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Maximally helicity violating disk amplitudes, twistors and transcendental integrals
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We obtain simple expressions for tree-level maximally helicity violating amplitudes of N gauge
bosons from disk world-sheets of open superstrings. The amplitudes are written in terms of (N − 3)!
hypergeometric integrals depending on kinematic parameters, weighted by certain kinematic factors.
The integrals are transcendental in a strict sense defined in this work. The respective kinematic factors
can be succinctly written in terms of “dual” momentum-twistors. The amplitudes are computed by using
the prescription proposed by Berkovits and Maldacena.

© 2012 Elsevier B.V. Open access under CC BY license.
We observe physical phenomena by detecting photons, glu-
ons, neutrinos and other particles scattered or emitted at various
distance scales. The scattering amplitudes must contain full in-
formation not only about the physical processes, but also about
the nature of spacetime. Some of the simplest amplitudes de-
scribe the scattering of gauge bosons (gluons) in (supersymmetric)
Yang–Mills theories [1]. In 2003, Edward Witten proposed a twistor
string theory description of such amplitudes [2]. Ever since then,
there has been a growing evidence that twistors play an important
role in the S-matrix description of spacetime, with the ambient
spacetime related to twistor space.

Strings propagate in ambient spacetime. Open superstrings of-
fer a self-consistent generalization of Yang–Mills theory and in-
troduce the Regge slope parameter α′ that determines the mass
scale M = 1/

√
α′ of higher spin excitations of the gauge super-

multiplet. The scattering amplitudes receive contributions from all
two-dimensional world-sheets with and without boundaries. Our
goal is to obtain compact expressions for some full-fledged but
possibly simplest superstring amplitudes. We also want to see if
twistors play any special role in a theory in which (spacetime)
superconformal invariance is explicitly broken by the presence of
mass scale M . We will consider the semi-classical contributions of
disk world-sheets to multi-particle amplitudes involving gluons in
maximally helicity violating (MHV) configurations which, by expe-
rience with Yang–Mills theory, are expected to have the simplest
form.

Disk amplitudes have been studied for almost fifty years. Some
time ago, we performed a detailed analysis of multi-gluon ampli-
tudes, deriving explicit expressions for up to N = 7 gluons [3–7].

* Corresponding author.
E-mail address: stieberg@mppmu.mpg.de (S. Stieberger).
0370-2693 © 2012 Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2012.08.018

Open access under CC BY license.
More recently, more compact expression have been obtained by
using the pure spinor formalism [8,9]. The general structure is,
however, always the same. For a specific ordering of non-abelian
gauge group (Chan–Paton) factors, the N-gluon (partial) ampli-
tudes are usually written as sums of (N −3)! terms:

∑i=(N−3)!
i=1 Ii Ki ,

where Ii are some integrals over N − 3 positions z4, . . . , zN of ver-
tex operators at the disk boundary (z1, z2, z3 are fixed by PSL(2,R)

invariance), while Ki are certain kinematic factors that depend on
the polarization vectors and momenta of external gluons. In this
work, we discuss the integrals and kinematic factors describing
MHV amplitudes. Instead of performing traditional computations,
we follow the prescription of Berkovits and Maldacena [10] which
offers a shortcut for MHV configurations.

We will be considering the N-gluon partial MHV disk ampli-
tude associated to the Chan–Paton (color) factor Tr(T a1 · · · T aN ),
involving two helicity minus gluons (labeled by 1 and 2) and N −2
helicity plus gluons. Berkovits and Maldacena [10] argued that this
amplitude is given by the following correlation function:

AN(λk, λ̃k) = 〈12〉4

〈12〉〈23〉〈31〉

〈
V 1(z1)V 2(z2)V 3(z3)

∞∫
z3

dz4U4(z4)

· · ·
∞∫

zN−1

dzN U N(zN)

〉
(1)

where Vk(zk) = eipk X(zk) = eiλk λ̃k X(zk) and

Uk(zk) = (
εa

k λ̃ȧ
k∂ Xaȧ + ψȧψ̄ḃλ̃

ȧ
kλ̃

ḃ
k

)
eipk X(zk). (2)

Here, X are the standard bosonic coordinates while ψȧ , ψ̄ḃ are
fermions of conformal weight ( 1

2 ,0). εa
k are arbitrary “refer-

ence spinors” normalized by εaλak = 1. In this work, we follow
k
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the same conventions as in Ref. [5], always choosing (z1, z2, z3) =
(−∞, 0,1), and integrate in Eq. (1) over N − 3 real variables or-
dered as z4 < · · · < zN in the interval (1,∞).

It should be made clear that Eq. (1) is a conjecture supported
by several tests. Berkovits and Maldacena have already checked
that Eq. (1) does indeed yield correct Yang–Mills amplitudes in the
α′ → 0 limit. Furthermore, they verified that for N = 4 and N = 5,
it reproduces the known string amplitudes. As a warm-up, we will
first examine the N = 6 case, using this as an opportunity to es-
tablish some notation.

For N = 6, the correlator of Eq. (1) becomes〈
V 1(z1)V 2(z2)V 3(z3)

∏
k=4,5,6

∫
dzk

(
εk∂ X(zk)

+ ψ(zk)λ̃kψ̄(zk)λ̃k
)

Vk(zk)

〉
(3)

with the polarization vectors εaȧ
k = εa

k λ̃ȧ
k . A choice of “parallel” ref-

erence spinors, say εa
k = λa

3/〈3k〉 as in Ref. [10], greatly simplifies
the computations because it eliminates all bosonic contractions in-
volving the products εkεl and potentially producing double poles
(zi − z j)

−2. In order to discuss this correlator, it is convenient to
introduce the following notation for the boundary integrals, useful
not only for N = 6 but also for arbitrary N:
�
(i1i2)(i3i4) · · · (in−1in)

�
N

=
∞∫

1

dz4 · · ·
∞∫

zN−1

dzN (zi1 i2 zi3 i4 · · · zin−1in)
−1

∏
2�k<l�N

|zkl|2α′ pk pl

(4)

where zi j ≡ zi − z j , {i1, i2, . . . , in} take arbitrary values in the set
{2,3, . . . , N}, z2 = 0 and z3 = 1. At the face value, for the gauge
choice of εa

k = λa
3/〈3k〉, there are 16 integrals originating from the

free-field correlators appearing in Eq. (3). By using partial fraction-
ing, however, it is possible to express all of them in terms of a
six-element basis. In some bases, the amplitude becomes particu-
larly simple, for instance1

A6 = 〈12〉3

〈34〉〈35〉〈36〉
{[42][5|2 + 4|3〉[61]�

(24)(45)(56)
�

6

+ [42][6|2 + 4|3〉[51]�
(24)(46)(65)

�
6

+ [52][4|2 + 5|3〉[61]�
(25)(54)(46)

�
6

+ [52][6|2 + 5|3〉[41]�
(25)(56)(64)

�
6

+ [62][4|2 + 6|3〉[51]�
(26)(64)(45)

�
6

+ [62][5|2 + 6|3〉[41]�
(26)(65)(54)

�
6

}
. (5)

Note the presence of spurious singularities at 〈35〉 = 0 and at
〈36〉 = 0 which appear as a consequence of the gauge choice.

The six-gluon MHV amplitude has been given before in Refs.
[4,5], where it appears in a rather complicated form. For quite a
long time, however, we knew [12] that it can be simplified to

A6 = 〈12〉3

〈34〉〈56〉
{[12][35][46]�

(25)(26)(35)(46)
�

6

+ [15][24][36]�
(25)(26)(24)(36)

�
6

+ [16][23][45]�
(25)(26)(23)(45)

�
6

− [12][36][45]�
(25)(26)(36)(45)

�
6

1 Our notation follows Ref. [11].
− [15][23][46]�
(25)(26)(23)(46)

�
6

− [16][24][35]�
(25)(26)(24)(35)

�
6

}
. (6)

The above expression is free of spurious poles, albeit not as
“symmetric” as Eq. (5). By a repeated use of partial fractioning,
(zik zi j)

−1 = (zkj zik)
−1 − (zkj zi j)

−1, and partial integrations of the
integrals, combined with some spinor algebra, we managed to
show that the right hand sides of Eqs. (5) and (6) are indeed
equal.

Now we proceed to the general N-gluon case. As in the pre-
vious case, a good gauge choice leads to tremendous simplifi-
cations. Here, we make a slightly different choice, εa

k = λa
2/〈2k〉,

which ensures εkεl = 0 for all polarization vectors, in addition to
εk p2 = εk pk = 0. Then the bosonic correlation functions contribute
to the integrands as

〈
εk1∂ X(zk1)εk2∂ X(zk2) · · ·

N∏
j=1

V j(z j)

〉

=
∑

i1 
=1,2,k1

∑
i2 
=1,2,k2

· · · εk1 pi1

zk1 i1

εk2 pi2

zk2i2

· · ·
∏

2�k<l�N

|zkl|2α′ pk pl .

(7)

Hence effectively, each i takes N − 3 possible values and a cor-
relator involving a product of m ∂ X ’s yields (N − 3)m terms. The
above correlator includes terms with double poles, (zi j)

−2 which,
in bosonic string theory, would give rise to tachyonic singularities.
Such terms, however, cancel after including the correlation func-
tions arising from the fermionic parts of the vertices, cf. Eq. (2).
Actually, fermion correlators cancel not only double poles (zi j z ji)

−1

but also all terms involving longer cycles, (zi j z jk · · · zmi)
−1. In this

way, in N-gluon amplitudes, one ends up with the integrals of
the form (4) but without any closed cycles, i.e. all integrals involv-
ing closed loops of indices, like (i1i2)(i2i3) · · · (iki1), are eliminated.
There are (N − 2)(N−4) integrals remaining.

It seems that the calculations following the proposal of
Berkovits and Maldacena yield integrals with one factor of z−1

i j
less than in the standard RNS formalism, cf. Eqs. (5) and (6). From
now on, we insert the “missing” factor of 1 = z32 = −z23, so that
in both formalisms, all N-gluon integrals (4) contain n/2 = N − 2
brackets.

The integrals (4) can be represented by diagrams. To each zi ,
i = 2, . . . , N , we associate a point and to each bracket, i.e. to each
(zi j)

−1 factor, we associate a link. Since there are no loops of in-
dices, all integrals under consideration can be represented by tree
diagrams with N − 2 links. Note that any point repeating more
than two times will produce a branching. As an example, we draw
below a typical diagram contributing to N = 8 amplitudes:

= �
(42)(52)(32)(87)(76)(62)

�
8. (8)

We introduced arrows to indicate the ordering of indices inside
brackets. Integrals associated to tree diagrams will be called tran-
scendental, for the reasons explained below.

Some properties of the integrals (4) become more transpar-
ent after changing the integration variables according to z4 =
1/x1, z5 = 1/(x1x2), . . . , zN = 1/(x1x2 · · · xN−3) [5]. We obtain
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�
(i1i2)(i3i4) · · · (in−1in)

�
N

=
(

N−3∏
i=1

1∫
0

dxi

)
N−3∏
a=1

x
α′s23···a+2+na
a

×
N−3∏
b=a

(
1 −

b∏
j=a

x j

)α′sa+2,b+3+na,b

, (9)

depending on the kinematic invariants si, j ≡ si j = (pi + p j)
2 and

si1···il = (pi1 + · · · + pil )
2. The integers na and nab are determined

by

na = 1 + a − N −
N∑

j=3+a

j−1∑
i=2

ñi j,

na,b = ña+2,b+3, a = 1, . . . , N − 3, b = a, . . . , N − 3, (10)

where ñi j = −1 for each link (i j), otherwise ñi j = 0. The inte-
grals (9) represent generalized Euler integrals, which integrate
to multiple Gaussian hypergeometric functions [3]. They depend
parametrically on the kinematic invariants, which are constrained
by the momentum conservation law and the mass-shell condition
p2

i = 0.
The representation (9) is particularly suitable for studying the

low-energy α′ → 0 limit of the integrals. For N gluons, the leading
terms O[(α′)3−N ] yield the Yang–Mills limit of the amplitude, with
the kinematic singularities associated to massless gauge bosons
propagating in intermediate channels. We call the integrals asso-
ciated to tree diagrams “transcendental” because their low-energy
expansions are rather special: the powers of α′ are always ac-
companied by one zeta function or products thereof with a fixed
“degree of transcendentality” DT . For the objects of interest, the
latter (sometimes called transcendentality level) is defined as [13]

DT(π) = 1, DT
(
ζ(n)

) = n,

DT
(
ζ(n1, . . . ,nr)

) =
r∑

l=1

nl, (11)

and DT(x · y) = DT(x) + DT(y) for products. The expansions of (9)
have the form

�
(i1i2)(i3i4) · · · (in−1in)

�
N

= (
α′)3−N

p3−N + (
α′)5−N

p5−Nζ(2)

+ (
α′)6−N

p6−Nζ(3) + · · · , (12)

where pl are degree l homogenous rational functions of the kine-
matic invariants si··· j . In (12) at each order 5 − N + m in α′
only products of zeta functions of total degree of transcendentality
DT = m + 2 show up. For N � 5 multiple zeta values ζ(n1, . . . ,nr)

of depth greater than one (r > 1) occur at weight eight and
higher [14].

In Refs. [5,6,9] evidence has been given, that any integral (9)
can be expressed in terms of (N − 3)! basis integrals (all refer-
ring to the same color ordering) with coefficients being rational
functions of the kinematic invariants. This is to be contrasted with
recent results on string amplitude relations [15,16], which express
a given subamplitude in terms of a basis of (N − 3)! other sub-
amplitudes (of different color ordering). However, in [9] arguments
are given, that these two (N − 3)!-dimensional bases are actu-
ally complementary. In fact, here we confirm the conclusions of
[5,6,9].
In order to cast the N-gluon amplitude in a simplest pos-
sible form, the (N − 2)(N−4) transcendental integrals, remain-
ing after combining bosonic and fermionic contractions, should
be expressed in a suitable basis. To that end, we introduce the
“chain” basis {C N

σ } labeled by (N − 3)! permutations σ of the set
{4,5, . . . , N}:

C N
σ =

= �
(23)(34σ ) · · · ((N − 1)σ Nσ

)�
N (13)

where iσ ≡ σ(i). Expressing (N − 2)(N−4) functions in this partic-
ular chain basis is a purely algebraic operation involving partial
fractioning only; no partial integrations are necessary to accom-
plish it. After this step, followed by some spinor algebra, we obtain

AN = 〈12〉4

〈12〉〈23〉〈31〉

(
N∏

k=4

〈2k〉
)−1 ∑

σ

C N
σ 〈2|3|4σ ]〈2|3 + 4σ |5σ ]

· · · 〈2|3 + 4σ + · · · + (N − 1)σ |Nσ ]. (14)

The amplitude (14) contains poles at 〈2k〉 = 0, originating from
the polarization vectors associated to the gauge choice εk p2 = 0:
ε
μ
k = σ

μ
aȧλ

a
2λ̃

ȧ
k/〈2k〉. The gauge invariance of the amplitude, demon-

strated in Ref. [10], guarantees that these singularities are spurious.
Actually, depending on the gauge choice and the choice of basis,
the amplitude can be rewritten in various ways, with different spu-
rious singularities. One can ask if there exists a basis in which the
amplitude is manifestly free of such singularities. Eq. (6) shows
that it does exist for N = 6. We addressed this question in the
case of N = 7. Indeed, spurious singularities can be eliminated by
manipulating Eq. (14), leaving physical poles only, say at 〈34〉 = 0,
〈56〉 = 0, 〈67〉 = 0. Such manipulations, however, in particular the
partial integrations, destroy the symmetry of chain basis and the
resultant expression is not as simple as Eq. (14).

An important new insight into the structure of N-gluon tree-
level Yang–Mills amplitudes has been recently gained by rewrit-
ing them in terms of the “position” coordinates dual to mo-
mentum variables. These coordinates are defined implicitly by
pk = xk − xk−1, with the momentum conservation expressed by
x0 = xN . Then the amplitudes exhibit a “dual” superconformal sym-
metry [17]. In 2009, Andrew Hodges [18] introduced “momentum”
twistors associated to the dual superconformal group. Tree-level
Yang–Mills amplitudes become manifestly covariant when written
in terms of momentum twistor variables. No such symmetry is
expected to hold for full-fledged superstring amplitudes because
dilatational symmetry is manifestly violated by the dependence
on α′ . Nevertheless we can try to express Eq. (14) in terms of
momentum-twistors, in order to compare Yang–Mills with the full-
fledged superstring amplitudes.

The momentum-twistors are defined as Zk = (λk, μ̃k=λkxk) and
the dual momentum-twistors as Wk = (μk=xkλ̃k, λ̃k). With the
choice of x1 = 0 as the origin of the dual coordinate space, μ1 =
μ̃1 = μ2 = μ̃2 = 0 and xn = ∑n

k=2 pk . Now the N-gluon amplitude
(14) can be rewritten as

AN = 〈12〉4

〈12〉〈23〉〈31〉

(
N∏

k=4

〈2k〉
)−1 ∑

σ

C N
σ

(
Z2W σ

4

)(
Z2W σ

5

)

· · · (Z2W σ
N

)
. (15)

To summarize, we derived a simple formula, given in Eqs. (14)
and (15), for the superstring MHV amplitude at the disk level. It is
possible that the twistor-dependence of kinematic factors is purely
coincidental. On the other hand, it may point to a deeper role of
momentum-twistors in superstring theory.
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