
Journal of Computer and System Sciences 70 (2005) 86–106
www.elsevier.com/locate/jcss

Extracting the workflow critical path from the extended
well-formed workflow schema�

Jin Hyun Sona,∗, Jung Sun Kima, Myoung Ho Kimb

aDepartment of Computer Science & Engineering, Hanyang University,1271 Sa-1 dong, Ansan,
Kyunggi-Do 426-791, Republic of Korea

bDivision of Computer Science, Korea Advanced Institute of Science and Technology, KAIST, 373-1 Kusung-dong, Yusung-gu,
Taejon 305-701, Republic of Korea

Received 7 June 2004

Available online 27 August 2004

Abstract

The critical path in a workflow schema is defined as the longest execution path from the start activity to the end
activity. It can be utilized in many workflow issues such as workflow resource and time management. However,
little work has been done on the critical path in a workflow because workflow control flows are much more complex
than those represented with ordinary graphs and networks. In this paper, we first describe our workflow model with
a set of workflow control constructs that provide sufficient power to express the models of most of today’s business
processes. Then, we propose a systematic method of identifying the critical path for a given workflow schema. Our
proposed method is based on queuing theory because operational characteristics of the workflow schema can be
modeled by a M/M/1 queuing network.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Workflow; Critical path; Queuing network

� This work was supported in part by the Ministry of Information and Communications, Korea, under the Information
Technology Research Center (ITRC) Support Program, and by the research fund of Hanyang University(HY-2003-T).∗ Corresponding author.

E-mail addresses:jhson@cse.hanyang.ac.kr(J.H. Son),jskim@cse.hanyang.ac.kr(Jung Sun Kim),
mhkim@dbserver.kaist.ac.kr(Myoung Ho Kim).

0022-0000/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.07.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82790847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jcss
mailto:jhson@cse.hanyang.ac.kr
mailto:jskim@cse.hanyang.ac.kr
mailto:mhkim@dbserver.kaist.ac.kr

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 87

1. Introduction

A workflow is defined as “an automated procedure where documents, information or tasks are passed
between participants according to a defined set of rules to achieve, or contribute to, an overall business
goal” [11]. It is composed of activities that are interconnected by workflow control flows. A workflow
schema, commonly abstracted with a network of activities, is a description of a workflow. A workflow
management system (WFMS) completely defines, manages and processes workflows through the execu-
tion of software whose order of execution is driven by a computer representation of the workflow logic
[11,14]. An execution of a workflow is called a workflow instance, simply instance. Multiple instances
are generally created for the same workflow. Nowadays, the concept of a workflow attracts a great interest
in the respect of automating and computerizing business processes in whole or part, which gives us many
benefits such as structural efficiency of a business process, performance improvement, flexibility, better
process control, improved customer service, etc. Fig.1 is an example of the new service provisioning
workflow in a telecommunication company.

A workflow schema can contain several alternative execution paths from the start activity to the end
activity. In particular, the longest execution path is called the critical path. Hence, the execution time of
the entire workflow process is dominated by the critical path. Finding the critical path gives us important
information of a workflow schema. More than anything else, the critical path may contain many workflow
bottleneck points. Therefore, high-performance workflow systems, one of the most outstanding workflow
issues, can be achieved by efficiently managing the critical path. Time-constrained workflows can also be
its noticeable application area. Since many business processes that are abstracted to workflow schemas
have time constraints such as deadlines, time management functionality should be provided to control
the lifecycle of workflow instances. If a workflow instance violates the activity deadline during workflow
execution, the workflow management system may escalate the instance.The effects of an escalation depend
on the semantics of the activity that missed its deadline. Usually, escalations contain the execution of
additional activities, the compensation of finished activities, or human intervention. Because they increase
the operational costs of business processes, it is desirable to reduce the number of escalated workflow

start

update the
telephone switch

and directory

collecting
client information

create
a service order

use
existing facilities

physical
installation

inform
the client

final

start

update the
telephone switch

and directory

collecting
client information

create
a service order

use
existing facilities

physical
installation

inform
the client

final

Fig. 1. A workflow schema for new service provisioning.

88 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

executions as well as their operational costs associated with escalations. If we properly use the concept
of the critical path in this area, effective time management methods can be developed.

The critical path in a workflow can be dynamically or statically determined according to its decision
points. During workflow run-time, the critical path determined dynamically may change every decision
time, based on the current state of a workflow system. However, the dynamic decision of the critical
path may impose considerable amount of workloads on the workflow system. On the other hand, the
static critical path that is considered in this paper is determined during workflow build-time. Because we
can predict the future workflow execution environment by using the statistics collected during the past
executions, the static critical path can be utilized in many workflow research areas, including the resource
allocation and the resource management policy. In addition, the process of identifying the static critical
path does not give any burden to workflow systems.

At the time of this writing, the workflow reference model defined in Workflow Management Coalition
(WfMC) specifies six basic workflow control constructs: sequencing, conditional branching (i.e., OR-
Split), asynchronous join (i.e., OR-Join), split parallelism (i.e., AND-Split), join synchronization (i.e.,
AND-Join), and iteration[11]. These constructs can make sequential, alternative, parallel, and iterative
workflow control structures that have been used to define workflow schemas in most previous workflow
research[4,12,16,19,21,22]. Here, a sequential and an iterative workflow control structure are formed by
a sequencing and an iteration construct, respectively. An alternative workflow control structure is made
by combining OR-Split and OR-Join. And, a parallel workflow control structure is built by combining
AND-Split and AND-Join. However, the workflow control flows represented by these basic workflow
control constructs are not enough to cover today’s complex business logic. For example, let us consider
the review process of a paper[1]: “A paper needs to be sent to three external reviewers. Upon receiving
two reviews, the paper can be processed and the third review can be ignored.” This review process cannot
be supported by the basic workflow control constructs mentioned above. To provide sufficient power
in expressing the models of complex business processes, we introduce a few useful workflow control
constructs. Note that the aforementioned review process of a paper can be supported by the combination
of AND-Split and Selective-AND-Join control constructs that will be specified in Section 2.

We propose an efficient method to find out the critical path in a workflow schema that is built by the
extended workflow control constructs defined in this paper. Up to now, there is no general agreement
to a complete set of workflow control constructs. The growing complexities of business processes may
require new advanced workflow control constructs. Because our proposed method is extensible, we can
easily encompass newly agreed workflow control constructs to support future business logic.

Program Evaluation and Review Technique/Critical Path Method (PERT/CPM) is a well-known net-
work analysis technique that has been applied to many applications such as research and development,
construction programs, programming computers, maintenance planning, and so on. PERT/CPM has sev-
eral outstanding advantages, especially clarity of presentation, cost saving, critical path analysis, and
time control[2,8,23]. However, its usage requires some constraints: “All activities must be completed
in order for the project to be completed. All activities leading to an event must be completed before the
event can be realized. And, there is no looping allowed, that is, no event may be repeated[2,20,26].” The
precedence diagram method (PDM) extends PERT/CPM by using lead-lag factors to overcome one type
of precedence requirement (i.e., finish-to-start) of PERT/CPM[13,24]. In other words, while PERT/CPM
allows an activity to be performed only after its immediate predecessors are finished, PDM introduces
additional precedence relationships such as finish-to-finish, start-to-start, and start-to-finish. The lead-lag
relationships in PDM may also be expressed as percentages, such as taskA cannot start unless at least 25%

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 89

of task B is completed. And, Graphical Evaluation and Review Technique (GERT) was also developed to
overcome many of the limitations of PERT/CPM, while still retaining the characteristic of ease in system
modeling[2,20,24]. GERT permits the looping of an activity and the bypassing of an activity with two
types of branching, i.e., deterministic and probabilistic.

In a workflow area, we cannot, however, use the previous above-mentioned methods in deciding the
critical path of a workflow due to the following two main reasons: One is that they are not extensible
enough to support all defined or newly agreed workflow control constructs. The other is that they assume
the existence of a single execution instance for a project process at a time. As multiple instances can be
concurrently executed for a workflow schema, some instances should wait at the queue of an activity while
other instances that arrive ahead are served. Hence, the average execution time of a workflow instance
in an activity is computed by the average service time of the activity plus the average waiting time at
the queue of the activity. In many cases, the average execution time is dominated by the average waiting
time rather than the average service time. In consequence, the appropriate queuing analysis is required
to manage the waiting time at the queue, like our proposed method.

There is some research for workflow resource management. Son and Kim[21] discussed a method to
improve the performance of time-constrained workflow processing by increasing the processing capacities
for certain activities. An efficient task allocation method in a distributed workflow environment was
proposed in[15]. The primary objective of this method is to reduce the processing costs of a workflow
using the spatial locality principle.

The general workflow time management issues such as computing activity deadlines, checking time
constraints, and monitoring escalations are mentioned in[5,6,18]. Especially, Panagos and Rabinovich
[17] introduced the concept of a predictive workflow with the idea that it is preferable to escalate workflow
instances as early as possible if the escalation is unavoidable. Eder et al.[4] presented a CPM-based
framework for computing activity deadlines so that the overall process deadline is met and all external
time constraints are satisfied. Panagos and Rabinovich[16] studied how to efficiently manage dynamic
activity deadlines, which is based on the deadline assignment methods considered in a distributed real-
time software environment[9]. Son et al.[22] insisted on the importance of static deadline allocation in a
workflow in comparison with dynamic deadline allocation of Panagos abd Rabinovich[16]. And, Kafeza
and Karlapalem[7] proposed a framework (T-WfMC) for incorporating time-management information
in workflow execution and specification.

The remainder of the paper is organized as follows: Section 2 describes the workflow model considered
in the paper. Section 3 proposes our method that systematically determines the critical path in a workflow
schema, and its overall example is provided in Section 4. After we discuss some considerations in Section
5, we conclude the paper with its contribution and further work in Section 6.

2. Workflow model

2.1. Workflow control constructs

A workflow schema is represented with a set of nodes and directed edges. It begins from the start node
and ends with the final node. Each node denotes a workflow activity, and each directed edge denotes a
transition between two nodes, i.e., a branch of execution. A workflow control construct defines a routing
from a set of nodesS to a set of nodesD in a workflow schema.S andD are called a source and a

90 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

…
…

…
…

…
…

…
…

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(j)

……
…

…
……

……
……

…
…

Fig. 2. Workflow control constructs. (a)SEQUENCE, (b)LOOP, (c)AND-split, (d)AND-join, (e)Selective-AND-split, (f)
Selective-AND-join, (g)OR-split, (h)OR-join, (i)Preference-OR-splitand (j)Preference-OR-join.

destination of the routing, respectively. A routing is denoted by a set of directed edges with appropriate
conditions, if needed. We can classify workflow control constructs into four categories, i.e., sequence,
loop, split and join. Let|S| and|D| denote the number of nodes in a setSandD, respectively. Then, both
a sequence and a loop control construct take|S| = |D| = 1. A split control construct takes|S| = 1 and
|D| > 1. And, a join control construct takes|S| > 1 and|D| = 1. Fig.2 shows graphical expressions of
the workflow control constructs considered in this paper.

In a sequence control construct, activities are executed in order under a single thread of execution,
which means that the succeeding activity cannot start until the preceding activity is completed. A loop
control construct makes one or more activities executed iteratively until a condition is met.

A split control construct is defined as a flow controller that makes a single execution thread proceed to
one or more concurrent threads according to the controller’s control context. There are four split control
constructs:AND-split, Selective-AND-split, OR-split, and Preference-OR-split. By anAND-split, a single
thread of execution splits into multiple threads that are executed in parallel. Here, all the activities in the
destinationD of an AND-split are executed concurrently. In a Selective-AND-split (often called aN-out-
of-M split), one or more activities in the destination are selected for concurrent execution. When all the
activities in the destination are selected, it degenerates into the AND-split. On the other hand, in an OR-
split, only a single execution thread of control can proceed among multiple alternative workflow branches.

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 91

In a Preference-OR-split, each branch has a preference. When there are several branches satisfying their
transition conditions, a branch with the highest preference is selected to get an execution thread.

A join control construct also plays a role of a flow controller, where one or more execution threads
converge into a single activity. The class of the join control construct is composed of an AND-join, a
Selective-AND-join, an OR-join, and a Preference-OR-join. An AND-join makes two or more parallel
execution threads synchronized into a single common thread with a condition that the number of parallel
execution threads must be equal to that of workflow branches joined. A Selective-AND-join, being
different from an AND-join, selects one or more incoming branches and ignores others. The parallel
threads going through the selected branches are synchronized at the join point before the next activity
begins. By an OR-join, two or more alternative branches re-converge to a single common activity. As no
parallel activity execution has occurred at the join point, no synchronization is required. In a Preference-
OR-join where each incoming branch to the destination has a preference, multiple threads of execution
can arrive at the destination. However, only one thread of execution can be accepted, depending on the
preference on each branch. Thus, it is similar to the OR-join in that both control constructs accept only
one execution thread. And, it has no synchronization among the incoming threads of execution, which is
different from the Selective-AND-join. A Preference-OR-join may typically select one with the highest
preference.

Note that any split control construct must be combined with its matching join control construct to be
a complete control flow. Hence, we define the concept of the closure.

Definition 2.1. For a split control construct�, there is a set of join control constructsC� that can be
combined with�, where the combination can produce a meaningful flow of control. Then, this setC� is
called theclosureof �.

LetC� denote the closure of�.

CAND−split = {AND − join, Selective
−AND − join, P ref erence −OR − join}

CSelective−AND−split = {Selective − AND
−join, P ref erence −OR − join}

COR−split = {OR − join, P ref erence
−OR − join}

CPref erence−OR−split = {OR − join,
P ref erence −OR − join}.

As an example, the pair (AND-split, Preference-OR-join) as in Fig.3 can be used when we prefer a
first booked airline while making reservations to three different airlines at the same time. The other two
reservations will be canceled.

Definition 2.2. Any subnetwork in a work flow schema that satisfies one of the following conditions is
called anon-sequential control block(simply control block).
• A subnetwork that starts from a split control construct and ends with its matching join control construct.

92 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

51

2

4
A

3

P

51

2

4
AND

3

Preference-OR

Fig. 3. AND-split & Preference-OR-join.

8

14

10 132

161

5

4

3

6 7

9λ

LOOP

λ)1(1p−

λ1p

λ

λ1p

λ)1(1p−
λ

λ
λ

λ

λ
λ

λ2p

λ)1(2p−
λ)1(2p−

λ
λ2p

Λ

start

11

12

15

Λ

Λ

Λ

λ)1(2p−
final17 λ8

14

10 132

161

5

4

3

6 7

9λ

LOOP

λ)1(1p−

λ1p

λ

λp

λ)1(1p−
λ

λ
λ

λ

λ
λ

λ2p

λ)1(2p−
λ)1(2p−

λ
λ2p

Λ

start

11

12

15

Λ

Λ

Λ

λ)1(2p−
final17 λ

Fig. 4. Workflow queuing network.

• A subnetwork that consists of all the nodes and edges between the source and the destination of the
LOOP.

Note that a sequence control construct is not a control block from Definition 2.2. Let a control block
V be part of another control blockU. Then, we call “Ucompletely containsV” if all the nodes and edges
of V are withinU. Otherwise, “Upartially containsV”. Any single control block that neither completely
nor partially contains any other control block is called anatomic control block. When a control blockU
completely contains a control blockV and does not partially contain any other control block,U is called
a nested control block. In this case,U is an outer control block (shortly outer block) ofV, andV is an
inner control block (shortly inner block) ofU. Let there be no control block betweenU andV. Then,
U is an immediate outer block ofV, andV is an immediate inner block ofU. Note that for any control
blockU, there can be multiple immediate inner blocks. However, there can be only one immediate outer
block. A control block that is not contained in any other control block is called atop-level control block.
An atomic control block or a nested control block can be a top-level control block. A node that is not
contained in any control block is called asimple node. As a result, a workflow schema is a sequence of
top-level control blocks and simple nodes as in Fig.4. The workflow schema of Fig.4 is composed of
two top-level control blocks and one simple node (i.e., activity 17).

If a workflow schema is designed without any discipline for workflow control constructs, it may have
some errors that are difficult to be found and corrected[16,21]. For example, if the destination of the
loop’s feedback is activity 5 instead of activity 10 in Fig.4, the workflow schema does not have correct
control flows due to the context of an AND-join at activity 8. There are structural and semantic workflow
errors. The structural correctness of our workflow is based on two main properties that are originated from
a structured programming language such as Pascal, C, or Java: “One is that workflow control structures
built by sequence, iteration, or the matching (split construct, join construct) pairs are all single-entry and
single-exit. The other is that complex control flows can be made by nesting them.” Hence, our workflow

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 93

can be said to have the same structural correctness as a structured programming language. On the other
hand, the semantic workflow errors such as reachability and deadlock-free routing can be probed using the
workflow control information of pre/post-activity conditions and transition conditions between activities.
Because most of such information can be determined at workflow run-time, we cannot detect and eliminate
all semantic errors from syntactic workflow definitions. Because a well-formed workflow defined in the
following is based on the concepts of the closure and control block, it is, therefore, free from workflow
structural errors.

Definition 2.3. An atomic control block and a nested control block are calledwell-formed control blocks.
A workflow schema built by well-formed control blocks and simple nodes is called awell-formed workflow
schema.

From now on, all workflow schemas mentioned in this paper denote well-formed workflow schemas
if there is no ambiguity.

2.2. Workflow queuing network

Numerous natural physical and organic processes exhibit behavior that is probably meaningfully mod-
eled by Poisson processes. An important application of the Poisson distribution arises in connection with
the occurrence of events of a particular type over time. The exponential distribution is frequently used
as a model for the distribution of times between the occurrence of successive events such as customers
arriving at a service facility. Because of them, the Poisson process and the exponential distribution have
been used to analyze many areas of computer engineering[10]. Hence, we consider in this paper that
the service requests for a workflow arrive by a Poisson process and each activity agent has exponential
service time. As a result, we can model a well-formed workflow schema as a M/M/1 queuing network
such as telephone networks or computer communication networks, with the following assumptions. This
allows us to analyze some important workflow properties.

Assumption 2.1. Queue discipline in an activity is first come-first served (FCFS), i.e., workflow instances
are served in the same order in which they arrive.

Assumption 2.2. The queue size of an activity is sufficiently large to accommodate a large number of
workflow instances. Namely, workflow instances can wait the service of an activity for a long time.

In a M/M/1 workflow queuing network, each activity is an independent M/M/1 queuing system[25].
We can, therefore, specify the arrival and departure rate in each activity as in Fig.4, based on the facts
mentioned below. We basically know the initial request rate to the start node, the service rate in each
activity, and the branch selection-probabilities in each workflow control construct.

In a Sequence control construct, if the arrival process of an activity is a Poisson process, its departure
process is also the same Poisson process[10]. The decomposition and superposition of independent Pois-
son processes in the OR-split/join and Preference-OR-split/join are known to be also Poisson processes
from time reversibility[25]. Activity 2, 5, 9, and 16 in Fig.4 are the examples. Even though the actual
internal flow of a LOOP is not a Poisson process due to its feedback, it is already known that the LOOP

94 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

behaves as if its internal activities are independent M/M/1 systems[3]. The departure processes of an
AND-split and a Selective-AND-split (e.g., activity 1 in Fig.4) are clearly Poisson processes if their
arrival processes are Poisson. However, the arrival processes by an AND-join and a Selective-AND-join
(e.g., activity 8 in Fig.4) are not actually Poisson processes because parallel execution threads must
be synchronized. Since a point of synchronized time by these control constructs is usually determined
by the path with the longest average execution time amongn workflow branches along which as many
threads are executed in parallel, the arrival process can be approximated by the Poisson process of the
requests going through the longest execution path. After all, a workflow schema can be modeled by a
M/M/1 queuing network in which each activity is an independent M/M/1 system with Poisson arrival and
departure processes.

3. Critical path

3.1. WCP algorithm

The critical path is defined as the longest execution path from the start node to the final node in
a workflow schema. We propose a method called the Workflow critical path (WCP) that determines
the critical path in a well-formed workflow schema modeled by a M/M/1 queuing network. Since many
workflow instances for the same workflow schema can be concurrently executed, some workflow instances
should wait at the queue of an activity while other workflow instances that arrive ahead are served. This
means thatthe average execution timeof a workflow instance in an activity isthe average service time
of the activity plusthe average waiting timeat the queue of the activity.

It is clear that since a workflow schema is a sequence of simple nodes and/or top-level control blocks,
all the simple nodes and the longest execution path in each top-level control block are parts of the critical
path. Therefore, WCP is essentially a method to find out the longest execution path (called the critical
sub-path) in each top-level control block and then combine the critical sub-paths to form the critical path.

To determine the critical sub-path in a top-level control block, the longest execution path is selected
from the innermost control block to the outermost control block, which is for step 2 of WCP algorithm in
Fig.5. Note that all innermost control blocks are atomic control blocks. If the innermost control block is a
LOOP, the LOOP is transformed into its corresponding sequence control construct, which is for step 4 in
the algorithm. If the innermost control block consists of a split and a join control construct, a path with the
longest average execution time in the control block is selected and then transformed into a single activity,
which comes under step 5 (The necessity for step 5.2, i.e., “Transform the path into a single activity”
will be explained in Section 3.7). At the exit of the WHILE loop in the algorithm, a new atomic control
block corresponding to each top-level control block is generated. And then, the longest execution path is
determined in the newly generated atomic control block as in step 6. This path is the critical sub-path of
the top-level control block and becomes part of the critical path. Finally, the critical path is determined by
combining all the critical sub-paths with simple nodes. Fig.6 depicts all the steps to find out the critical
sub-path.

In the next sections (from Sections 3.2 to 3.7), we present how to solve WCP steps mentioned above,
namely, steps 4–6 in Fig.5. From now on, a control block consisting of a�-split and a�-join control
construct is denoted by a (�,�) split/join control block, shortly (�,�) control block.

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 95

Fig. 5. WCP algorithm.

3.2. A LOOP atomic control block

Since we mentioned in Section 2.2 that each activity in a LOOP atomic control block can be considered
as an independent M/M/1, the LOOP can be transformed into its corresponding sequence control construct
as in Fig.7, which is for step 4.1 in the WCP algorithm. Because of the feedback in a LOOP, the arrival
rate� of the LOOP is stated as

� = � + (1 − p)�,

� = �

p
,

where 1− p is the probability that the feedback occurs in noden.

96 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

1 6 7 8 9 11 12Critical sub-path:

xx : An activity in the longest execution path of an innermost control block

Transformation of a LOOP
into a sequence by step 4.1

Select a path by step 5.1,
and then transform it
into an activity by step 5.2

A critical sub-path is chosen
between two possible paths by step6

12

2

1

5

6 11

3 4

7

8 9

10

12

2

1

5

6 11

3’ 4’

7

88 99

10

12

2

1

5

66 1111

3’ 4’

77 T1T1

1 6 7 8 9 11 12Critical sub-path: 1 6 7 8 9 11 121 6 7 8 9 11 12Critical sub-path:

xx : An activity in the longest execution path of an innermost control blockxx : An activity in the longest execution path of an innermost control block

Transformation of a LOOP
into a sequence by step 4.1

Select a path by step 5.1,
and then transform it
into an activity by step 5.2

A critical sub-path is chosen
between two possible paths by step6

12

2

1

5

6 11

3 4

7

8 9

10

12

2

1

5

6 11

3 4

7

8 9

10

12

2

1

5

6 11

3’ 4’

7

88 99

10

12

2

1

5

6 11

3’ 4’

7

88 99

10

12

2

1

5

66 1111

3’ 4’

77 T1T1

12

2

1

5

66 1111

3’ 4’

77 T1T1

Fig. 6. Finding the critical sub-path.

1 2Λ Λ n λ...
1µ 2µ nµ

Λ

LOOP

λ p
p−1

1 2 n λ

1µp 2µp npµ

λλ λ ...
(a) (b)

1 2Λ Λ n λ...
1µ 2µ nµ

Λ

LOOP

λ p
p−1

1 2Λ Λ n λ...
1µ 2µ nµ

Λ

LOOP

λ p
p−1

1 2 n λ

1µp 2µp npµ

λλ λ ...1 2 n λ

1µp 2µp npµ

λλ λ ...

Fig. 7. Transformation of a LOOP atomic control block.

The average number of service requests waiting in front of activityi in Fig. 7(a) is �i
1−�i where�i is

�
�i

= �
p�i
, i = 1, . . . , n. Hence, the average execution time of the LOOP from the Little’s formula is(

�1

1 − �1
+ �2

1 − �2
+ · · · + �n

1 − �n

)
1

�
1

p�1 − �
+ 1

p�2 − �
+ · · · + 1

p�n − �

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 97

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
λ
λ

λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…
…

p1

p2

pk

λ

λ
λ

λ

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
λ
λ

λ

(a) (b)

(c)

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
λ
λ

λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
λ
λ

λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…
…

p1

p2

pk

λ

λ
λ

λ

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
λ
λ

λ

Fig. 8. The closure of the AND-split: (a) AND-split & AND-join, (b) AND-split & Selective-AND-join and (c) AND-split &
Preference-OR-join:�: arrivalrate,pt : probability to be selected.

that is equal to the average execution time of the sequence composed ofn activities with the arrival rate
� and service ratep�i of activity i as in Fig.7(b). Here, the average execution time in a M/M/1 activity is
computed by 1

�−� where� is the service rate and� is the arrival rate. A LOOP atomic control block can,
therefore, be transformed to a sequence control construct.

The following Sections 3.3 to 3.6 is for step 5.1 in the WCP algorithm, i.e., managing a control block
consisting of (a split control construct, a join control construct).

3.3. The closure of the AND-split control construct

The closure of the AND-split is{AND–join,Selective–AND–join,Preference–OR–join}. Each node in
the destination of an AND-split, i.e.,a1, b1, . . . , z1 in Fig. 8 has the same arrival rate� as that of the split
activity S.

In a (AND-split, AND-join) atomic control block as in Fig.8(a), the longest execution path is a path
whose total average execution time isMAX(

∑
i

1
�i−�), where� is the arrival rate and�i is the service

rate of activityi in the path. This is caused by the fact that the average execution timeW of an activity
modeled by the M/M/1 queuing system isW = 1

�−� where� is the service rate and� is the arrival rate
in the activity.

Consider a (AND-split, Selective-AND-join) atomic control block as in Fig.8(b), wherepj is the
selection probability of incoming branchj to the destination of the Selective-AND-join. Letpathj
denote the path that goes through this branchj. Here, we can note that all the nodes inpathj behave as
if they have arrival ratepj� by the Selective-AND-join. Hence, the longest execution path in this control
block is a path whose total average execution time isMAX(

∑
i

1
�i−pj �), wherepj� is the arrival rate of

all the nodes inpathj and�i is the service rate of activityi in the path.
Consider a (AND-split, Preference-OR-join) atomic control block as in Fig.8(c). If we assume that the

preference of a Preference-OR-join is to select an incoming branch through which the thread of execution
arrives first, the longest execution path in this control block is a path whose total average execution time
is MIN(

∑
i

1
�i−�), where� is the arrival rate of all the nodes inpathj and�i is the service rate of

98 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ

(a) (b)

p1

p2

pk

p1

p2

pk

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ

)

p1

p2

pk

p1

p2

pk

Fig. 9. The closure of the Selective-AND-split: (a) Selective-AND-split & Selective-AND-join and (b) Selective-AND-split &
Preference-OR-join.

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ

(a) (b)

p1

p2

pk

p1

p2

pk

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ

p1

p2

pk

p1

p2

pk

Fig. 10. The closure of the OR-split: (a) OR-split & OR-join and (b) OR-split & Preference-OR-join.

activity i in the path. The expression may be changed according to how an incoming branch is selected
in a Preference-OR-join.

3.4. The closure of the selective-AND-split control construct

The closure of the Selective-AND-split is{Selective–AND–join,Preference–OR–join}.
In a (Selective-AND-split, Selective-AND-join) atomic control block as in Fig.9(a), because path

selection is determined by the Selective-AND-join, the longest execution path in the control block can
be determined in a way similar to the (AND-split, Selective-AND-join) control block.

In a (Selective-AND-split, Preference-OR-join) atomic control block as in Fig.9(b), we have outgoing
branch selection probabilitypi by the Selective-AND-split. Let us also assume that a Preference-OR-join
selects an incoming branch through which the thread of execution arrives first. Then, the longest execution
path in the control block is a path whose total average execution time isMIN(

∑
i

1
�i−pj �), wherepj�

is the arrival rate of outgoing branchj from the source of the Selective-AND-split and�i is the service
rate of activityi in the path.

3.5. The closure of the OR-split control construct

The closure of the OR-split is{OR–join,Preference–OR–join}. By the control context of the OR-split,
each outgoing branch has exclusive selection probabilitypi with

∑
pi = 1. Because the OR-split selects

only one outgoing branch, both a (OR-split, OR-join) control block and a (OR-split, Preference-OR-join)
control block as in Fig.10have the same way by which they find out the longest execution path. Namely,
the longest execution path is a path whose total average execution time isMAX(

∑
i

1
�i−pj �), wherepj�

is the arrival rate of outgoing branchj and�i is the service rate of activityi in the path.

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 99

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…
…λ

(a) (b)

p1

p2

pk

p1

p2

pk

T

a1

S

ar

z1 zn

b1 bm

…
…

…

…λ
T

a1

S

ar

z1 zn

b1 bm

…
…

…
…λ

p1

p2

pk

p1

p2

pk

Fig. 11. The closure of the preference-OR-split: (a) Preference-OR-split & OR-join and (b) Preference-OR-split & Prefer-
ence-OR-join.

T

a1

S

ar

z1 zn

b1b1 bmbm

…
…

…

…λ

λ1p

λ2p

λkp

λ1p

λ2p

λkp

T

a1

S

ar

z1 zn

b1b1 bmbm
…

…

…λ

λ
λ

λ

λ

λ

λ

…

TS
λ

b
λ λ λ

'µ

TS
λ

b
λ λ λ

'µ

bibi : An activity within the longest execution branch in a control block

(a)

(b)

T

a1

S

ar

z1 zn

b1b1 bmbm

…
…

…

…λ

λ1p

λ2p

λkp

λ1p

λ2p

λkp

T

a1

S

ar

z1 zn

b1b1 bmbm

…
…

…

…λ

λ1p

λ2p

λkp

λ1p

λ2p

λkp

T

a1

S

ar

z1 zn

b1b1 bmbm
…

…

…λ

λ
λ

λ

λ

λ

λ

…

T

a1

S

ar

z1 zn

b1b1 bmbm
…

…

…λ

λ
λ

λ

λ

λ

λ

…

TS
λ

b
λ λ λ

'µ
TS

λ
b

λ λ λ

'µ

TS
λ

b
λ λ λ

'µ

TS
λ

b
λ λ λ

'µ

bibi : An activity within the longest execution branch in a control blockbibi : An activity within the longest execution branch in a control block

Fig. 12. Transformation of a sequence.

3.6. The closure of the preference-OR-split control construct

The closure of the Preference-OR-split is{OR − join, P ref erence − OR − join} as depicted in
Fig. 11. The Preference-OR-split has similar control context with the OR-split in that they all select only
one outgoing branch with probabilitypi . The longest execution path, therefore, can be computed in the
same way as the closure of the OR-split.

3.7. A sequence control construct

After finding out the longest execution path in a control block (step 5.1 in the WCP algorithm), we
transform the sequence path into a single activityb as in Fig.12, which is for step 5.2 of the algorithm.
Especially, because the arrival rate of the selectedpathj in Fig. 12(b) is different from that of activity
S, the newly generated activityb must have the same arrival rate as activityS. In consequence, we in
this transformation determine the service rate�

′
of activity b satisfying that the average execution time

of activity b is equal to that of the sequence, while keeping the arrival rate of activityb equal to that of
activity S.

100 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

There can be two kinds of sequences as denoted in Fig.12: One is the sequence with the same arrival
rate as that of the split activityS (Fig. 12(a)). The other is the sequence with arrival ratepi� compared
to the arrival rate� of the split activityS, wherepi is the selection probability of outgoing branchi (Fig.
12(b)). Let�

′
be the service rate of activityb. Thus,

�
′ = 1∑n

i=1
1

�i−�

+ � in case of the former

and

�
′ = 1∑n

i=1
1

�i−pj �
+ � in case of the latter.

Here,�i is the service rate of activityi within the longest execution path andpj is the selection probability
of the path.

4. An overall example

In this section, we show the overall behavior of our WCP method as in Fig.13. Let the arrival rate to
the workflow schema be 10 and the branch probabilities of OR-split and LOOP control constructs, i.e.,

Fig. 13. An overall example of the WCP method.

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 101

Table 1
Activities’ service rates

Activity Service rate Activity Service rate Activity Service rate

1 13 2 15 3 7
4 8 5 20 6 18
7 20 8 14 9 16

10 20 11 10 12 15
13 15 14 6 15 7

16 25

p1, p2, andp3 be 0.4, 0.5 and 0.6, respectively. Thus, we can specify the arrival and departure rate at
each activity as in Fig.13(a), which is based on Section 2.2. And, the service rate of each activity is given
in Table1.

There are two top-level control blocks in Fig.13(a), and we should find out the critical sub-path in
each control block in order to determine the critical path. As we mentioned in the WCP algorithm, when
deciding the critical sub-path in a top-level control block, we select the longest execution path from the
innermost to the outermost control block of the top-level control block. Because a (OR-split, OR-join)
control block and a (AND-split, AND-join) control block are innermost control blocks in Fig.13(a),
we select the longest execution paths in the control blocks, which are activity 4 and 12, respectively, as
denoted in Fig.13(b). By applying Sections 3.2 and 3.7 to the Fig.13(b), newly transformed activities 4

′
,

10
′
, 11

′
, and 13

′
can be obtained in Fig.13-(c). If we determine the longest execution paths from the two

atomic control blocks in Fig.13(c), the critical sub-paths of the two top-level control blocks are selected
as in Fig.13(d). Finally, we can determine the critical path, {1, 2, 4, 5, 8, 9, 14, 15, 16}, in the workflow
schema by combining these critical sub-paths.

Next, let us consider the loan processing in a bank that is depicted in Fig.14. When a loan applicant
enters a loan request, the bank first evaluates the risk incurred by the loan and his credit worthiness at
the same time. If the evaluation record is acceptable, the bank decides to accept the loan request after
investigating the documents submitted by the applicant. If the loan request is finally accepted, the bank
notifies the result to the applicant, transfers the loaned money, and logs the processing result. But, if the
loan request is rejected, the bank notifies the result to the applicant and logs the processing result. The
loan processing of Fig.14 is composed of 21 activities, each service time of which is specified in Table
2. Our WCP method determines the critical path of the loan processing as a sequence of grayed activities
in Figure14, i.e., {1, 2, 4, 8, 9, 12, 13, 14, 15, 16, 17, 18}.

From the concept of the critical path, the workflow instances passing along the critical path may have
high probabilities of missing the workflow deadline. If a workflow instance misses the workflow deadline,
special actions, referred to as escalations, may be triggered. Because escalations always result in increased
operational costs for workflow processing, it is desirable to reduce the number of workflow instances
that result in being escalated as well as the operational costs associated with escalations. The workflow
instances passing along the critical path may be highly escalated. And, we can expect that the critical
path have the higher escalation rate than other execution paths, which will be shown in the experiment
performed by using DEVSim++. DEVSim++ is a C++-based discrete event modeling framework, which
has been used in many areas of systems’ design such as communication network design and parallel
computer architecture design. The loan processing depicted in Fig.14 has 24 different execution paths.

102 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

START

END

Enter a
loan request

Risk
evaluation

Client credit
worthiness

Risk
exception

Risk
update

Loan
type

Submit
documents
for a loan
on security

Investigate
the documents

Approval
process

Risk
compensation

Log the
loan reject

Notify for
the loan reject

Notify for
the loan accept

Transfer
loaned money

Log the
loan accept

AND

OR OR

Thorough
evaluation

Client credit
updateOR

AND

Processing
the requested

loan

OR

Submit
documents
for a loan
on credit

Investigate
the documents

OR

Record
decision

OR

loan rejected

loan possible

loan on credit loan on security

loan rejected

loan accepted

0.5OR0.5

0.7

0.3

0.3
0.4

0.3

0.5

0.2
0.3

0.6

0.4

0.2

0.8

0.8

0.2

1

2

3

4

5

6

7

8 9

10 12

1311

14
1516

17

18

21

20

19

START

END

Enter a
loan request

Risk
evaluation

Client credit
worthiness

Risk
exception

Risk
update

Loan
type

Submit
documents
for a loan
on security

Investigate
the documents

Approval
process

Risk
compensation

Log the
loan reject

Notify for
the loan reject

Notify for
the loan accept

Transfer
loaned money

Log the
loan accept

AND

OR OR

Thorough
evaluation

Client credit
updateOR

AND

Processing
the requested

loan

OR

Submit
documents
for a loan
on credit

Investigate
the documents

OR

Record
decision

OR

loan rejected

loan possible

loan on credit loan on security

loan rejected

loan accepted

0.5OR0.5

0.7

0.3

0.3
0.4

0.3

0.5

0.2
0.3

0.6

0.4

0.2

0.8

0.8

0.2

1

2

3

4

5

6

7

8 9

10 12

1311

14
1516

17

18

21

20

19

Fig. 14. Loan processing.

Table 2
Loan activities’ service times

Activity Service time (s) Activity Service time (s) Activity Service time (s)

1 0.1 2 0.3 3 0.2
4 0.1 5 0.1 6 0.2
7 0.2 8 0.2 9 0

10 0.2 11 0.15 12 0.1
13 0.2 14 0.4 15 0
16 0.15 17 0.1 18 0.2
19 0.25 20 0.3 21 0.2

Workflow deadline: 8 s.

Let the sequence of activity {1, 2, 3, 4, 8, 9, 10, 11, 14, 15, 16, 17, 18} bePath 1, the sequence of activity
{1, 2, 3, 4, 8, 9, 10, 11, 14, 15, 19, 20, 21} bePath 2,· · ·, and the sequence of activity {1, 5, 6, 7, 8, 15, 19,
20, 21} bePath 24. And, let the workflow deadline be 8 s. Table3 shows the escalation rate of workflow
instances for each execution path as a result of the experiment in which we generate 10,000 workflow
instances.We can notice that the escalation rate ofPath 9, which is identified as the critical path by ourWCP
method, is higher than that of other path. This indicates that the method proposed in this paper is valid.

5. Discussion

Besides workflow control constructs specified in this paper, two synchronization edges (simply sync
edges) mentioned in[19] can be considered to support synchronizations of activities from different paths

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 103

Table 3
The escalation rates of execution paths

Execution path # of passed instances # of escalated instances Escalation rate (%)

Path 1 211 1 0
Path 2 346 5 1.4
Path 3 240 21 8.7
Path 4 344 31 9
Path 5 177 0 0
Path 6 303 0 0
Path 7 720 13 1.8
Path 8 1141 11 0.9
Path 9 735 78 10.6
Path 10 1184 69 5.8
Path 11 609 0 0
Path 12 993 0 0
Path 13 300 6 2
Path 14 449 4 0.9
Path 15 288 13 4.5
Path 16 435 14 3.2
Path 17 305 0 0
Path 18 407 0 0
Path 19 102 0 0
Path 20 180 2 1.1
Path 21 121 7 5.7
Path 22 172 14 8.1
Path 23 89 0 0
Path 24 149 0 0
Total 10,000 289

8

2

1

5

4

3

6 7

sync edge 8

2

1

5

4

3

6 7

sync edge

Fig. 15. Synchronization edge.

of a parallel processing as in Fig.15. Namely, a “soft” sync edgen1 → n2 is used to specify thatn2
may only be executed ifn1 is either completed or if it cannot be triggered anymore. A “strict” sync edge
n1 → n2 requires thatn1 must be successfully completed beforen2 is allowed to start.

When there is a sync edgen1 → n2 between activityn1 andn2 that belong to different paths of a parallel
processing, the average execution time of the path containing activityn2 (Let us call itPath(n2)) may
be affected by that of the path containing activityn1 (Let us call itPath(n1)). If the average execution
time until activityn2 not including itself atPath(n2) is less than the average execution time until activity

104 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

Table 4
Workflow throughput according to escalation policies

Arrival rate # of timely completed workflow instances # of timely completed workflow instances
in a workflow with only hard deadlines in a workflow with hard/soft deadlines

2 8005 8322
4 7706 8109
6 7614 7980
8 7517 7928
10 4059 6644

n1 including itself atPath(n1), the execution of activityn2 is delayed until activityn1 is completely
executed. If not, the sync edge has no effect. In consequence, our workflow model can easily support the
synchronization edge without no great changes.

In general, an activity is said to be critical only if it belongs to the critical path[4,21]. We can moderate
the concept of a critical activity according to the applied applications as follows. An alternative control
flow may have more than one OR branches that can belong to the critical path or a path whose total
execution time is within distanced from the critical path. If an activity belongs to either the critical
path or OR branches within distanced from the critical path, we call it a critical activity; otherwise, a
non-critical activity. The value of distanced may be decided by a workflow analyzer. We can expect that
a workflow instance missing the deadline of any critical activity has very high possibility not to meet the
workflow deadline finally. Hence, if a workflow instance does not meet the deadline of a critical activity,
it may be immediately escalated, which indicates that the deadline is hard. On the other hand, the deadline
of a non-critical activity is soft in the sense that we make a workflow instance continue to perform its
execution if it does not exceed the activity deadline by� percent, where� is the threshold controlled by
a workflow analyzer.

Table4 shows the experimental result of the scheme that distinguishes activity deadlines into two
types (i.e., hard and soft) and applies different escalation policies to each type. The experiment is based
on the workflow schema of Fig.16. And, we assume thatd is 0 and� is 20%. We can notice in the
experimental result that the number of timely completed workflow instances, i.e., workflow throughput
is affected by the applied escalation policy. One escalation policy is that workflow instances not to meet
any activity deadline are immediately escalated because all activities have only hard deadlines. The other
is that activity deadlines can be hard or soft according to the concept of critical and non-critical activities.
The escalation policy distinguishing between hard and soft activity deadlines can somewhat reduce the
possibility that workflow instances being completed timely in the long run may be escalated due to missing
the soft deadlines in any intermediate activities.

Table4 shows the experimental result of the scheme that distinguishes activity deadlines into two
types (i.e., hard and soft) and applies different escalation policies to each type. The experiment is based
on the workflow schema of Fig.16. And, we assume thatd is 0 and� is 20%. We can notice in the
experimental result that the number of timely completed workflow instances, i.e., workflow throughput
is affected by the applied escalation policy. One escalation policy is that workflow instances not to meet
any activity deadline are immediately escalated because all activities have only hard deadlines. The other
is that activity deadlines can be hard or soft according to the concept of critical and non-critical activities.
The escalation policy distinguishing between hard and soft activity deadlines can somewhat reduce the

J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106 105

4

8

6 72

91

3

5 10OR AND

5.0=p

λ
11

5.01 =− p
5.0=q

5.01 =−q

4

8

6 72

91

3

5 10OR AND

5.0=p

λ
11

5.01 =− p
5.0=q

5.01 =−q

Activity Service Time (s) Deadline (s) Activity Service Time Deadline

1 0.05 0.1 7 0.1 2.123

2 0.2 0.561 8 0.1 2.123

3 0.1 0.561 9 0.2 3.115

4 0.2 1.553 10 0.1 4.007

5 0.05 1.653 11 0.2 5

6 0.1 1.888

Workflow deadline: 5 s

ss

Fig. 16. Activity hard/soft deadlines.

possibility that workflow instances being completed timely in the long run may be escalated due to missing
the soft deadlines in any intermediate activities.

6. Conclusion

In this paper, we have first specified the extended workflow control constructs and have defined a
well-formed workflow schema. And then, we have proposed a method to determine the critical path in a
well-formed workflow schema. Finally, some examples and experiments have been provided to show the
overall behavior and the validness of the proposed method. Several workflow structural terms defined in
this paper can help design a workflow schema free from some structural and semantic errors. Especially, a
nested and a top-level control block with systematic analyses from the innermost to the outermost control
block make it easy to apply our critical path algorithm.

We expect that the concept of the critical path can be effectively utilized in many workflow issues,
especially workflow resource and time management. In workflow time management, if a workflow in-
stance does not meet the workflow deadline, exception handling called escalation occurs. Because the
escalation generally gives high overhead to workflow systems, it is important to minimize the number of
escalated workflow instances. The information on the critical path can be utilized for the assignment of
workflow and activity deadlines because the real execution times of activities in the critical path directly
affects the total workflow completion time.

For further research, we are investigating the way that can verify the structural and semantic correctness
of a workflow schema before workflow execution. In particular, it is essential for a mission-critical business
process such as E-commerce and financial trading.

106 J.H. Son et al. / Journal of Computer and System Sciences 70 (2005) 86–106

References

[1] W.M.P. Aalst, A.P. Barros, A.H.M. Hofstede, B. Kiepuszewski, Advanced workflow patterns, in: The Seventh International
Conference on Cooperative Information Systems (CoopIS), September 2000, pp. 18–29.

[2] E.R. Clayton, L.J. Moore, PERT vs. GERT, J. Systems Management (1972) 11–19.
[3] R.L. Disney, Queueing networks, American Mathematical Society Proceedings of Symposium in Applied Mathematics,

1981.
[4] J. Eder, E. Panagos, M. Rabinovich, Time constraints in workflow systems, in: BIS’99 Third International Conference on

Business Information Systems,Springer, London, 1999, pp. 265–280.
[5] C. Hagen, G. Alonso, Flexible exception handling in the Opera process support system, in: Proceedings of the 18th IEEE

International Conference on Distributed Computing Systems,1998.
[6] P. Heinl, Exceptions during workflow execution, in: Proceedings of the Sixth International Conference on Extending

Database Technology,1998.
[7] E. Kafeza, K. Karlapalem, Gaining control over time in workflow management applications, in: Proceedings of the 12th

International Conference and Workshop on Database and Expert Systems Applications,2000, pp. 232–242.
[8] C.Y. Kao, An automated scheduling system for project management, in: Proceedings of the 1985 ACM Computer Science

Conference, March 1985, pp. 259–270.
[9] B. Kao, H. Garcia-Molina, Deadline assignment in a distributed soft real-time system, in: Proceedings of the 13th

International Conference on Distributed Computing Systems,1993.
[10] L. Kleinrock, Queueing Systems: Computer Applications, Wiley, New York, 1974.
[11] P. Lawrence, Workflow Handbook 1997, Wiley, New York, 1997.
[12] F. Leymann, D. Roller, Production Workflow: Concepts and Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1999.
[13] J.J. Moder, R.P. Cecil, W.D. Edward, Project management with CPM, PERT and Precedence Diagramming, third ed., Van

Nostrand Reinhold, New York, 1983.
[14] C. Mohan, Recent trends in workflow management products, standards, and research, in: Proceedings of the NATO

Advanced Study Institute on Workflow Management Systems and Interoperability, 1997.
[15] S.K. Oh, J.H. Son, Y.J. Lee, M.H. Kim, An efficient method for allocating workflow tasks to improve the performance of

distributed workflows, in: International Conference on Computer Science and Informatics, 2000.
[16] E. Panagos, M. Rabinovich, Reducing escalation-related costs in WFMSs, in: Proceedings of the NATO Advanced Study

Institute on Workflow Management Systems and Interoperability,1997.
[17] E. Panagos, M. Rabinovich, Predictive workflow management, The Third International Workshop on NGITS, 1997.
[18] H. Pozewaunig, J. Eder, W. Liebhart, ePERT: extending PERT for workflow management systems, The First European

Symposium in ADBIS, 1997.
[19] M. Reichert, P. Dadam,ADEPT f lex -supporting dynamic changes of workflows without loosing control, J. Intell. Inform.

Systems 10 (2) (1998) 93–129.
[20] E. Sauls, The use of GERT, J. Systems Management (1972) 18–21.
[21] J.H. Son, M.H. Kim, Improving the performance of time-constrained workflow processing, J. Systems Software 58 (3)

(2001) 211–219.
[22] J.H. Son, J.H. Kim, M.H. Kim, Hard/soft deadline assignment for high workflow throughput, in: Proceedings of the 1999

International Symposium on Database Applications in Non-Traditional Environments,1999.
[23] H.A. Taha, Operations Research, Macmillan Publishing Company, New York, 1992.
[24] J.D. Wiest, F.K. Levy, A Management Guide to PERT/CPM: with GERT/PDM/DCPM and Other Networks, Prentice-Hall,

Englewood Cliffs, NJ, 1977.
[25] R.W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[26] Z. Zhu, R.B. Heady, A simplified method of evaluating PERT/CPM network parameters, IEEE Trans. Eng. Management

41 (4) (1994) 426–430.

	Extracting the workflow critical path from the extended well-formed workflow schema62626262
	Introduction
	Workflow model
	Workflow control constructs
	Workflow queuing network

	Critical path
	WCP algorithm
	A LOOP atomic control block
	The closure of the AND-split control construct
	The closure of the selective-AND-split control construct
	The closure of the OR-split control construct
	The closure of the preference-OR-split control construct
	A sequence control construct

	An overall example
	Discussion
	Conclusion
	References

