal derivative to ∂M . Then the Gel’fand problem [9] is the one of the determination of (M,g)

from the boundary spectral data, i.e. ∂M , {λj ,φj |∂M}∞j=1. Note that, due to the Neumann boundary condition in (1),
we do actually know the whole Cauchy data φj |∂M, ∂νφj |∂M of the eigenfunctions on ∂M . To formulate its analog
for a closed connected manifold, assume as earlier that we deal with the Laplace operator −�g on, now closed,
Riemannian manifold (M,g). As earlier, we assume that our spectral data are given on an (m − 1)-dimensional
submanifold Σ ⊂ M , Σ = ∂S, where S ⊂ M is an open set. We note that this type of data is natural for various
physical applications when sources and receivers are located over some surface in space rather then are scattered
over an m-dimensional region or put on, probably remote, boundary of M . Such localization is used, e.g., in radars,
sonars, and in medical ultrasound imaging when a single antenna array is used to produce the wave and to measure
the scattered wave. It is typical also in geosciences and seismology where sources and receivers are often located over
the surface of the Earth or an ocean.

Returning to the possible generalizations of the Gel’fand problem to inverse problems on closed manifolds and
taking into account that Σ splits M into two manifolds with boundary, S and M \S, we believe that the most straight-
forward generalization of the Gel’fand problem is the following:

Assume that we are given the Cauchy spectral data,{
Σ,(λj ,φj |Σ,∂νφj |Σ)∞j=1

}
. (2)

Does these data determine (M,g)?
Then the first main result of the paper is:

Theorem 1. The Cauchy spectral data (2) determine the manifold (M,g) up to an isometry.

Probably a more surprising result concerns with another inverse spectral problem associated with Σ . In this case
we have less data, namely, the Dirichlet spectral data,{

Σ,(λj ,φj |Σ)∞j=1

}
, (3)
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and would like to determine (M,g) from these data. It turns out that this is still possible when the set S consists of
two subsets,

S = S1 ∪ S2, S1 ∩ S2 = ∅,

if we assume some generic conditions on S1, S2. To state this result, we define the Dirichlet spectrum of the Laplace
operator on a manifold S̃ with boundary to be a collection of all eigenvalues λ ∈ R of −�g such that

−�gφ = λφ, in S̃, φ|∂S̃ = 0,

with some non-zero φ.

Theorem 2. Assume that the Dirichlet spectra of the Laplace operators on S1, S2, M \ S, M \ S1 and M \ S2 are all
disjoint. Then the Dirichlet spectral data determine the manifold up to an isometry.

The paper is organized as follows. In Section 2 we present some auxiliary results for the transmission problems
on M and the metric reconstruction on Σ . Section 3 deals with the reconstruction of the Riemannian manifold (M,g)

from the Cauchy spectral data and contains the proof of Theorem 1. Section 4 is devoted to the inverse problem with
the Dirichlet spectral data and provides the proof of Theorem 2. Section 5 contains some further generalizations of
the problem and its alternative formulations which may be useful in practical applications.

2. Auxiliary results

2.1. Transmission problem at fixed frequency

Consider a closed connected smooth m-dimensional Riemannian manifold (M,g) and an open nonempty set
S ⊂ M with smooth (m − 1)-dimensional boundary Σ := ∂S 	= ∅. Let u :M → R be a function such that its
restrictions u+, u− onto M+ = M \ S and M− = S are H 2-smooth. We define the traces of u on the different sides
of Σ by:

(u±|Σ)(x) = lim
h→0− u

(
x ± hν(x)

)
, x ∈ Σ,

(∂νu±|Σ)(x) = lim
h→0− ∂νu

(
x ± hν(x)

)
, x ∈ Σ, (4)

where ν(x) is the unit normal to Σ at x pointing towards M− and the limits are understood in the sense of traces
in Sobolev spaces. Denote by [u] = u+|Σ − u−|Σ and [∂νu] = ∂νu+|Σ − ∂νu−|Σ the jumps of u and its normal
derivative across Σ .

Consider the transmission problem:

(−�g − λ)u := −g−1/2∂i

(
g1/2gij ∂ju

) − λu = 0 in M \ Σ,

[u] = f on Σ, [∂νu] = h on Σ, (5)

where g = det(gij ) and [gij ] is the inverse matrix of [gij ]. Although, in general, problem (5) may be considered
with f ∈ H 3/2(Σ), h ∈ H 1/2(Σ), it will be sufficient and convenient for us to take f,h ∈ C∞(Σ). Problem (5) is
equivalent to the problem:

(−�g − λ)u = hδΣ + f ∂νδΣ, (6)

where hδΣ and f ∂νδΣ are distributions defined as

〈hδΣ,ψ〉 =
∫
Σ

hψ |Σ dSg, 〈f ∂νδΣ,ψ〉 = −
∫
Σ

f (∂νψ)|Σ dSg,

dSg being the volume element on Σ , for any ψ ∈ C∞(M).
Let λ /∈ σ(−�g), where σ(−�g) is the spectrum of the Laplace operator −�g . Then problem (5) has a unique

solution. Moreover, its formulation in form (6) makes it possible to represent this solution, u = uf,h(x,λ), for
x ∈ M \ Σ, as a sum of a single- and double-layer potentials,
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uf,h(x,λ) = u0,h(x,λ) + uf,0(x,λ),

u0,h(x,λ) = Sλh, uf,0(x,λ) = −Dλf,

Sλh(x) =
∫
Σ

G(x,y;λ)h(y) dSg(y), Dλf (x) =
∫
Σ

∂ν(y)G(x, y;λ)f (y) dSg(y), (7)

where G(x,y;λ) is Green’s function,

(−�g − λ)G(x, y;λ) = δy(x).

Note that the single-layer potential is well defined on and continuous across Σ . Also, Dλf can be continuously
extended from M int± to M± and, for x ∈ Σ ,

(Dλf )±|Σ(x) = Do
λf (x) ± 1

2
f (x), Do

λf (x) :=
∫
Σ

∂ν(y)G(x, y;λ)f (y) dSg(y). (8)

Similar, the normal derivative of Sλh is continuously extended, from the left and right, to x ∈ Σ ,

∂ν(Sλh)±|Σ(x) = Jλh(x) ∓ 1

2
h(x), Jλh(x) :=

∫
Σ

∂ν(x)G(x, y;λ)h(y) dSg(y), (9)

where the integrals in (8)–(9) are weakly singular ones. Also integrals in (8)–(9) are mutually adjoint on Σ in the
sense of duality, 〈

Do
λf,h

〉 := ∫
Σ

(
Do

λf
)
(x)h(x) dSg(x)

= 〈f,Jλh〉 :=
∫
Σ

f (x)(Jλh)(x) dSg(x), f,h ∈ C∞(Σ). (10)

(For these results see e.g. [8]. Note that, due to the local nature of constructions in [8], they are valid not only for the
Euclidean case considered in there but also for manifolds.)

2.2. Transmission problem in time domain

In this subsection we consider the transmission problem for the wave equation associated with the Laplace
operator, −�g , (

∂2
t − �g

)
uf,h = 0 in (M \ Σ) × R,[

uf,h
] = f on Σ × R,

[
∂νu

f,h
] = h on Σ × R,

uf,h
∣∣
t<min(th,tf )

= 0, (11)

where h,f ∈ C∞+ (Σ × R). This space consists of C∞-smooth functions equal to 0 for sufficiently large negative t ,
i.e.

h = 0 for t < th, f = 0 for t < tf .

The results obtained below will be instrumental, although for the special case f = 0, in Section 4. However, as
considerations for f = 0 and f 	= 0 are parallel, we will consider the general case.

In lemma below, we use the following spectral decomposition:

uf,h(x, t) =
∞∑

j=1

u
f,h
j (t)φj (x). (12)
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Lemma 3 (Blagovestchenskii identity). Given the Cauchy spectral data (2) it is possible to evaluate the Fourier
coefficients u

0,h
j (t), u

f,0
j (t) of the waves u0,h(x, t), uf,0(x, t), namely,

u
0,h
j (t) =

t∫
th

sin(
√

λj (t − s))√
λj

hj (s) ds, hj (t) :=
∫
Σ

h(·, t)φj |Σ dSg,

u
f,0
j (t) = −

t∫
tf

sin(
√

λj (t − s))√
λj

fj (s) ds, fj (t) :=
∫
Σ

f (·, t)∂νφj |Σ dSg, (13)

and, for λ1 = 0, we should substitute
sin(

√
λj (t−s))√
λj

by (t − s). Moreover,

u0,h(x, t) ∈ C∞+
(
R;H 1(M)

)
, uf,0(x, t) ∈ C∞+

(
R;L2(M)

)
.

Proof. We consider first u0,h. We have:

u
0,h
j (t) = (

u0,h(x, t), φj (x)
)
L2(M)

=
∫

M+

u0,h(x, t)φj (x) dVg +
∫

M−

u0,h(x, t)φj (x) dVg.

Thus, (11) implies that,

∂2
t u

0,h
j (t) =

∫
M+

�gu
0,h(x, t)φj (x) dVg +

∫
M−

�gu
0,h(x, t)φj (x) dVg

=
∫
Σ

(
∂νu

0,h
+ − ∂νu

0,h
−

)∣∣
Σ

φj |Σ dSg −
∫
Σ

(
u

0,h
+ − u

0,h
−

)∣∣
Σ

∂νφj |Σ dSg

+
∫
M

u0,h(x, t)�gφj (x) dVg = hj (t) − λju
0,h
j (t),

where we use that (∂νu
0,h
+ − ∂νu

0,h
− )|Σ = h, (u

0,h
+ − u

0,h
− )|Σ = 0. Solving this second order ordinary differential

equation together with the initial conditions u
0,h
j (th) = 0, ∂tu

0,h
j (th) = 0, provides the first formula in (13). Similar

considerations provide the second formula in (13).
To prove the second part of lemma, we rewrite problem (11) in the form, cf. (6),

∂2
t u0,h − �gu

0,h = hδΣ, u0,h
∣∣
t<th

= 0.

As, for any t , h(·, t)δΣ ∈ H−1(M), we have, for any k = 0,1, . . . , that

∞∑
j=1

(λj + 1)−1
∣∣∂k

t hj (t)
∣∣2 ∈ C∞+ (R). (14)

On the other hand, representation (13) yields that, for j � 2,

∂k
t u

0,h
j (t) = 1

λj

∂k
t hj (t) − 1

λj

t∫
th

cos
(√

λj (t − s)
)
∂k+1
s hj (s) ds,

with obvious modification for j = 1. Thus,
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∞∑
j=1

(λj + 1)
∣∣∂k

t u
0,h
j (t)

∣∣2 � C

∞∑
j=1

(λj + 1)−1
∣∣∂k

t hj (t)
∣∣2

+ C′(t − th)

t∫
th

∞∑
j=1

(λj + 1)−1
∣∣∂k+1

s hj (s)
∣∣2

ds.

This inequality, together with (14), implies the desired result for u0,h(x, t). Similarly, we prove that uf,0(x, t) ∈
C∞+ (R;L2(M)). �

Lemma 3 immediately implies the following result:

Corollary 4. The Dirichlet spectral data (3) makes it possible to find the trace on Σ × R, i.e. u0,h|Σ×R, for any
h ∈ C∞+ (Σ × R).

Proof. The result follows from formula (13) taking into the account that, due to u0,h ∈ C∞+ (R;H 1(M)), the series
(12) converges, for any t , in H 1(M). Therefore, the trace,

u0,h
∣∣
Σ×R

(x, t) =
∞∑

j=1

u
0,h
j (t)φj |Σ(x),

where the right-hand side converges in C∞+ (R;H 1/2(Σ)). �
Let us now warm up by considering a simple inverse problem when the part M− of the manifold M is known and

show how Lemma 3 and Corollary 4 can be used to recover M+.

Example 5. Assume that, in addition to (3), we know also the manifold M− and the metric g|M− on it. Then the
manifold (M+, g|M+) can be recovered up to an isometry.

Indeed, let h ∈ C∞+ (Σ × R+), i.e. h ∈ C∞+ (Σ × R) and th > 0. Using Corollary 4, we can find u0,h|Σ×R+ .
Consider now the Dirichlet initial-boundary value problem in M− × R+ with Dirichlet data being u0,h|Σ×R+ . As

(M−, g|M−) is known, we can then find u0,h|M−×R+ and, therefore, the normal derivative ∂νu
0,h
− |Σ×R. Thus, we can

find ∂νu
0,h
+ |Σ×R = ∂νu

0,h
− |Σ×R + h.

It is shown in the proof of Lemma 13 below that, when h runs over C∞+ (Σ × R+), then u0,h|Σ×R+ also runs over
the whole C∞+ (Σ × R+). Therefore, the set of pairs,{(

u0,h
∣∣
Σ×R

, ∂νu
0,h
+

∣∣
Σ×R

)
: h ∈ C∞+ (Σ × R)

}
,

defines the graph of the non-stationary Dirichlet-to-Neumann map for M+.
It is, however, shown in e.g. [17] that this map determines (M+, g|M+) up to an isometry.

2.3. Metric on Σ

We complete this section showing that the Dirichlet spectral data determines the metric on Σ . This result will be
needed later, in Sections 3 and 4.

Lemma 6. The Dirichlet spectral data (3) determine the distance function on Σ and, therefore, the inherited metric
tensor, g|Σ , on Σ .

Proof. Let H(x,y; t) be the heat kernel,

∂tH(x, y; t) − �gH(x, y; t) = δy(x)δ(t), x, y ∈ M; H |t=0 = 0.

Then, uniformly in M × M ,

t logH(x,y; t) → −1

4
dM(x, y),

as t → 0, see e.g. [35]. On the other hand, for t > 0,
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H(x,y; t) =
∞∑

j=1

e−λj tφj (x)φj (y),

where the convergence takes place in C∞(M × M × (0,∞)). Thus, we can determine the distance dM(x, y) between
any points x, y ∈ Σ using the Dirichlet spectral data (3). Then the distance along Σ is given by:

dΣ(x, y) = lim
ε→0

inf
N−1∑
j=0

dM(zj , zj+1),

where the infimum is taken over all finite sequences of points z0, z1, . . . , zN ∈ Σ such that z0 = x, zN = y and
dM(zj , zj+1) � ε. Having at hand dΣ(x, y), we can determine the inherited metric tensor, g|Σ on Σ . �
3. Inverse problem with Cauchy spectral data. Theorem 1

In this section we develop a procedure to reconstruct the Riemannian manifold (M,g) from the Cauchy spectral
data (2).

3.1. From Cauchy spectral data to the response operator

Let us consider the transmission problem (5) with λ /∈ σ(−�g). Denoting, as in Section 2, its solution by uf,h(x,λ),
we define the response operator by setting:

Rλ(f,h) = u
f,h
+ (λ)|Σ.

Lemma 7. The Cauchy spectral data (2) determine the response operator Rλ for all λ /∈ σ(−�g).

Proof. Note that Green’s function has the following spectral representation:

G(x,y;λ) =
∞∑

j=1

φj (x)φj (y)

λ − λj

, (15)

where the sum converges the sense of operators in L2(M) and we assume, without loss of generality, that the eigen-
functions φj are real-valued. Thus, given the Cauchy spectral data and using (15), one can formally construct the
single- and double-layer potentials on Σ ,

Sλh(x)|Σ =
formally

∫
Σ

[ ∞∑
j=1

φj (x)|Σφj (y)

λ − λj

]
h(y)dSg(y), (16)

Do
λf (x) =

formally

∫
Σ

[ ∞∑
j=1

φj (x)|Σ∂ν(y)φj (y)

λ − λj

]
f (y)dSg(y). (17)

Since

Rλ(f,h) = Sλh −
(

1

2
+ Do

λ

)
f,

it looks that data (2) directly determines Rλ. However, we face the difficulty that series (15) does not converge point-
wise. To deal with this difficulty, consider first the case when f = 0. To determine the coefficients in the Fourier
expansion,

u0,h(x,λ) =
∞∑

j=1

(
u0,h(λ),φj

)
L2(M)

φj (x), (18)

we use Green’s formula to get:
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(
u0,h, φj

)
L2(M)

= − 1

λ − λj

( ∫
M+

+
∫

M−

)(
�gu

0,hφj − u0,h�gφj

)
dVg

= − 1

λ − λj

∫
Σ

(
∂νu

0,h
+ φj |Σ − ∂νu

0,h
− φj |Σ − u

0,h
+ ∂νφj |Σ + u

0,h
− ∂νφj |Σ

)
dSg

= − 1

λ − λj

∫
Σ

hφj |Σ dSg. (19)

Since the series (18), (19) converges in H 1(M), so that the trace is given by:

u0,h(x,λ)|Σ = −
∞∑

j=1

[∫
Σ

φj (y)h(y) dSg(y)

]
φj (x)|Σ
λ − λj

,

where the series converges in H 1/2(Σ). Hence (16) is well defined. To compute (16) we also need to know the
Riemannian volume dSg(x) of Σ . By Lemma 6, it can be found from data (2).

Let us now show that (17) is well defined. First analogously to [26], the one sided normal derivative ∂νu
0,h(λ)+|Σ

is defined as an element of H−1/2(Σ) due to formula:∫
Σ

(
∂νu

0,h
+

∣∣
Σ

)
Ψ |Σ dSg =

∫
M+

�gu
0,hΨ dVg +

∫
M+

(∇gu
0,h,∇gΨ

)
g
dVg

= −λ

∫
M+

u0,hΨ dVg +
∫

M+

(∇gu
0,h,∇gΨ

)
g
dVg,

where Ψ ∈ H 1(M+) is arbitrary. Moreover,∥∥∂νu
0,h(λ)+|Σ

∥∥
H−1/2(Σ)

� C
∥∥u0,h(λ)|M+

∥∥
H 1(M+)

.

Define the sources-to-Dirichlet operator by setting:

Jλh = ∂νu
0,h(λ)+|Σ,

see (9). Taking λ-derivative of (19), we get:

∂

∂λ
u0,h(x,λ) =

∞∑
j=1

[∫
Σ

φj (y)h(y) dSg(y)

]
φj (x)

(λj − λ)2
= (−�g − λ)−1u0,h(λ)

that converges in H 3(M). So we have a well-defined object:

∂

∂λ
∂νu

0,h(λ)|Σ =
∞∑

j=1

[∫
Σ

φj (y)h(y) dSg(y)

]
∂ν(x)φj (x)|Σ

(λj − λ)2
,

where the convergence holds in H 3/2(Σ). As ∂
∂λ

(Jλh) = ∂
∂λ

∂νu
0,h(λ)|Σ, we can compute, for any h ∈ C∞(Σ),

∂
∂λ

(Jλh) using the Cauchy spectral data of Σ .
Let λ ∈ R, λ 	= λj , and let γT ⊂ C be the line segment from λ to iT . As

Jλh =
λ∫

iT

∂

∂τ
(Jτh)dτ + JiT h,

we have:

Jλh = lim
T →∞

( λ∫
∂

∂τ
(Jτh)dτ + JiT h

)
.

iT
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By Lemma 8 below, we get limT →∞ JiT h = limT →∞ ∂νu
0,h(iT )+|Σ = 1

2h. This implies that

Jλh = 1

2
h + lim

T →∞

λ∫
iT

∂

∂τ
(Jτh)dτ,

where the right-hand side can be computed using the Cauchy spectral data.
To complete the proof, we recall, see Eq. (10), that Jλ is adjoint of Do

λ. Thus we can find Do
λf using the Cauchy

spectral data. �
In the proof of the above lemma we used the following asymptotics, with respect to singularity, of u0,h near Σ .

Lemma 8. Let λ ∈ C, Imλ > 0 and Re
√−λ < 0. Then uniformly for |arg(λ)| � δ,

u0,h(λ)±|Σ → 0, ∂νu
0,h(λ)±|Σ → ±1

2
h, as λ → ∞, (20)

in H 3/2(Σ), H 1/2(Σ), correspondingly.

Proof. Let us first fix local coordinates on M near Σ , x = (x′, xm), where x′ = (x1, . . . , xm−1) are some local
coordinates on Σ and xm is the signed distance to Σ ,

xm = ±dist(x,Σ) for x ∈ M±.

In these coordinates, we introduce:

v
0,h
± (x;λ) :=

⎧⎨⎩
h(x′)

2
√−λ

exm
√−λζ(xm), x ∈ M+,

h(x′)
2
√−λ

e−xm
√−λζ(xm), x ∈ M−

(21)

where ζ(xm) is a smooth cut-off function equal to 1 near xm = 0 supported in (−a, a) with sufficiently small a > 0.
Outside the a-neighborhood of Σ , the functions v± are defined to be zero. Formulae (6), (21) yield,

u0,h(x,λ) = v0,h(x,λ) + w0,h(x,λ),

where w0,h ∈ H 2(M) satisfies:

(−�g − λ)w0,h = Hh(λ),
∥∥Hh(λ)

∥∥
L2(M)

� Ch

(
1 + |λ|)−1/4

.

As ‖(−�g − λ)−1‖ � dist(λ,σ (−�g)), where the norm is the operator norm in L2(M), this implies:∥∥w0,h(λ)
∥∥

H 2(M)
� Ch,δ|λ|−1/4,

when |arg(λ)| � δ > 0 and |λ| > 1. Combining this estimate with (21), we see (20). �
3.2. Reconstruction of the manifold using the response operator

Recall, see e.g. [17], that, if (N,g), ∂N 	= ∅, then its Neumann-to-Dirichlet operators, Λλ(N) are defined as

Λλ(N)ψ = wψ(λ)|∂N ,

where wψ(x,λ) is the solution to the Neumann problem:

−�gw
ψ(x,λ) = λwψ(x,λ), x ∈ N int, ∂νw

ψ(x,λ)|∂N = ψ,

for λ /∈ σ(−�N
g ), σ(−�N

g ) being the spectrum of the Neumann Laplacian on N .

Lemma 9. Given the Cauchy spectral data (2) it is possible to find the Neumann-to-Dirichlet operators Λλ(M±) for
λ /∈ σ(−�N±), where −�N± stands for the Neumann Laplacian on M±.
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Proof. We start with Λλ(M−), assuming λ /∈ (σ (−�g) ∪ σ(−�N−) ∪ σ(−�D+)), where −�D± is the Dirichlet Lapla-
cian in M±, correspondingly. Then, for any h ∈ C∞(Σ), there is a unique solution, wh−(x,λ) ∈ C∞(M−), satisfying,

−�gw
h−(x,λ) = λwh−(x,λ) in M−, ∂νw

h−(·, λ)|Σ = −h,

where, as in Eq. (4), ν is the unit normal pointing towards M−.
Consider:

wh(x,λ) =
{

0 in M+,

wh−(x,λ) in M−.

Clearly, wh(x,λ) solves (5) with [wh] := f = −wh−(·, λ)|Σ , [∂νw
h] = h. Moreover, with this f and h,

Rλ(f,h) = 0. (22)

These considerations show that, for any h, there is f such that (22) is satisfied and we can consider (22) as an equation
for f when h is given. Let us show that the solution to (22) is unique if λ /∈ (σ (−�N−) ∪ σ(−�D+)). This will allow us
to uniquely define f = f h(λ) = −wh−(·, λ)|Σ as the solution to (22). Then,

Λλ(M−)h = −f h(λ).

To prove uniqueness, assume that there is f such that

Rλ(f,0) = 0.

As λ /∈ σ(−�D+), this implies that u
f,0
+ (x,λ) = 0. As [∂νu

f,0] = 0, we see that

∂νu
f,0
− (·, λ)|Σ = 0.

However, λ /∈ σ(−�N−), so that u
f,0
− (x,λ) = 0, i.e. f = 0.

Combining with Lemma 7, we see that the Cauchy spectral data (2) determine Λλ(M−) for λ /∈ (σ (−�g) ∪
σ(−�N−) ∪ σ(−�D+)). Since Λλ(M−) is a meromorphic operator-valued function with simple poles at σ(−�N−),
this determines Λλ(M−) uniquely.

As u
f,h
− |Σ = Rλ(f,h) − f , we can repeat the previous arguments for Λλ(M+). �

Theorem 1 follows from Lemma 9 taking into account that Λλ(M±) determine (M±, g±) up to an isometry,
see [17], Section 4.1. Thus to recover (M,g) we should just glue (M−, g−) and (M+, g+) along given Σ .

4. Inverse problem with Dirichlet spectral data. Theorem 2

In this section, we will develop a procedure to reconstruct the Riemannian manifold (M,g) from the Dirichlet
spectral data (3). We will assume that S ⊂ M consists of two open subsets S1, S2, S1 ∩ S1 = ∅, S = S1 ∪ S2. As in
Section 3, we assume that Σ := ∂S = Σ1 ∪Σ2, Σi = ∂Si , i = 1,2, are smooth. Moreover, we assume that the spectra
σ(−�D(Si)), σ(−�D(M \ Si)), i = 1,2, and σ(−�D(M \ S)) are all disjoint.

4.1. An approximate controllability result

Consider the following transmission problem:(
∂2
t − �g

)
u = 0, in (M \ Σ) × R,

[u]Σ = 0, [∂νu]Σ = h ∈ C∞+ (Σ × R),

u|t<th = 0, (23)

and denote by u(x, t) = u0,h(x, t) its solution. Note that problem (23) coincides with problem (11) with f = 0.
By Lemma 3, u0,h ∈ C∞+ (R;H 1(M)) and we can define an operator:

W : C∞+ (Σ × R) → H 1(M), Wh := u0,h(0),

which is called the wave operator associated with problem (23).
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Theorem 10. Let σ(−�D(S)) ∩ σ(−�D(M \ S)) = ∅. Then the set,

Y = {
Wh: h ∈ C∞+ (Σ × R)

}
, (24)

is dense in H 1(M).

Proof. Assume that ψ ∈ (H 1(M))′ = H−1(M) is orthogonal to Y ,(
u0,h(0),ψ

)
H 1(M)×H−1(M)

= 0 (25)

for all h ∈ C∞+ (Σ × R). Let e be the solution to the problem,

ett − �ge = 0, in M × R,

e|t=0 = 0, et |t=0 = ψ. (26)

Then similar considerations to those at the end of proof of Lemma 3 show that the weak solution, e(x, t) of (26)
satisfies,

e(x, t) =
∞∑

j=2

sin(
√

λj t)√
λj

(ψ,φj )H−1(M)×H 1(M)φj + t (ψ,φ1)H−1(M)×H 1(M)φ1, (27)

and e ∈ C(R;L2(M)) ∩ C1(R;H−1(M)). Observe that, as ‖φj |Σ‖H 1/2 � C(λj + 1)1/2 and λj > Cj2/m, e has a
well-defined trace, in S ′(Σ × R), on Σ × R with

J∑
j=2

sin(
√

λj t)√
λj

(ψ,φj )φj |Σ + t (ψ,φ1)φ1|Σ → e(x, t)|Σ×R, as J → ∞, (28)

in S ′(Σ × R).
Let us show that e(x, t)|Σ×R = 0. Choosing h ∈ C∞

0 (Σ × R−) and using Green’s formula, we obtain from
(23)–(26) that

0 =
∫

M×R−

[
u0,h(ett − �ge) − (

u
0,h
tt − �gu

0,h
)
e
]
dVg dt

= (
u0,h(T ),ψ

)
H 1(M)×H−1(M)

+
∫

Σ×R−

he dSg dt =
∫

Σ×R−

he dSg dt.

This yields that e|Σ×(−∞,0) = 0. As by (26) e(x, s) = −e(x,−s), we see that

supp(e|Σ×R) = Σ × {0}. (29)

Next we show that

e|Σ×(−1,1) ∈ H̃−1/2(Σ × (−1,1)
) := (

H 1/2(Σ × (−1,1)
))′

. (30)

Let X be a local, near Σ , vector field on S such that X|Σ = ∂ν |Σ. Let h ∈ H 1/2(Σ × (−1,1)) and
H ∈ H 1(S × (−1,1)) be its continuation into S × (−1,1), such that H = 0 outside the domain of definition of X, and

‖H‖H 1 � C‖h‖H 1/2 .

Denote by E the primitive, with respect to t , of e in S × (−1,1),

E(x, t) = −
∞∑

j=2

cos(
√

λj t)

λj

(ψ,φj )φj (x) + t2

2
(ψ,φ1)φ1(x), (31)

E ∈ C(R;H 1(S)) ∩ C1(R;L2(S)). Integrating by parts, we get:
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∫
Σ×(−1,1)

he dSg dt =
∫

S×(−1,1)

(
H · Xe − XcH · e)dVg dt

=
∫
S

([H · XE] − [H · XE])∣∣
t=−1 dVg −

∫
S×(−1,1)

(
∂tH · XE + XcH · e)dVg dt, (32)

where Xc is the first-order operator adjoint to X. By (27), (31), the right-hand side of (32) can be estimated by:

C‖H‖H 1(S×(−1,1)) � C′‖h‖H 1/2(Σ×(−1,1)).

Thus the left-hand side of (32) is bounded for any h ∈ H 1/2(Σ × (−1,1)), proving (30).
Now (29) implies that e(x, t)|Σ×R = ∑I

i=0 ei(x)∂iδ(t), with some finite I , see e.g. [12, EX. 5.1.2]. Thus, (30)
yields

e(x, t)|Σ×R = 0. (33)

The last step of the proof is to show that this equation yields that e = 0 in M × R. Using relation (28), Eq. (33) and
making the partial Fourier transform, t → k, we see that the distribution, ê(x, k) ∈ S ′(Σ × R), satisfies:

ê(x, k) = i

(
1

2

∞∑
j=2

δ(k − √
λj )√

λj

(ψ,φj )φj |Σ

+ δ′(k)(ψ,φ1)φ1|Σ − 1

2

∞∑
j=2

δ(k + √
λj )√

λj

(ψ,φj )φj |Σ
)

= 0.

This implies that (ψ,φ1)H−1(M)×H 1(M) = 0 and, for any j̃ = 2, . . . ,∑
λj =λ

j̃

(ψ,φj )H−1(M)×H 1(M)φj |Σ = 0, (34)

where the last sum takes into account eigenspaces of an arbitrary multiplicity. Consider the function:

Φ(x) :=
∑

λj =λ
j̃

(ψ,φj )H−1(M)×H 1(M)φj (x), x ∈ M.

It satisfies the Dirichlet boundary condition, Φ|Σ = 0, see (34), and, as φj are eigenfunctions of −�g with λj = λ
j̃
,

the equation:

−�gΦ(x) = λ
j̃
Φ(x), x ∈ M.

Thus Φ|S is an eigenfunction of −�D(S), while Φ|M\S is an eigenfunction of −�D(M \ S). However, as
σ(−�D(S)) ∩ σ(−�D(M \ S)) = ∅, we have that Φ|S = 0 or Φ|M\S = 0. In any case, by the uniqueness of zero-
continuation for elliptic equations, this yields that Φ = 0 everywhere in M . As different φj , corresponding to λj = λ

j̃
,

are linearly independent, this implies that (ψ,φj )H−1(M)×H 1(M) = 0 for all j = 1,2, . . . . Thus, e = 0 in M × R and,
therefore, ψ = 0. �
4.2. Approximate controllability with given trace at final time

In this section we denote Σ̃ to be either Σi , i = 1,2, or Σ . Lemma 3 makes it possible to introduce a quasinorm:

|h|2 := ‖Wh‖2
H 1(M)

=
∞∑

j=1

(λj + 1)
∣∣u0,h

j (0)
∣∣2

. (35)

It is classical for the control theory, see e.g. [20] or [22] in the context of inverse problems, to define the space D1 of
the generalized sources by introducing the equivalence relation,
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h ≡E h̃ if u0,h(0) = u0,̃h(0),

and completing C∞+ (Σ × R)/E with respect to (35),

D1 := cl
(
C∞+ (Σ × R)/E

)
.

Then, by Theorem 10, we can extend the wave operator W , see (24), from C∞+ (Σ × R) onto D1,

Wh := u0,h(0), W : D1 → H 1(M),

as a unitary operator.
Moreover, as Wh = ∑∞

j=1 κh
j φj ∈ H 1(M) and the Fourier coefficients κh

j , for any h ∈ D1, can be explicitly
evaluated using the Dirichlet spectral data (3), see the first formula in (13), it is possible to find, for such h, the
trace,

Wh|Σ =
∞∑

j=1

κh
j φj |Σ.

The above considerations give rise to the following lemma.

Lemma 11. Assume σ(−�D(S)) ∩ σ(−�D(M \ S)) = ∅. Then the subspaces,

D1
Σ̃

:= {
h ∈ D1: Wh|Σ̃ = 0

} ⊂ D1,

are uniquely determined in terms of the Dirichlet spectral data (3).
Moreover, the wave operator W , restricted to D1

Σ̃
,

W : D1
Σ̃

→ H 1
Σ̃

, H 1
Σ̃

:= {
a ∈ H 1(M): a|Σ̃ = 0

}
,

is unitary.

4.3. Finding eigenvalues and eigenfunctions in subdomains

In this subsection we denote by S̃ one of the manifolds Si , i = 1,2, M \ Si , i = 1,2, M \ S and by λn(S̃), φn(·; S̃)

we denote the eigenvalues and orthonormal eigenfunctions of −�D(S̃). Consider the following max-min problem:

tn(Σ̃) = max
u1,...,un−1

min
un

(�gun,�gun)L2(M) = max
u1,...,un−1

min
un

∞∑
j=1

λj |un,j |2, (36)

where un,j are the Fourier coefficients of un, i.e. un(x) = ∑∞
j=1 un,jφj (x). Here the maximum is taken over

u1, u2, . . . , un−1 ∈ H 1(M) satisfying up|Σ̃ = 0 and the minimum is taken over un ∈ H 1(M) satisfying un|Σ̃ = 0,
and

(un,up)L2(M) =
∞∑

j=1

un,j up,j = 0, p = 1,2, . . . , n − 1,

(up,up)L2(M) =
∞∑

j=1

|up,j |2 = 1, p = 1,2, . . . , n. (37)

Then tn(Σ̃) are the eigenvalues of the Dirichlet Laplacian on the direct sum of L2(S̃) and L2(M \ S̃), so that{
tn(Σ̃)

}∞
n=1 = σ

(−�D(S̃)
) ∪ σ

(−�D(M \ S̃)
)
.

The sequence of the corresponding minimizers, un(x; Σ̃) consists of orthonormal eigenfunctions of this operator.
However, due to the assumption σ(−�D(S̃)) ∩ σ(−�D(M \ S̃)) = ∅, any such eigenfunction is equal to 0 on M \ S̃

or S̃. Thus, any un(x; Σ̃) is either an eigenfunction of −�D(S̃) extended by 0 to M \ S̃, or an eigenfunction of
−�D(M \ S̃) extended by 0 to S̃.

On the other hand, Lemma 11 together with Eq. (13) make it possible to evaluate the right-hand sides in (36), (37)
using the Dirichlet spectral data. This leads to the following result:
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Lemma 12. Let σ(−�D(Si)), σ(−�D(M \ Si)), i = 1,2, and σ(−�D(M \ S)) be all disjoint. Then the Dirichlet
spectral data (3) determine uniquely the eigenvalues λn(S̃), n = 1,2, . . . , S̃ = S, Si,M \Si , i = 1,2, and M \S. They
determine also the generalized sources hn(S̃) such that

Whn(S̃) = u0,hn(S̃)(x,0) =
{

φn(x; S̃), x ∈ S̃,

0, x ∈ M \ S̃.
(38)

In addition, the Dirichlet spectral data determine the Fourier coefficients of the extended eigenfunctions Whn(S̃)(x),

Whn(S̃) =
∞∑

j=1

κn,j (S̃)φj (x), x ∈ M. (39)

We note that these sources hn(S̃) are determined up to a unitary transformation in the eigenspace corresponding to
the eigenvalue λn(S̃).

Proof. Recall that, by formula (13) we can evaluate the Fourier coefficients u
0,h
j (0) for any h ∈ D1. Thus, we can

evaluate:

μn(Σ̃) = max
h1,...,hn−1

min
hn

∞∑
j=1

λj

∣∣u0,hn

j (0)
∣∣2

,

where the maximum is taken over h1, h2, . . . , hn−1 ∈ D1
Σ̃

and the minimum is taken over hn ∈ D1
Σ̃

with,
∞∑

j=1

u
0,hn

j (0)u
0,hp

j (0) = 0, p = 1, . . . , n − 1,

∞∑
j=1

∣∣u0,hp

j (0)
∣∣2 = 1, p = 1, . . . , n.

It follows from Lemma 11 that, for any n = 1,2, . . . , μn(Σ̃) = tn(Σ̃), providing σ(−�D(S̃))∩σ(−�D(M \ S̃)) = ∅.
Repeating this construction with Σ̃ equal to Σ , Σ1, and Σ2, we obtain the sets:

σ
(−�D(S)

) ∪ σ
(−�D(M \ S)

) = σ
(−�D(S1)

) ∪ σ
(−�D(S2)

) ∪ σ
(−�D(M \ S)

)
,

and

σ
(−�D(S1)

) ∪ σ
(−�D(M \ S1)

)
, σ

(−�D(S2)
) ∪ σ

(−�D(M \ S2)
)
.

As σ(−�D(Si)), σ(−�D(M \ Si)), i = 1,2, and σ(−�D(M \ S)) are all disjoint, by intersecting the above sets
we find the desired eigenvalues λn(Si), n = 1,2, . . . , i = 1,2, and λn(M \ Si), n = 1,2, . . . , i = 1,2, as well as
λn(M \ S), n = 1,2, . . . .

Then, identifying the corresponding subsequence of tn(Σ̃) and related generalized sources hn(Σ̃), we determine,
for each S̃, the generalized sources hn(S̃) such that Whn(S̃) are equal to the extended eigenfunctions (38).

Recalling formula (13), we prove the last part of the lemma. �
4.4. Inverse problems in subdomains. Proof of Theorem 2

Our proof of Theorem 2 is based on Lemma 12. Namely, we will show that, having at hand the eigenvalues λn(Si),
i = 1,2, and λn(M \ S) and also the Fourier coefficients, κn,j (Si), i = 1,2, κn,j (M \ S), it is possible to determine,
up to an isometry, the Riemannian manifolds (Si, g), i = 1,2, (M \ S,g). Gluing them along Σi we recover (M,g).

Recall that if, for (N,g), ∂N 	= ∅, we do know its Dirichlet eigenvalues λn(N) and traces on ∂N of the normal
derivatives of the eigenfunctions, ∂νψn|∂N , then these data determine (N,g) up to an isometry, see e.g. [17]. However,
in the case of the Dirichlet spectral data, we have only the Dirichlet values φj |Σ and, moreover, the convergence of
the Fourier series (39) is only in H 1(M) preventing us from identifying ∂νφn(S̃)|Σ̃ . Therefore, we will use another
approach within the BC-method, described in Section 4.1 of [17]. To explain it, consider the initial-boundary value
problem in N × R, (

∂2
t − �g

)
wF = 0, in N × R+,

wF |∂N×R+ = F, wF |t=0 = 0, ∂twF |t=0 = 0, (40)

with F ∈ C∞+ (∂N × R+). The energy, at time t , of the wave wF is then defined as
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E(wF , t) = 1

2

∫
N

(∣∣∂twF (x, t)
∣∣2 + ∣∣∇gwF (x, t)

∣∣2
g

)
dVg(x). (41)

It is shown in [17] that, given the energy flux:

Π(F) := lim
t→∞ E(wF , t),

for any F ∈ C∞
0 (∂N × R+), it is possible to determine (N,g) up to an isometry.

Therefore, Theorem 2 is an immediate corollary of the following lemma:

Lemma 13. Let Σ = Σ1 ∪ Σ2 divide M into regions Si , i = 1,2, and M \ S. Consider the initial-boundary value
problems (40) with N equal to S1, S2 and M \ S. Then, assuming that σ(−�D(Si)), σ(−�D(M \ Si)), i = 1,2, and
σ(−�D(M \ S)) are all disjoint, the Dirichlet spectral data (3) uniquely determine the energy flux Π(F) in each of
these subdomains.

Proof. We start with the case N = S1. Then (40) takes the form:(
∂2
t − �g

)
wF = 0, in S1 × R+,

wF |Σ1×R+ = F, wF |t=0 = 0, ∂twF |t=0 = 0, (42)

with F ∈ C∞+ (Σ1 × R+). Let us first show that, for any such F , there exists a unique hF ∈ C∞+ (Σ1 × R+) such that
wF = u0,h|S1 , where

h =
{

hF , x ∈ Σ1,

0, x ∈ Σ2.
(43)

To this end we consider, in addition to (42), the problem:(
∂2
t − �g

)
wc

F = 0, in (M \ S1) × R+,

wc
F

∣∣
Σ1×R+ = F, wc

F

∣∣
t=0 = 0, ∂tw

c
F

∣∣
t=0 = 0,

and introduce the function u,

u =
{

wF , x ∈ S1 × R+,

wc
F , x ∈ (M \ S1) × R+.

(44)

Then u solves the transmission problem (11) with f = 0, and

h =
{

hF = (∂νw
c
F − ∂νwF )|Σ1×R+ , (x, t) ∈ Σ1 × R+,

0, (x, t) ∈ Σ2 × R+,

i.e. u = u0,h. Using considerations similar to those in the proof of Lemma 9, we show the uniqueness of such h.
By Corollary 4, we can then find, for h ∈ C∞+ (Σ1 × R+),

Λ1h = u0,h
∣∣
Σ1×R+ . (45)

As shown earlier, for h = 0 on Σ2, the operator Λ1 is an invertible operator in C∞+ (Σ1 × R+). Thus, we can use
Eq. (45) with the right-hand side being F , to uniquely determine hF . Observe that the extended eigenfunctions
{W(hn(S1))}∞n=1 together with {W(hk(M \ S1))}∞k=1 form an orthonormal basis in L2(M). Thus, using (39), we can
evaluate the Fourier coefficients of u0,h(·, t) with respect to this basis,

u0,h(x, t) =
∞∑

n=1

wn,F (t)W
(
hn(S1)

)
(x) +

∞∑
k=1

wc
k,F (t)W

(
hk(M \ S1)

)
(x),

where the index F indicates that h is of form (43). This expansion, together with the definition of u, see (44), shows
that
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wF (x, t) = Θ1(x)u0,h(x, t) =
∞∑

n=1

wn,F (t)W
(
hn(S1)

)
(x),

∥∥wF (t)
∥∥2

L2(S1)
=

∞∑
n=1

∣∣wn,F (t)
∣∣2

, (46)

where Θ1 is the characteristic function of S1 and we identify functions in S1 with their extensions by 0 to M \ S1.
Similarly,

∂twF (x, t) =
∞∑

n=1

∂twn,F (t)W
(
hn(S1)

)
(x),

∥∥∂twF (t)
∥∥2

L2(S1)
=

∞∑
n=1

∣∣∂twn,F (t)
∣∣2

.

The last step of the construction is based on the observation that, when F ∈ C∞
0 (Σ1 × R+), then wF ∈ H 1

0 (S1) for
large t and, therefore, the eigenfunction expansions (46) converge in H 1(S1). Thus, we can find:∥∥∇gwF (·, t)∥∥2

L2(S1)
=

∞∑
n=1

λn(S1)
∣∣wn,F (t)

∣∣2
.

Combining the above two equations, we find the energy flux Π(F).
Similar considerations, with S2 and M \ S2 and M \ S and S instead of S1 and M \ S1, show the possibility to

evaluate the energy flux when N = S2 and M \ S. �
5. Some remarks on further generalizations and open problems

Remark 14. The inverse problem with the Cauchy or Dirichlet spectral data on a compact Riemannian manifold
without boundary studied in Sections 3, 4 can be generalized to the problem when M has boundary ∂M 	= ∅ with
e.g. Neumann (or Dirichlet) boundary condition. Then (2) and (3) consists of the Neumann eigenvalues of M and the
Cauchy or Dirichlet data of the eigenfunctions on a closed hypersurface Σ ⊂ M , ∂M ∩ Σ = ∅. The methods to solve
these problems are very similar to the described and are based on the version of the BC-method with data on a part of
boundary, see [17, Section 4.4].

Remark 15. Consider the non-stationary Green function, G(x,y; t), for the acoustic wave equation in (M,g),
where M may have a non-trivial boundary,(

∂2
t − �g

)
G(x,y; t) = δy(x)δ(t), in M × R,

G(x, y; t)|∂M×R+ = 0, G(x, y; t)|t<0 = 0,

where y ∈ Σ , Σ ⊂ M such that Σ ∩ ∂M = ∅ and the boundary condition is empty when ∂M = ∅. It often happens in
practice, for example, in geophysics or ultrasound imaging, that one can measure G(x,y; t) for x again running only
over Σ . Thus, we come to the inverse problem with non-stationary data being G(x,y; t), x, y ∈ Σ , t > 0.

Taking the Fourier transform of the given G(x,y; t) in t , we find the Green function G(x,y; k), cf. [15],(−k2 − �g

)
G(x,y; k) = δy(x), G(x, y; t)|∂M = 0.

Thus, from practical measurements we can find G(x,y; k) for x, y ∈ Σ,k ∈ R.
Note that G(x,y; k), x, y ∈ Σ, is the integral kernel of a meromorphic, with respect to k ∈ C, operator-valued

function in L2(Σ). In terms of the eigenvalues and eigenfunctions of −�g ,

G(x,y; k)|Σ×Σ =
∞∑

j=1

1

k2 − λj

φj (x)|Σφj (y)|Σ,

where the convergence in the right-hand side is understood in the sense of operators in L2(Σ). So finding the poles of
G(x,y; k) is equivalent to determination of

√
λj . At the pole

√
λj , the residue is given by the integral operator with

the kernel,

Res
(
G(x,y; ·),√λj

) = 1

2
√

λj

∑
l:λ =λ

φl(x)|Σφl(y)|Σ.
l j
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The knowledge of this kernel allows us to find the functions φj |Σ up to an orthogonal transformation in the eigenspace
corresponding to λj , see [15,31].

Therefore, the dynamic inverse data G(x,y; t), x, y ∈ Σ , t > 0 makes it possible to find the Dirichlet spectral data
on Σ .

Remark 16. As shown in Section 4, the Dirichlet data (3) determine (M,g) when the spectra σ(−�D(Si)),
σ(−�D(M \ Si)), i = 1,2, and σ(−�D(M \ S)) are all disjoint. It is interesting to understand whether this con-
dition can be removed.

In general, it is important to find if the Dirichlet spectral data (3) determine (M,g) even in the case when Σ is
connected.
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