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Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal 
observables such as holographic entanglement entropy and two point correlation function. Our result 
shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like 
phase transition. To reinforce this conclusion, we further check the equal area law for the first order 
phase transition and critical exponent of the heat capacity for the second order phase transition. We also 
discuss the effect of the state parameter on the phase structure of the nonlocal observables.
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1. Introduction

Investigation on the thermodynamic phase transition of a black 
hole is always a hot topic in black hole physics. On one hand, it is 
helpful for us to understand the nature of some quantities of black 
holes such as entropy. On the other hand, it also may shed light 
on the understanding of the relation between gravity and ther-
modynamics. Until now there are many works to study the phase 
transition of black holes. The AdS space time is the most popular 
background for it exhibits more abundant phase structures com-
paring with its counterparts. The particular phase transition in AdS 
space time is the Hawking–Page phase transition between the AdS 
black hole and thermal gas [1], which is interpreted as the con-
finement/deconfinement phase transition in the dual gauge field 
theory [2]. Another interesting phenomenon for a charged AdS 
black hole is that it exhibits the Van der Waals-like phase transi-
tion in the T − S plane [3]. Namely the black holes endowed with 
different charges have different phase structures. As the charge in-
creases from small to large, the hole will undergo first order phase 
transition and second order phase transition successively before it 
reaches to a stable phase. Recently in the extended phase space, 
where the negative cosmological constant is treated as the pres-
sure while its conjugate acts as the thermodynamical volume, the 
Van der Waals-like phase transition is reconstructed in the P − V
plane [4–10]. It was stressed that there is a duality between the 
Van der Waals-like phase transition in P − V plane and T − S plane 
similar to the T-duality of string theory [11].
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In this paper, we intend to study the Van der Waals-like phase 
transition in the framework of holography. Our work is based on 
the previous study in [12] where the phase structure of entangle-
ment entropy is studied in a fixed charge ensemble and chemical 
potential ensemble. They found that the phase structure of entan-
glement entropy was similar to that of the thermal entropy for a 
charged black hole. They also studied the critical behavior of the 
heat capacity in the neighborhood of the critical point and found 
that the critical exponent was the same as the one of the thermal 
entropy for the second order phase transition of holographic en-
tanglement entropy. In light of these interesting results, this work 
was extended to the extended phase space later, where the cosmo-
logical constant was treated as a thermodynamical variable. It was 
found that the entanglement entropy has the similar phase struc-
ture as that of the black hole entropy too [13]. In [14], Nguyen 
investigated exclusively the equal area law of holographic entan-
glement entropy and found that, as the case of thermal entropy, 
the equal area law holds for the entanglement entropy regardless 
of the size of the entangling region. Very recently [15] investi-
gated entanglement entropy for a quantum system with infinite 
volume, and [16] investigated entanglement entropy in the bulk 
with Weyl correction, both of their result showed that there is a 
Van der Waals-like phase transition in the entanglement entropy-
temperature plane.

Note that in all the works mentioned above, the authors consid-
ered only the phase structure of entanglement entropy in the field 
theory. In this paper, we will further study the phase structure of 
two point correlation function besides that of the entanglement 
entropy. The two point correlation function is also a nonlocal ob-
servable and to some extent it has the similar properties as the 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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entanglement entropy. For example, both of them can probe the 
non-equilibrium thermalization behavior [17–22], superconductor 
phase transition [23–30], and cosmological singularity [31,32]. In 
this paper, we intend to explore whether it exhibits the Van der 
Waals-like phase transition as the entanglement entropy.

We choose the quintessence Reissner–Nordström–AdS black 
hole as the gravity background. Quintessence dark energy model 
is an important model that can explain the acceleration expan-
sion of our universe. The black hole is a crucial component of 
the universe, so it will be interesting to exploring the effect of 
quintessence dark energy on the properties of black holes. Some 
attempts about this topic have been done until now. In [33,34], 
the quasinormal modes and Hawking radiation of the black holes 
surrounded by quintessence have been studied. In [37], the phase 
structure of the quintessence Reissner–Nordström–AdS black hole 
has been investigated in the extended phase space. Especially re-
cently, there are also some works to study the quintessence AdS 
black hole in the framework of holography. [35] discussed effect 
of the quintessence dark energy on the formation of the super-
conductor. [36] studied the influence of quintessence dark energy 
on the non-equilibrium thermalization. At present, although the 
dual field theoretical interpretation about the quintessence is still 
unclear, with the further investigations, one can get better under-
standing. With this motivation, we will study the phase structure 
of the quintessence Reissner–Nordström–AdS black hole

This paper is organized as follows. In the next section, we will 
discuss the thermal entropy phase transition in the space time 
dominated by the quintessence dark energy. We mainly concen-
trate on phase transition in T − S plane in a fixed charge ensemble, 
which is shown to be the Van der Waals-like phase transition. In 
Section 3, we study phase transition of the holographic entangle-
ment entropy and two point correlation function respectively and 
find that both of them exhibit the Van der Waals-like phase transi-
tion. Particularly for each observable, the equal area law is checked 
and the critical exponent of the heat capacity is obtained. The last 
section is devoted to discussions and conclusions.

2. Thermodynamics of the quintessence 
Reissner–Nordström–AdS black hole

2.1. Quintessence Reissner–Nordström–AdS black hole

For a space time dominated by the quintessence dark energy 
with energy–momentum tensor

T t
t = ρq(r), (1)

T j
j = 3ρq(r)ω[−(1 + 3B)

rir j

rnrn
+ Bδ

j
i ], (2)

where ρq is dark energy density, ω is state parameter, and B
is an arbitrary parameter depending on the internal structure of 
quintessence, the charged AdS black hole solution can be written 
as [38]

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdφ2), (3)

where

f (r) = 1 − a

r3ω+1
+ r2

l2
− 2M

r
+ Q 2

r2
, (4)

in which l is the AdS radius which will be set to 1 during the 
numerics, a is the normalization factor which relates to the density 
of quintessence with the relation

ρq = −a 3ω
3(ω+1)

. (5)

2 r
In cosmology, it is well known that for quintessence dark energy 
−1 < ω < −1/3, while for phantom dark energy ω < −1. Mathe-
matically, from Eq. (4), we know that for different values of state 
parameter ω, the dark energy has different effect on the space 
time. For ω = −1, the dark energy affects the AdS radius that is 
related to the cosmological constant. While for ω = −1/3, the dark 
energy affects the curvature k of the space time.

From Eq. (4), we can get the Hawking temperature of this space 
time

Tbh = f ′(r)
4π

|r+=
r+

(
3aωr−3ω+ + 3r3+/l2 + r+

)
− Q 2

4πr3+
, (6)

which is regarded as the temperature of the dual conformal field 
theory according to AdS/CFT duality. In addition, according to the 
entropy area relation, we also can get the entropy of the black 
hole

S = πr2+, (7)

in above equations r+ is the event horizon of the black hole, which 
is the largest root of f (r+) = 0.

2.2. Van der Waals-like phase transition of black hole entropy

Substituting (7) into (6) and eliminating the parameter r+ , we 
can get the relation between the temperature Tbh and entropy S
of the quintessence Reissner–Nordström–AdS black hole, that is

Tbh = −
S− 3ω

2 − 3
2

(
−3al2

√
Sπ

3ω
2 + 3

2 ω+π2l2 Q 2 S
3ω
2 −π l2 S

3ω
2 +1−3S

3ω
2 +2

)
4π3/2l2

.

(8)

Based on this relation, we will study the Van der Waals-like phase 
transition in the T − S plane. In fact, it has been shown that there 
also exist Van der Waals-like phase transitions in the P − V plane, 
T − S plane, and � − Q plane for a charged black hole in the ex-
tended phase space, in which the cosmological constant is treated 
as a thermal variable. To compare with the phase transition of en-
tanglement entropy and some other nonlocal observables directly, 
we focus on only the phase transition of thermal entropy in the 
T − S plane in this paper. We will also pay attention to the affect 
of both ω and a on the phase structure of the black hole. We take 
ω = −1, −2/3 and a = 0.5/2, 1.1/2 as examples.

In order to understand the phase transition in the T − S plane, 
we should first find the critical charge, which is determined by the 
following equations

(
∂Tbh

∂ S
)Q = (

∂2Tbh

∂ S2
)Q = 0. (9)

Inserting (8) into (9), we find for ω = −1, the critical charge, criti-
cal entropy and critical temperature can be expressed as

Q c = l

6
√

1 − al2
, (10)

Sc = π l2

6
(
1 − al2

) , (11)

Tc = 0.259899a2l4 − 0.519798al2 + 0.259899√
l2

1−al2
(
1 − al2

)2
, (12)

and for ω = −2/3, these quantities are
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Fig. 1. Relations between the entropy and temperature for different ω and a. The red dashed lines correspond to the locations of first order phase transition.
Q c = l

6
, (13)

Sc = π l2

6
, (14)

Tc = 2
√

6 − 3al

6π l
. (15)

All these critical values are useful for us to study the critical be-
havior of heat capacity near the critical point next.

With (8), we now plot the isocharges for different ω and a, 
which are shown in Fig. 1. In (a) and (b) of Fig. 1, the curves from 
top to down correspond to the isocharges for the case Q = 0.6/6, 
1/6, 1.4/6. In (c) and (d), these curves correspond to Q = 0.6

6
√

1−a
, 

1
6
√

1−a
, 1.4

6
√

1−a
. It is obvious that for a fixed ω and a, the phase 

structure of the quintessence Reissner–Nordström–AdS black hole 
is similar to that of the Van der Waals phase transition. That is, 
for the small charge, which corresponds to the top curves in each 
graph in Fig. 1, there is an unstable hole interpolating between 
the stable small hole and stable large hole. The small stable hole 
will jump to the large stable hole as the temperature of the hole 
is larger than the critical temperature T
 . As the charge increases 
to the critical charge, the smallest hole and the largest hole merge 
into one and squeeze out the unstable phase. So there is an inflec-
tion point in the middle curves for each graphic in Fig. 1. According 
to the definition of the specific heat capacity

C Q = Tbh
∂ S

∂Tbh
|Q , (16)

we know that the heat capacity is divergent at the inflection point 
and the phase transition near there is second order. As the charge 
exceeds the critical charge, the black hole is stable always, which 
correspond to the lowest curves in each graph in Fig. 1. In addition, 
from Fig. 1, we can also observe how ω and a affect the phase 
structure. From the top curves in (b) and (d), we know that as ω
decreases, the unstable stage is longer. So the large ω promotes 
the hole to reach the stable stage. From the top curves in (c) and 
(d), we know that the large a delays the hole to reach the stable 
stage.

For the first order phase transition in Fig. 1, we will check 
whether Maxwell’s equal area law holds, which states

A1 ≡
S3∫

S1

Tbh(S, Q )dS = T
(S3 − S1) ≡ A3. (17)

Obviously, to check this equation, we should first find the value of 
the critical temperature T
 . Usually there are two different ways 
to get it. On one hand, one can construct an equation that pro-
duces the temperature with the supposition that the equal area 
law is true. On the other hand, one can find the horizontal coordi-
nate of the junction of the swallowtail structure in the F − T plane, 
where F = M − T S is the Helmholtz free energy. Here our goal is 
to check the equal area law and the second method thus is more 
appropriate. The relations between F and T for different ω and a
are plotted in Fig. 2. We can see that there is always a swallowtail 
structure in each graph, which corresponds to the unstable stage of 
the first order phase transition in Fig. 1. Now we take ω = −2/3, 
a = 0.5/2 as an example to show how to check the equal area law. 
From (a) in Fig. 2, we find T
 = 0.2448. Substituting this tempera-
ture into (8), we get the smallest and largest values of the entropy, 
S1 = 0.210442, S3 = 2.93091. With these values, we find A1 and 
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Fig. 2. Relations between the free energy and temperature for different ω and a. The intersection point between the red dashed line and horizontal coordinate in each graph 
is the first order phase transition temperature.
Table 1
Check of the equal area law in the T − S plane for different ω and a.

w = −2/3 w = −1

a = 0.5/2 T
 = 0.2448 T
 = 0.2465

a = 1.1/2 T
 = 0.1971 T
 = 0.19103

a = 0.5/2 S1 = 0.053875 | S3 = 1.82594 S1 = 0.071847 | S3 = 2.43723

a = 1.1/2 S1 = 0.053886 | S3 = 1.82799 S1 = 0.119813 | S3 = 4.07542

a = 0.5/2 A1 = 0.4340 | A3 = 0.4338 A1 = 0.5832 | A3 = 0.5831

a = 1.1/2 A1 = 0.4398 | A3 = 0.3497 A1 = 0.7555 | A3 = 0.7557

A3 in (17) equal 0.4340, and 0.4338 respectively. Adopting the sim-
ilar strategy, we can get A1 and A3 for other ω and a, which are 
shown in Table 1.

It is obvious that A1 equals A3 roughly for different ω and a, 
so the equal area law holds. In other words, though ω and a affect 
the phase structure of thermal entropy, it does not break the equal 
area law.

For the second order phase transition, we are interested in the 
critical exponent associated with the heat capacity defined in (16). 
We take ω = −2/3 as an example. Near the critical point, writ-
ing the entropy as S = Sc + δ and expanding the temperature in 
small δ, we find

Tbh − Tc =
(
(35π2l2 Q 2)/Sc − 5π l2 + 3Sc

)
64π3/2l2 S7/2

c

(S − Sc)
3, (18)

in which we have used (9). With the definition of the heat ca-
pacity, we find further C Q ∼ (Tbh − Tc)

−2/3, namely the critical 
exponent is −2/3, which is the same as the one from the mean 
field theory. In addition taking logarithm to (18), we find there is 
always a linear relation

log | Tbh − Tc |= 3 log | S − Sc | +constant, (19)

with 3 the slope. Next, we will employ this relation to check 
the critical exponent of heat capacity in entanglement entropy-
temperature plane as well as two point correlation function-
temperature plane.

3. Van der Waals phase transition in the framework of 
holography

Having obtained the phase structure of thermal entropy of the 
quintessence Reissner–Nordström–AdS black hole, we will study 
the phase structure of the non-local observables such as entan-
glement entropy and two point correlation function in the filed 
theory. We intend to explore whether they have the similar phase 
structure and critical behavior as that of the thermal entropy. As 
stressed in the introduction, the dual field theoretical interpre-
tation about the quintessence is still unclear, we assume that it 
would not affect the dual field theory so that the relation be-
tween the two point correlation function and length of geodesic 
as well as holographic entanglement entropy and area of the min-
imal surface are still valid. The validity of this assumption will be 
confirmed by our last results.
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Fig. 3. Relations between the entanglement entropy and temperature for different ω and a. The red solid lines correspond to the locations of first order phase transition.
3.1. Van der Waals Phase transition of entanglement entropy

According to the formula in [39,40], the entanglement entropy 
can be given by the area A� of a minimal surface � anchored on 
∂�, to wit

S = A�(t)

4πG
, (20)

where G is the Newton’s constant. Based on the definition of area 
and (3), (20) can be rewritten as

S = π

2

θ0∫
0

r sin θ

√
(r′)2

f (r)
+ r2, (21)

in which r′ = dr/dθ and θ0 is the boundary of the entangling re-
gion in θ direction. Making use of the Euler–Lagrange equation, 
one can get the equation of motion of r(θ)

0 = r′(θ)2[sin θr(θ)2 f ′(r) − 2 cos θr′(θ)]
− 2r(θ) f (r)[r(θ)(sin θr′′(θ) + cos θr′(θ)) − 3 sin θr′(θ)2]
+ 4 sin(θ)r(θ)3 f (r)2. (22)

It seems to be impossible to get the analytical solution of r(θ), so 
we will solve it numerically with the boundary conditions

r′(0) = 0, r(0) = r0. (23)
Note that the entanglement entropy is divergent at the bound-
ary, so it should be regularized by subtracting off the entangle-
ment entropy in pure AdS with the same entangling surface and 
boundary values. We label the regularized entanglement entropy 
as δS . For the numerical computation, we choose θ0 = 0.16 and 
set the UV cutoff in the dual field theory to be r(0.159). To com-
pare with the phase transition of thermal entropy, we will study 
the relation between the entanglement entropy and Hawking tem-
perature, which is regarded as the temperature of the dual field 
theory. The numeric results for different ω and a are shown in 
Fig. 3. As the same as that of the thermal entropy, in (a) and (b) in 
Fig. 3, the curves from top to down correspond to the isocharges 
for the case Q = 0.6/6, 1/6, 1.4/6 individually. In (c) and (d), 
these curves correspond to Q = 0.6

6
√

1−a
, 1

6
√

1−a
, 1.4

6
√

1−a
. For a fixed 

ω and a, we find the phase structure of entanglement entropy 
is the same as that of the thermal entropy. Namely the phase 
transition is similar to that of the Van der Waals Phase transi-
tion. In other words, the phase structure depends on the charge 
of the black hole. For the small charge, the small stable black 
hole will transfer to the large stable hole as the temperature is 
higher than the critical temperature, and this transition is first 
order. As the charge grows to the critical charge, the small hole 
and the large hole merge so that the unstable hole shrinks into 
an inflection point, where the transition for the small hole to the 
large hole is second order. For a large enough charge, a large sta-
ble hole forms and the entanglement entropy grows monotonously 
as the temperature rises. From Fig. 3, we can also observe how ω
and a affect the phase structure of entanglement entropy. From 
the top curves in (b) and (d), we know that as ω decreases, 
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Table 2
Check of the equal area law in the T − δS plane for different ω and a with θ0 = 0.16.

w = −2/3 w = −1

a = 0.5/2 T
 = 0.2448 T
 = 0.2465

a = 1.1/2 T
 = 0.1971 T
 = 0.19103

a = 0.5/2 δS1 = 0.00021 | δS3 = 0.00123 δS1 = 0.000110 | δS3 = 0.002128

a = 1.1/2 δS1 = 0.0001453 | δS3 = 0.0012605 δS1 = 0.000731 | δS3 = 0.003087

a = 0.5/2 A1 = 0.000240 | A3 = 0.000249 A1 = 0.000479 | A3 = 0.000477

a = 1.1/2 A1 = 0.000221 | A3 = 0.000220 A1 = 0.000436 | A3 = 0.000447
Table 3
Check of the equal area law in the T −δS plane for different θ0 with w = −2/3, a =
0.5/2.

θ = 0.12 0.0670316 0.0676132 0.000143 0.000142

θ = 0.2 0.121277 0.123993 0.000669 0.000665

θ = 0.24 0.152796 0.157537 0.001168 0.001160

the unstable stage is longer, and from the top curves in (c) and 
(d), we know that as a decreases, the unstable stage is shorter. 
These effects are the same as that of the black hole entropy in 
Fig. 1.

Adopting the same strategy as that of the thermal entropy, we 
will check Maxwell’s equal area law for the first order phase tran-
sition. In the δS − T plane, we rewrite the equal area law as

A1 ≡
δS3∫

δS1

T (δS)dδS = T
(δS3 − δS1) ≡ A3, (24)

in which T (δS) is an Interpolating Function obtained from the nu-
meric result, and δS1, δS3 are the smallest and largest roots of the 
equation T (δS) = T
 . Surely T
 is the first order phase transition 
temperature for a fixed ω and a, which can be read off from Fig. 2. 
For different ω and a, the results of δS1, δS3 and A1, A3 are listed 
in Table 2.

It is obvious that A1 equals nearly A3 for a fixed ω and a. Until 
now, our discussion is restricted in the case θ0 = 0.16. Next we will 
check whether the equal area law is valid for some other values of 
θ0, which is shown in Table 3. Obviously, A1 and A3 are equal in 
our numeric accuracy, which implies that the equal area law holds 
regardless of the size of the entangling region. With Table 2 and 
Table 3, we can conclude that the equal area law is always valid 
for the first order phase transition of holographic entanglement 
entropy. Note that [3] once stressed that the value of θ0 should 
be not too large in order to avoid the entanglement entropy to be 
contaminated by the surface that wraps the horizon. Our choice of 
the values of θ0 satisfies this condition obviously for there is not 
saltation for our results in Table 3.

In order to study the critical exponent of the second order 
phase transition in the δS − T plane, we define an analogous spe-
cific heat capacity

CQ = Tbh
∂δS

∂Tbh
|Q . (25)

Provided a similar relation as that in (19) is satisfied, then with 
(25) we can get the critical exponent of second order phase tran-
sition of entanglement entropy. Here we are interested in the log-
arithm of the quantities Tbh − Tc , δS − δSc . For different ω and a, 
the relation between log | Tbh − Tc | and log | δS − δSc | are plotted 
in Fig. 4, in which Tc is the critical temperature which have been 
defined in (12) as well as (15), and Sc is the corresponding criti-
cal entropy obtained numerically by the equation T (δS) = Tc . The 
analytical result of these straight lines can be fitted as
log | Tbh − Tc |=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

19.9074 + 3.00361 log | δS − δSc |,
for ω = −2/3,a = 0.5/2

21.5846 + 3.08801 log | δS − δSc |,
for ω = −2/3,a = 1.1/2

20.1355 + 3.02826 log | δS − δSc |,
for ω = −1,a = 0.5/2

19.8945 + 3.02606 log | δS − δSc |,
for ω = −1,a = 1.1/2.

(26)

We find for all the ω and a, the slope is always about 3, which is 
consistent with that of the thermal entropy. That is, the entangle-
ment entropy has the same second order phase transition behavior 
as that of the thermal entropy.

3.2. Van der Waals Phase transition of two point correlation function

In previous section, we have shown that the entanglement en-
tropy has the same phase structure as that of the thermal entropy. 
In this section, we intend to explore whether the two point cor-
relation function has the similar behavior as that of the entangle-
ment entropy. According to the AdS/CFT correspondence, the equal 
time two point correlation function under the saddle-point approx-
imation can be holographically approximated as [41]

〈O(t0, xi)O(t0, x j)〉 ≈ e−�L, (27)

if the conformal dimension � of scalar operator O is large enough, 
where L is the length of the bulk geodesic between the points 
(t0, xi) and (t0, x j) on the AdS boundary. Taking into account the 
spacetime symmetry of the quintessence Reissner–Nordström–AdS 
black hole, we can simply let xi = θ with the boundary θ0. We will 
also employ θ to parameterize the trajectory and in this case the 
proper length is given by

L =
θ0∫

0

L(r(θ), θ)dθ, L =
√

(r′)2

f (r)
+ r2, (28)

in which r′ = dr/dθ . Imagining θ as time, and treating L as the 
Lagrangian, one can get the equation of motion for r(θ) by making 
use of the Euler–Lagrange equation, that is

0 = r′(θ)2 f ′(r) − 2 f (r)r′′(θ) + 2r(θ) f (r(θ))2. (29)

We will also use Eq. (23) to solve this equation. We choose θ0 =
0.16 and set the UV cutoff in the dual field theory to be r(0.159). 
We label the regularized two point correlation function as δL. For 
simplicity in this section, we fix ω = −2/3. The relations between 
δL and Tbh for different a ares shown in Fig. 5. In each figure, the 
curves from top to down correspond to the isocharges for Q =
0.6/6, 1/6, 1.4/6. Comparing Fig. 5 with (a) and (b) in Fig. 3, we 
find they are the same nearly. That is, the phase structure of the 
two point correlation function is also similar to that of the Van 
der Waals-like phase transition. To further confirm this conclusion, 
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Fig. 4. Relations between log | Tbh − Tc | and log | δS − δSc | for different ω and a.

Fig. 5. Relations between the two point correlation function and temperature for different a with a fixed ω = −2/3. The red solid lines correspond to the locations of first 
order phase transition.
we will also pay attention to the equal area law for the first order 
phase transition and critical exponent for the second order phase 
transition. In the δL − T plane, we define the equal area law as

A1 ≡
δL3∫

δL1

T (δL)dδL = T
(δL3 − δL1) ≡ A3, (30)

in which T (δL) is an Interpolating Function obtained from the nu-
meric result, and δL1, δL3 are the smallest and largest roots of the 
equation T (δL) = T
 .
For different a, the results of δL1, δL3 and A1, A3 are listed 
in Table 4. From this table, we can see that A1 equals A3 in our 
numeric accuracy.

Similarly, we will check whether the equal area law is valid for 
some other values of θ0, which is shown in Table 5. It is obvious 
that A1 and A3 are equal for different θ within reasonable error. 
From Table 4 and Table 5, we can conclude that the equal area 
law is also valid in the δL − T plane. In other words, similar to 
the holographic entanglement entropy, the two point correlation 
function also exhibits the first order phase transition as that of the 
thermal entropy.
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Fig. 6. Relations between log | Tbh − Tc | and log | δL − δLc | for different a.

Table 4
Check of the equal area law in the T − δL plane for different a with θ0 = 0.16.

δL1 δL3 A1 A3

a = 0.5/2, T
 = 0.2448 0.000002483098 0.000095059 0.0000220 0.0000227

a = 1.1/2, T
 = 0.1971 −0.000007475310 0.000066343 0.0000140 0.0000146
Table 5
Check of the equal area law in the T − δL plane for different θ0 with w = −2/3, a =
0.5/2.

δL1 δL3 A1 A3

θ = 0.12 0.00956964 0.0096248 0.0000136 0.0000135
θ = 0.2 0.0159275 0.016183 0.0000629 0.0000626
θ = 0.24 0.0192298 0.0196722 0.0001090 0.0001083

By defining an analogous heat capacity

C = Tbh
∂δL

∂Tbh
, (31)

we can also study the critical exponent of the heat capacity for the 
second order phase transition in the δL − T plane. Similar to that 
of the entanglement entropy, we are interested in the logarithm 
of the quantities Tbh − Tc , δL − δLc , in which Tc is the critical 
temperature defined in (15), and Lc is obtained numerically by the 
equation T (δL) = Tc . The relations between log | Tbh −Tc | and log |
δL −δLc | are plotted in Fig. 6. The analytical results of these curves 
can be fitted as

log | Tbh − Tc |=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

27.2601 + 3.00747 log | δL − δLc |,
for ω = −2/3,a = 0.5/2

31.0971 + 3.15294 log | δL − δLc |,
for ω = −2/3,a = 1.1/2.

(32)

It is obvious that the slope is also about 3, which is consistent 
with that of the thermal entropy. That is, the two point correlation 
function also has the same second order phase transition as that 
of the thermal entropy.

4. Concluding remarks

We have investigated detailedly the Van der Waals-like phase 
transition in the quintessence Reissner–Nordström–AdS black hole 
in a fixed charge ensemble. We first investigated the phase struc-
ture of the thermal entropy in the T − S plane and found that the 
phase structure depends on the charge of the black hole. For the 
small charge, there is always an unstable hole interpolating be-
tween the small stable black hole and large stable black hole. The 
transition for the small hole to the large hole is first order and 
the equal area law holds. As the charge of the hole increases to 
the critical value, the unstable hole merges into an inflection point 
where the phase transition is second order. While the charge is 
larger than the critical charge, the hole is stable always. We also 
discussed the effect of ω as well as a on the phase structure and 
found ω promote the hole to reach the stable phase while a de-
lays. Interestingly, we found that the nonlocal observables such as 
entanglement entropy and two point correlation function also ex-
hibit the similar phase structure in the T − δS plane and T − δL
plane respectively. The influence for ω and a on the phase struc-
ture is the same as that of the thermal entropy. To confirm this 
observation, we further showed that the equal area law holds and 
the critical exponent of the heat capacity is consistent with that 
of the mean field theory for both the entanglement entropy and 
two point correlation function. These results imply that the entan-
glement entropy and the two point correlation function are indeed 
a good probe to the phase transition. In addition, our results also 
reveal a fact that the quintessence dark energy in the bulk will 
not affect the definition of field theory on the boundary of an AdS 
space time though its dual field theoretical interpretation is still 
unclear.
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