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Abstract

In this work, we explore the possibility that quantum fluctuations induce an electric or magnetic charge
or both, in the context of Gravity’s Rainbow. A semi-classical approach is adopted, where the graviton
one-loop contribution to a classical energy in a background spacetime is computed through a variational
approach with Gaussian trial wave functionals. The energy density of the graviton one-loop contribution, in
this context, acts as a source for the electric/magnetic charge. The ultraviolet (UV) divergences, which arise
analyzing this procedure, are kept under control with the help of an appropriate choice of the Rainbow’s
functions. In this way we avoid the introduction of any regularization/renormalization scheme. A compar-
ison with the observed data leads us to determine the size of the electron and of the magnetic monopole
which appear to be of Planckian size. Both results seem to be of the same order for a Schwarzschild and a
de Sitter background, respectively. Estimates on the magnetic monopole size have been done with the help
of the Dirac quantization procedure. We find that the monopole radius is larger than the electron radius.
Even in this case the ratio between the electric and magnetic monopole radius appears to be of the same
order for both geometries.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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1. Introduction

It was Andrei Sakharov in 1967 [1] who first conjectured the idea of Induced gravity (or
emergent gravity), namely spacetime background emerges as a mean field approximation of
underlying microscopic degrees of freedom, similarly to the fluid mechanics approximation of
Bose–Einstein condensates. This means that some basic ingredients of General Relativity like
the gravitational Newton’s constant can be computed by means of quantum fluctuations of some
matter fields. This idea is opposed to the concept of “charge without charge” and “mass with-
out mass” arising from the spacetime foam picture of John A. Wheeler [2], where the matter
properties emerge as a geometrical feature of spacetime. In a foamy spacetime topological fluc-
tuation appear at the Planck scale, meaning that spacetime itself undergoes a deep and rapid
transformation in its structure. Wheeler also considered wormhole-type solutions as objects of
the quantum spacetime foam connecting different regions of spacetime at the Planck scale. Al-
though the Sakharov approach has the appealing property of being renormalizable “ab initio”
because it involves only quantum fluctuations of matter fields described by bosons and fermions,
the Wheeler picture involves quantum fluctuations of the gravitational field alone and since one
of the purposes of Quantum Gravity should be a realization of a theory combining Quantum
Field Theory with General Relativity, it appears that spacetime foam is the right candidate for
such a description. Unfortunately, every proposal of Quantum Gravity except string theory has
to face with Ultra Violet (UV) divergences. Recently a proposal which uses a distortion of the
gravitational field at the Planck scale, named as Gravity’s Rainbow [3,4] has been considered to
compute Zero Point Energy (ZPE) to one loop [5,6]. The interesting point is that such a distortion
enters into the background metric and becomes active at Planck’s scale keeping under control
UV divergences. Briefly, the situation is the following: one introduces two arbitrary functions
g1(E/EP ) and g2(E/EP ), denoted as Rainbow’s functions, with the only assumption that

lim
E/EP →0

g1(E/EP ) = 1 and lim
E/EP →0

g2(E/EP ) = 1. (1)

On a general spherical symmetric metric such functions come into play in the following manner

ds2 = −N2(r)
dt2

g2
1(E/EP )

+ dr2

g2
2(E/EP )(1 − b(r)

r
)

+ r2

g2
2(E/EP )

(
dθ2 + sin2 θ dφ2), (2)

where N(r) is the lapse function, b(r) is denoted as the shape function and EP is the Planck
energy. The purpose of this paper is to approach one of the aspects of Wheeler’s ideas, namely
“charge without charge”. In particular, we will investigate if quantum fluctuations of the gravi-
tational field can be considered as a source for the electric/magnetic charge. Note that a similar
approach to realize “charge without charge” has been described in Ref. [7]. However due to UV
divergences a regularization/renormalization was used to obtain finite results and if a renormal-
ization group like equation has been used, the final result would depend on the renormalization
point scale μ0. Here the renormalization point is fixed at the Planck scale due the Rainbow’s
functions. It is clear that, if an electric/magnetic charge can be generated, this information is
encoded in the Einstein’s field equations. These equations are simply summarized by

Rμν − 1

2
gμνR = κTμν, (3)

where

Tμν = 1
[
Fμγ Fγ

ν − 1
gμνFγ δF

γ δ

]
(4)
4π 4
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is the energy–momentum tensor of the electromagnetic field, Fμν = ∂μAν − ∂νAμ, κ = 8πG,
with G the Newton’s constant and here we have neglected the contribution of the cosmological
constant Λc. The electromagnetic field strength tensor Fμν can be computed with the help of the
electromagnetic potential Aμ which, in the case of a pure electric field assumes the form Aμ =
(Qe/r,0,0,0) while in the case of pure magnetic field, the form is Aμ = (0,0,0,−Qm cos θ).
Qe and Qm are the electric and magnetic charge respectively. It is interesting to note that Qe

and Qm contribute in the same way to the electromagnetic Hamiltonian density. Indeed, for the
electric charge, the on-shell contribution of Tαβuαuβ is

Tμνu
μuν = 1

8π
(F01)

2 = 1

8π

Q2
e

r4
= ρe, (5)

and when we consider the magnetic charge, we get

Tμνu
μuν = 1

8π
(F23)

2 = 1

8π

Q2
m

r4
= ρm. (6)

uμ is a time-like unit vector such that u · u = −1. However, while the electric charge exists, for
the magnetic charge or magnetic monopole, there is no experimental evidence for its existence.1

The magnetic monopole search has a long history in theoretical physics: predicted by Paul Dirac
in 1931, he showed that QED allows the existence of point-like magnetic monopole with charge

Qm = 2π

Qe

(7)

or an integer multiple of it [10]. Subsequently this prediction was also confirmed by Gerard
’t Hooft and Alexander Polyakov who showed that magnetic monopoles are predicted by all
Grand Unified Theories (GUTs) [11]. Although monopoles of grand unified theories would have
masses typically of the order of the unification scale (m ∼ 1016 GeV) but generally there are no
tight theoretical constraints on the mass of a monopole. For this reason, the reference value of
our calculation will be that of the electric charge. It is important to remark that in a system of
units in which h̄ = c = k = 1, that will be used throughout the paper2

e2 = 1

137
. (9)

The rest of the paper is organized in the following manner. In Section 2 we introduce the charge
operator, in Section 3 we introduce the charge operator in presence of Gravity’s Rainbow spec-
ified to the Schwarzschild and to the de Sitter metric, in Section 4 we will apply the charge
operator to the magnetic monopole case and in Section 5 we will summarize and conclude.

2. The charge operator

To build the charge operator, we have to recognize the gravitational field as a fundamental
field and see what implications we have on Qe and Qm. For example, in Ref. [12], the rôle of Qe

1 Recently, it has been discovered that spin ices, frustrated magnetic systems, have effective quasiparticle excitations
with magnetic charges very close to magnetic monopoles [9].

2 For example, in SI units

e2

4πh̄cε0
= 1

137
. (8)
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and Qm has been played by a cosmological constant interpreted as an eigenvalue of an associated
Sturm–Liouville problem. To do this, we have introduced the Wheeler–DeWitt equation (WDW)
[13] by rearranging the Einstein’s field equations, to get:

HΛ = (2κ)Gijklπ
ijπkl −

√
g

2κ

( 3R − 2Λc

) = 0, (10)

for the sourceless case and in presence of a cosmological term.

HQ = (2κ)Gijklπ
ijπkl −

√
g

2κ

( 3R −HM

) = 0, (11)

with a matter term and in absence of a cosmological constant. Note the formal similarity between
Eqs. (10) and (11). Gijkl is the supermetric defined as

Gijkl = 1

2
√

g
(gikgjl + gilgjk − gij gkl) (12)

and 3R is the scalar curvature in three dimensions. πij is called the supermomentum. This is the
time–time component of the Einstein’s field equations. It represents the invariance under time
reparametrization and it works as a constraint at the classical level. Fixing our attention on the
constraint (11), the explicit form of HM is easily obtained with the help of Eqs. (5) and (6),
where one finds

HM = 2κTαβuαuβ = κ

4π

Q2
e + Q2

m

r4
. (13)

Thus, the classical constraint HQ becomes

HQ = (2κ)Gijklπ
ijπkl −

√
g

2κ

(
3R − κ

4π

Q2
e + Q2

m

r4

)
= 0. (14)

For a spherically symmetric metric described by (2) with g1(E/EP ) = g2(E/EP ) = 1, it is easy
to recognize that the classical constraint reduces to

3R = 2G
Q2

e + Q2
m

r4
�⇒ b′(r) = G

Q2
e + Q2

m

r2
, (15)

whose solution represents the Reissner–Nordström (RN) metric if

N2(r) =
[

1 − b(r)

r

]−1

(16)

and

b(r) = 2MG − G(Q2
e + Q2

m)

r
. (17)

On the other hand, changing the point of view, one could fix the background to see if there are
other combinations solving the classical constraint (15). For example, if one fixes the background
metric to be the Schwarzschild metric, one finds that the only solution compatible with the clas-
sical constraint is the trivial solution Qe = Qm = 0. The same situation happens for the de Sitter
(dS) and Anti-de Sitter (AdS) metric. Things can change if we consider quantum fluctuations of
the gravitational field. Indeed, these can be a source of nontrivial solutions as shown in Ref. [7].
To this purpose, we promote HQ to be an operator and the WDW equation in the presence of an
electromagnetic field becomes
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HQΨ =
[
(2κ)Gijklπ

ijπkl −
√

g

2κ

(
3R − κ

4π

Q2
e + Q2

m

r4

)]
Ψ = 0. (18)

The WDW equation can be cast into the form

Q̂ΣΨ [gij ] = −
√

g

8πr4

(
Q2

e + Q2
m

)
Ψ [gij ], (19)

where

Q̂Σ = (2κ)Gijklπ
ijπkl −

√
g

2κ

3R (20)

is the charge operator. Now we see that this equation formally looks like an eigenvalue equation.
To further proceed, we multiply Eq. (19) by Ψ ∗[gij ] and we functionally integrate over the three
spatial metric gij , to obtain∫

D[gij ]Ψ ∗[gij ]Q̂ΣΨ [gij ] = − 1

8π

∫
D[gij ]Ψ ∗[gij ]

(√
g

Q2
e + Q2

m

r4

)
Ψ [gij ]. (21)

Finally one can formally re-write the WDW equation as

〈Ψ | ∫
Σ

d3xQ̂Σ |Ψ 〉
〈Ψ |Ψ 〉 = −Q2

e + Q2
m

8π

〈Ψ | ∫
Σ

d3x(
√

g/r4)|Ψ 〉
〈Ψ |Ψ 〉 , (22)

where we have integrated over the hypersurface Σ . The l.h.s. of Eq. (22) can be interpreted as
an expectation value and the r.h.s. can be regarded as the associated eigenvalue with a weight. In
principle, one should expand in perturbations even the determinant to one loop. This means that

〈Ψ | ∫
Σ

d3xQ̂Σ |Ψ 〉
〈Ψ |Ψ 〉 = −Q2

e + Q2
m

8π

〈Ψ | ∫
Σ

d3x
√

g(0)+√
g(1)+√

g(2)+...+√
g(n)

r4 |Ψ 〉
〈Ψ |Ψ 〉 , (23)

where
√

g(n) is the order of the approximation. However one may also adopt an alternative ap-
proach, where one fixes the background on the l.h.s. of Eq. (22) and consequently let the quantum
fluctuations evolve, and then one verifies what kind of solutions one can extract from the r.h.s.
in a recursive way. Therefore the first step begins with the r.h.s. of Eq. (22) which further can be
reduced to

〈Ψ | ∫
Σ

d3xQ̂Σ |Ψ 〉
〈Ψ |Ψ 〉 = −Q2

e + Q2
m

8π

∫
Σ

d3x

√
g(0)

r4
. (24)

If Eq. (24) gives the desired nontrivial eigenvalues at zero order, it means that an electric or
magnetic charge (or both) has been created. This means that after the charge creation, the correct
background will be represented by a Reissner–Nordström metric. This also means that Eq. (24)
cannot be used anymore. In the next section we will discuss some subtleties arising in dealing
with quantum fluctuations of the determinant of the r.h.s. of Eq. (22). If we consider Q2

e(Q
2
m)

as eigenvalues of the Sturm–Liouville problem for some fixed background, we unavoidably find
that the one loop calculation is plagued by UV divergences. Therefore a regularization/renormal-
ization scheme is needed to remove the divergences [7]. Nevertheless, the purpose of this paper
is to propose a procedure to avoid such a scheme: the computation of Q2

e(Q
2
m) in presence of

Gravity’s Rainbow which introduces only one scale, the Planck scale EP .
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3. The charge operator in presence of Gravity’s Rainbow

To compute the electric/magnetic charge in Gravity’s Rainbow, we begin with the line ele-
ment (2). The form of the background is such that the shift function

Ni = −Nui = g4i
0 = 0 (25)

vanishes, while N is the previously defined lapse function. Thus the definition of Kij implies

Kij = − ġij

2N
= g1(E)

g2
2(E)

K̃ij , (26)

where the dot denotes differentiation with respect to the time t and the tilde indicates the quan-
tity computed in absence of Rainbow’s functions g1(E) and g2(E). For simplicity, we have set
EP = 1 in g1(E/EP ) and g2(E/EP ) but later we will bring it back for relative comparison. The
trace of the extrinsic curvature, therefore becomes

K = gijKij = g1(E)K̃ (27)

and the momentum πij conjugate to the three-metric gij of Σ is

πij =
√

g

2κ

(
Kgij − Kij

) = g1(E)

g2(E)
π̃ ij . (28)

Recalling that uμ = (−N,0,0,0), in presence of Gravity’s Rainbow we have the following mod-
ification

uμ = ũμ

g1(E)
�⇒ uμ = g1(E)ũμ (29)

which is useful to compute the distorted electromagnetic energy–momentum tensor. Indeed, from
Eqs. (5) and (6), we find

Tμνu
μuν = g2

2(E)g̃11

8π
(F̃01)

2ũμũνg2
1(E) = 1

8π

Q2
e

r4
g2

1(E)g2
2(E), (30)

for the electric charge, while when we consider the magnetic charge, we get

Tμνu
μuν = g̃00

8πg2
1(E)

(F̃23)
2ũμũν g̃22g̃33g2

1(E)g4
2(E) = 1

8π

Q2
m

r4
g4

2(E). (31)

Since the scalar curvature R has the following property

R = gijRij = g2
2(E)R̃, (32)

we find that the WDW equation becomes

HΨ =
[
(2κ)

g2
1(E)

g3
2(E)

G̃ijkl π̃
ij π̃ kl−

√
g̃

2κg2(E)

(
R̃ − κ

4πr4
Q2

eg1;mg2

)]
Ψ = 0, (33)

where we have defined

Q2
eg1;mg2

= Q2
eg

2
1(E) + Q2

mg2
2(E) (34)

and where
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Gijkl = 1

2
√

g
(gikgjl + gilgjk − gij gkl) = G̃ijkl

g2(E)
. (35)

By repeating the same steps that have led to Eq. (22), we find

〈Ψ | ∫
Σ

d3x Q̂Σ |Ψ 〉
〈Ψ |Ψ 〉 = − 1

8π

g2
1(E)

g2(E)

〈Ψ | ∫
Σ

d3x(Q2
eg1;mg2

√
g̃/r4)|Ψ 〉

〈Ψ |Ψ 〉 , (36)

where we have defined the distorted charge operator

Q̂Σ = 2κ
g2

1(E)

g3
2(E)

G̃ijkl π̃ ij π̃ kl−
√

g̃

2κg2(E)
R̃. (37)

Since Eq. (36) as well as Eq. (22) cannot be solved exactly, we adopt a variational procedure
with trial wave functionals of the Gaussian type. To further proceed, we fix a background metric
ḡij and we consider quantum fluctuation around the background of the form gij = ḡij + hij .
Following the procedure in Ref. [5], we canonically separate the degrees of freedom and since
only the transverse traceless (TT) tensor contribution becomes relevant, we find

Q̂Σ = 1

4

∫
Σ

d3x

√˜̄g G̃ijkl

[
2κ

g2
1(E)

g3
2(E)

K̃−1⊥(x, x)ijkl + 1

2κg2(E)

{
�̃m

LK̃⊥(x, x)
}
ijkl

]
, (38)

where we have functionally integrated over Gaussian trial wave functionals. �̃m
L represents the

modified Lichnerowicz operator whose expression is(
�̂m

Lh⊥)
ij

= (
�Lh⊥)

ij
− 4Rk

i h
⊥
kj + 3Rh⊥

ij . (39)

Now when we consider the eigenvalue equation(
�̂m

Lh⊥)
ij

= E2h⊥
ij (40)

we find(
�̃m

L h̃⊥)
ij

= E2

g2
2(E)

h̃⊥
ij (41)

and the propagator K⊥(x, y)iakl can be represented as

K⊥(�x, �y)iakl = K̃⊥(�x, �y)iakl =
∑
τ

h̃
(τ )⊥
ia (�x)h̃

(τ)⊥
kl (�y)

2λ(τ)g4
2(E)

(42)

where h̃
(τ )⊥
ia (�x) are the eigenfunctions of �̃m

L . τ denotes a complete set of indices and λ(τ) are a
set of variational parameters to be determined by the minimization of Eq. (38). The expectation
value of Q̂⊥

Σ is obtained by plugging the propagator in Eq. (38) and minimizing with respect to
the variational function λ(τ). Therefore the one-loop charge in Gravity’s Rainbow for the TT
tensors is

QΣ = −1

2

∑
τ

g1(E)g2(E)
[√

E2
1(τ ) +

√
E2

2(τ )
]
, (43)

where
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QΣ = 1

8π

g2
1(E)

g2(E)

∫
Σ

d3x

√
3g̃

Q2
eg1;mg2

r4
. (44)

It is important to remark that if we had considered quantum fluctuations of the r.h.s. of Eq. (22),
then the r.h.s. of Eq. (41) would have been modified with the introduction of the charge term
which is possible only when Eq. (24) is solved. The expression in Eq. (43) makes sense when
E2

i (τ ) > 0, where E2
i are the eigenvalues of �̃m

L . Using the WKB approximation as used by ’t
Hooft in the brick wall problem we can evaluate Eq. (43) explicitly. Extracting the energy density,
we can write

1

2

g2
1(E)

g2(E)

Q2
eg1;mg2

r4
= − 1

3π2

2∑
i=1

∞∫
E∗

Eig1(E)g2(E)
d

dEi

[
E2

i

g2
2(E)

− m2
i (r)

] 3
2

dEi, (45)

where E∗ is the value which annihilates the argument of the root and where we have defined two
r-dependent effective masses m2

1(r) and m2
2(r)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m2
1(r) = 6

r2

(
1 − b(r)

r

)
+ 3

2r2
b′(r) − 3

2r3
b(r)

m2
2(r) = 6

r2

(
1 − b(r)

r

)
+ 1

2r2
b′(r) + 3

2r3
b(r)

(
r ≡ r(x)

)
. (46)

We have hitherto used a generic form of the background. We now fix the attention on some
backgrounds which have the following property

m2
0(r) = m2

2(r) = −m2
1(r), ∀r ∈ (rt , r1). (47)

For example, the Schwarzschild background represented by the choice b(r) = rt = 2MG satis-
fies the property (47) in the range r ∈ [rt ,5rt /4]. Similar backgrounds are the Schwarzschild–de
Sitter and Schwarzschild–Anti-de Sitter. On the other hand, other backgrounds, like dS, AdS and
Minkowski have the property

m2
0(r) = m2

2(r) = m2
1(r), ∀r ∈ (rt ,∞). (48)

3.1. The Schwarzschild case

Before going on, we examine the classical constraint for the Schwarzschild metric. From
Eq. (33), the condition H = 0 reduces to

R̃ − κ
Q2

eg1;mg2

4πr4
= 0 �⇒ Q2

e

r4
g2

1(E) + Q2
m

r4
g2

2(E) = 0, (49)

leading to the only trivial classical solution Qe = Qm = 0. Note that even in Minkowski space,
we have a trivial solution with vanishing charges. This situation persists even at the quantum
level, because there is no parameter which fixes the scale like the Schwarzschild mass can do.
To further proceed, we observe that the Schwarzschild background satisfies condition (47) and
Eq. (45) becomes

1 g2
1(E/EP ) Q2

eg1;mg2

4
= − 1

2
(I+ + I−), (50)
2 g2(E/EP ) r 3π
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where

I+ = 3

∞∫
0

E2g1(E/EP )

√
E2

g2
2(E/EP )

+ m2
0(r)

d

dE

(
E

g2(E/EP )

)
dE (51)

and

I− = 3

∞∫
E∗

E2g1(E/EP )

√
E2

g2
2(E/EP )

− m2
0(r)

d

dE

(
E

g2(E/EP )

)
dE. (52)

For convenience we have reintroduced the Planck energy scale Ep in Eqs. (51) and (52). It is
clear that the final result is strongly dependent on the choices we can do about g1(E/EP ) and
g2(E/EP ). Nevertheless, some classes of functions cannot be considered because they do not
lead to a finite result. For example, fixing

g1(E/EP ) = 1 − η(E/EP )n and g2(E/EP ) = 1, (53)

with η a dimensionless parameter and n an integer [8], Eq. (50) does not lead to a finite result and
therefore will be discarded. Other examples that we have to discard without involving a specific
form of g1(E/EP ) and g2(E/EP ) are:

g2(E/EP ) = g4
1(E/EP ), (54)

g2(E/EP ) = g−2
1 (E/EP ) (55)

and

g−2
2 (E/EP ) = g1(E/EP ). (56)

When we adopt the choice (54), the electric charge becomes independent on the Rainbow’s
functions and Eq. (50) becomes

1

2r4

(
Q2

e + Q2
mg6

1(E/EP )
) = − 1

3π2
(I+ + I−). (57)

In order to have real results, the argument of the square root in I− must be positive for E � EP

and this happens when g1(E/EP ) is of the form

g1(E/EP ) = 4
√

1 + E/EP (58)

leading to a divergent result. The same situation happens for choice (55) where the magnetic
charge becomes independent on the Rainbow’s functions

1

2r4

(
Q2

eg
6
1(E/EP ) + Q2

m

) = − 1

3π2
(I+ + I−). (59)

To have real results for E � EP we have to impose

g1(E/EP ) = (1 + E/EP )−
1
2 (60)

but also in this case I+ and I− diverge. Finally for the choice (56) we find that the integrals I+ and
I− in Eq. (50) become finite but with a negative sign in front of the r.h.s. of Eq. (50) which means
that Q2

e (Q2
m) should be everywhere negative, a result which is not compatible with observation.

Since the choices (54)–(56) do not give the desired result, we need to fix independently the form
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of g1(E/EP ) and g2(E/EP ). It is immediate to observe that g1(E/EP ) must have a shape such
that I+ and I− be convergent. Following Ref. [5], we consider

g1(E/EP ) =
(

1 + β
E

EP

)
exp

(
−α

E2

E2
P

)
g2(E/EP ) = 1 α,β ∈R. (61)

In this configuration, we know that the integrals I+ and I− are finite and the introduction of the
parameter β allows to change the sign in the one loop term. Note that the choice of the Gaussian
was dictated by a comparison with a cosmological constant computation in the framework of
Noncommutative theory [14]. By defining

x =
√

m2
0(r)

E2
P

(62)

and following the same steps of Ref. [5], one finds

Q2
eg

4
1(E/EP ) + Q2

mg2
1(E/EP )

2E4
P r4

= − 1

2π2
f (α,β;x), (63)

where

f (α,β;x) =
[
x2

α
cosh

(
αx2

2

)
K1

(
αx2

2

)
+ β

(
3x

2α2
− x2√π

α
3
2

sinh
(
αx2) + 3

√
π

2α
5
2

cosh
(
αx2)

+
√

π

2α
3
2

(
x2 − 3

2α

)
eαx2

erf(
√

αx)

)]
(64)

and where K1(x) is the Bessel function of the first kind and erf(x) is the error function. For the
Schwarzschild background, Eq. (62) becomes

x =
√

m2
0(r)

E2
P

=

⎧⎪⎨⎪⎩
√

3MG

r3E2
P

r > 2MG√
3

8(MG)2E2
P

r = 2MG

(65)

and its behavior is

x →
{

∞ when M → 0 for r = 2MG,

0 when M → 0 for r > 2MG,
(66)

while

x →
{

0 when M → ∞ for r = 2MG,

∞ when M → ∞ for r > 2MG.
(67)

The behavior in Eq. (67) will be discarded, because it does not represent a physical realization.
Therefore, we fix our attention on Eq. (66). For large x, the r.h.s. of Eq. (63) becomes:

g2
1(E/EP )Q2

eg1;mg2

2E4
P r4

� − (2βα3/2 + √
πα2)x

4π2α7/2
− 8βα5/2 + 3

√
πα3

16π2α11/2x

+ 3 16βα7/2 + 5
√

πα4

+ O
(
x−4), (68)
128π2 α15/2x3
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while for small x we obtain

g2
1(E/EP )Q2

eg1;mg2

2E4
P r4

� −4α5/2 + 3
√

πβα2

4π2α9/2
− (2

√
αγ + 2

√
α ln( x2

4 α
√

e ) − 2
√

πβ)x4

16π2
√

α

− 2β

15π2
x5 + O

(
x7), (69)

where γ is the Euler’s constant. To keep the procedure as general as possible, in Eq. (63) we
have kept the combination between the electric and magnetic charge coming from the energy–
momentum tensor expressed in Eq. (34). It is also interesting to note that every choice we can
do on the function g1(E/EP ) satisfying the assumption (61), the magnetic monopole is less
suppressed in the trans-Planckian region with respect to the electric charge. This could confirm
that the magnetic monopole is a problem related to the very early universe. On the other hand,
when we are on the cis-Planckian region, the electric charge and the magnetic monopole are not
suppressed by the Rainbow’s functions and behave in the same way. For this reason, we can first
study the electric charge setting Q2

m = 0. It is straightforward to see that if we fix

β = −
√

απ

2
, (70)

then the linear divergent term of the asymptotic expansion (68) disappears and Eq. (63) vanishes
for large x, namely when r = rt = 2MG and M → 0. Therefore on the throat rt one gets

Q2
e(α,β, rt ) = − r4

t E4
P

π2
f

(
α,−

√
απ

2
; 3

2r2
t E2

P

)
. (71)

By imposing that,

Q2
e(α,β, r̄t ) = 1

137
= 0.73 × 10−2, (72)

then we find

r̄t = 0.295/EP , (73)

where we have fixed α = 1/4. The situation is not much different if we choose

β = −4

3

√
α

π
. (74)

Indeed, Eq. (63) becomes

Q2
e(α,β, rt ) = − r4

t E4
P

π2
f

(
α,−4

3

√
α

π
; 3

2r2
t E2

P

)
(75)

and fixing again Q2
e like in Eq. (72), one finds

r̄t = 0.571/EP . (76)

Both the solution require a sub-Planckian throat. It is clear that the comparison of the fine struc-
ture constant 1/137 with Q2

m is not possible. However later we will discuss how the charge
operator QΣ can give information about the magnetic monopole. If we move to the region where
5rt /4 > r > rt , we introduce a dependence on the radius r , which can be eliminated with the
computation of



R. Garattini, B. Majumder / Nuclear Physics B 883 (2014) 598–614 609
dQ2
e

dr
= 0. (77)

However when we choose the parametrization (70), the solution of Eq. (77) is imaginary and
therefore will be discarded. On the other hand, when we choose parametrization (74), we find
that the expression (69) reduces to

Q2
e = − 1

4π2
ln

(
3MG

4r3E2
P

αeγ+11/6
)

(3MG)2

r2
+ O

(
(2MG)5/2) (78)

and the computation of Eq. (77) in this case leads to the following relationship

r̄3 = 3rtα

8E2
P

exp

(
γ + 10

3

)
. (79)

Since r ∈ [rt ,5rt /4], this implies that

r ∈
[√

3α

8E2
P

exp

(
γ + 10

3

)
,

5

4

√
3α

8E2
P

exp

(
γ + 10

3

)]
, (80)

then we find the following bound

2.9638 × 10−2 = 3
8
3

64π2
�Q2

e(α, r̄) � 3
8
3

64π2
3

√(
5

4

)4

= 3.9908 × 10−2. (81)

3.2. The de Sitter (Anti-de Sitter) case

Even in this case, we examine the classical constraint for the dS and AdS metric, respectively.
For the AdS metric it is immediate to verify that the condition H = 0 reduces to

R̃ − κ
Q2

eg1;mg2

4πr4
= 0 �⇒ G

(
Q2

e

r4
g2

1(E) + Q2
m

r4
g2

2(E)

)
= −ΛAdS, (82)

which is never satisfied, while for the dS metric, we find

R̃ − κ
Q2

eg1;mg2

4πr4
= 0 �⇒ G

(
Q2

e

r4
g2

1(E) + Q2
m

r4
g2

2(E)

)
= ΛdS. (83)

Moreover, if we fix the radius to the value r = √
3/ΛdS, we find

GΛdS
(
Q2

eg
2
1(E) + Q2

mg2
2(E)

) = 9, (84)

which fixes the values of Qe , Qm and ΛdS to values incompatible with observation. However,
things can be different from the quantum point of view. Since in the dS and AdS cases, the
condition (48) holds, Eq. (45) becomes

1

2

g2
1(E/EP )

g2(E/EP )

Q2
eg1;mg2

r4
= − 2

3π2
I−, (85)

where I− is given by Eq. (52). Choosing the Rainbow’s functions like in the Schwarzschild case,
one finds

g2
1(E/EP )Q2

eg1;mg2

4 4
= − β

5 3

(
3 + 2αx2)e−αx2 − x2

2απ2
e− αx2

2 K1

(
αx2

2

)
, (86)
2EP r 4α 2 π 2
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where x is expressed by Eq. (62), but with a different m2
0(r). Indeed, we have

x =
√

m2
0(r)

E2
P

= 1

EP r

{ √
6 − ΛdSr2 de Sitter b(r) = ΛdSr

3/3√
6 + ΛAdSr2 Anti-de Sitter b(r) = −ΛAdSr

3/3
. (87)

We can gain more information by evaluating the r.h.s. of Eq. (86) for small and large x. For
large x, one gets

g2
1(E/EP )Q2

eg1;mg2

2E4
P r4

� e−αx2
[
− β

2π3/2α3/2
x2 − 1

2π3/2α3/2
x − 3β

4π3/2α5/2

− 3

8π3/2α5/2

1

x
+ 15

64π3/2α7/2

1

x3
+ O

(
x−5)], (88)

while for small x, we get

g2
1(E/EP )Q2

eg1;mg2

2E4
P r4

� − (4
√

α + 3β
√

π )

4π2α5/2
+ (2

√
α + β

√
π )

4π2α3/2
x2

− [√α ln( x2α
4

√
α ) + γ

√
α − β

√
π ]

8π2
√

α
x4 + O

(
x6). (89)

It is interesting to note that the expression is finite for every x. Beginning with the dS case, we
observe that the range of the radius r is [0,

√
3/ΛdS ] and when r → 0, x → ∞ which is vanishing

because of behavior (88). On the other hand, when r → √
6/ΛdS, x → 0. However r = √

6/ΛdS
corresponds to a region external to the dS horizon which is unphysical and therefore will be
discarded. Rather when

r =
√

3

ΛdS
�⇒ x =

√
ΛdS

EP

. (90)

Therefore keeping the same parametrization that allows a vanishing contribution for small x,
Eq. (86) becomes

Q2
e

(
α,−4

3

√
α

π
,

√
ΛdS

EP

)
= 9E4

P

Λ2
dS

[
2

3α2π2

(
3 + 2αΛdS

E2
P

)
exp

(
−αΛdS

E2
P

)
− ΛdS

απ2E2
P

exp

(
−αΛdS

2E2
P

)
K1

(
α

ΛdS

2E2
P

)]
, (91)

where we have excluded the trans-Planckian region which suppresses the charge contribution.
By imposing that

Q2
e

(
1

4
,− 2

3
√

π
,

√
Λ̄dS

EP

)
= 1

137
, (92)

we find that

Λ̄dS � 16E2
P (93)

and the corresponding “Cosmological radius” becomes

r̄
Qe

Λ =
√

3

Λ̄
= 0.43301

E
. (94)
dS P
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Concerning the AdS case, we observe that since r ∈ [0,+∞), when

r → +∞ → x =
√

ΛAdS

EP

. (95)

and Q2
e(1/4,−2/(3

√
π),

√
ΛAdS/EP ) → ∞ and therefore will be discarded.

4. Magnetic monopoles

As introduced in Section 2, our calculation applies also to magnetic monopoles. However,
since we have no experimental evidence in high energy physics, we need to use the Dirac pro-
posal between the magnetic monopole and the electric charge described by the relationship (7)
to fix numbers. Therefore, it is immediate to see that

Qm = 2π

Qe

= 73.543 �⇒ Q2
m = 5408.6. (96)

Since the value of Q2
m is quite large, for the Schwarzschild metric we can use parametrization

(70) which keeps under control large values of x, while the parametrization (74) will be dis-
carded. Setting

− r4
t E4

P

π2
f

(
1

4
,−

√
π

4
; 3

2r2
t E2

P

)
= 5408.6, (97)

we find

r̄M
t = 6.6

EP

. (98)

Note that when we compare r̄
Qm
t with r̄

Qe
t , we find

r̄
Qm
t

r̄
Qe
t

= 6.6

0.295
= 22.373. (99)

On the other hand, if we use the dS metric, we find

Q2
m

(
1

4
,− 2

3
√

π
,

√
Λ̄dS

EP

)
= 5408.6, (100)

which implies

Λ̄dS � 0.024E2
P (101)

and the corresponding “Cosmological radius” becomes

r̄
Qm

Λ =
√

3

Λ̄dS
= 11.18

EP

. (102)

Once again, when we compare r̄
Qm

Λ with r̄
Qe

Λ we find

r̄
Qm

Λ

r̄
Qe

Λ

= 11.18

0.43301
= 25.819. (103)
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5. Conclusions

In this paper we have explored the possibility that quantum fluctuations of the gravitational
field be considered as a source for the electric/magnetic charge. The idea is not new, because it
has its origin in the Wheeler’s proposal of “charge without charge” and “mass without mass”
arising from the spacetime foam picture [2]. Moreover, a first approach has been proposed by
one of us in Ref. [7]. What is new in this paper is that the UV divergences are kept under con-
trol by Gravity’s Rainbow which is a distortion of spacetime activating at the Planck’s scale. This
distortion avoids the introduction of any regularization/renormalization process, like in Noncom-
mutative theory approaches [14]. Note that the Rainbow’s functions g1(E/EP ) and g2(E/EP )

are constrained only by the low energy limit (1) and by the request that the one loop integrals
be UV finite [5,6,15,16]. It is interesting to note that differently from the approach of Ref. [7],
here there is not a renormalization scale μ0 which is free to be fixed depending on the prob-
lem under consideration. In this approach, μ0 = EP since the beginning. Moreover, as shown in
Section 3.1, not every choice of g1(E/EP ) and g2(E/EP ) is possible, otherwise the final result
could be unphysical. The choice adopted in this paper has been borrowed by the result obtained
on the estimation of the cosmological constant made in Ref. [5]. Of course we have not exhausted
all the possible choices, but if one takes seriously the method of Refs. [5,6], an agreement also
with the procedure of the present paper must be found. Indeed, in discussing an inflationary sce-
nario governed by Gravity’s Rainbow [17], it appears that a different proposal has been chosen.
Nevertheless, the functions g1(E/EP ) and g2(E/EP ) in Ref. [17], are present under the form
of a ratio and therefore a major freedom on their choice can be introduced. It is important to
note that the electric and magnetic charges appear as a quantum effect of the gravitational field.
Indeed, the classical contribution related to the specific geometries hitherto examined leads to
Qe = Qm = 0. It is also important to remark that once the charge has been created, the only
correct metric that can be used to discuss the solutions of Eq. (22) is the Reissner–Nordström
metric. Three basic geometries have been examined. One of these, the AdS background leads to
inconsistent solutions and therefore has been discarded. On the other hand, the Schwarzschild
and the dS background show that the computed particle radius of the electron is of the Planck-
ian order. This has been obtained by fixing the value of the electric charge to the fine structure
constant that, in the units we have adopted, is coincident with the square of the electron charge.
As regards the magnetic monopole, since no direct observation at very high energies has ever
been announced, we have used the Dirac quantization rule to obtain information about the mag-
netic charge and therefore recover its own particle radius. It is interesting to note that the ratio
between the magnetic monopole radius and the electron radius rQm/rQe is of the same order
for both the Schwarzschild and the de Sitter background. It is also interesting to observe that the
appearance of the electric charge and the magnetic monopole as a quantum gravitational effect in
the cis-Planckian region is not affected by the Rainbow’s functions at the classical level, namely
the l.h.s. of Eqs. (50), (85) as it should be. However in the trans-Planckian region an asymme-
try is present between the electric charge and the magnetic charge. Indeed, the electric charge
is suppressed by a factor of g4

1(E/EP ), while the magnetic monopole is suppressed by a factor
g2

1(E/EP ). I draw the reader’s attention on the property that g1(E/EP ) → 0 when E/EP → ∞.
Therefore, from the Gravity’s Rainbow point of view, it seems that the magnetic monopole in the
trans-Planckian region can survive more compared to the electric charge, or in other terms the
quantum gravitational fluctuations begin to produce a magnetic monopole and when the energy
decreases even the electric charge begins to be produced. Recently another result relating Gravi-
ty’s Rainbow and its influence on topology change has been obtained [18]. This seems to suggest
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that Gravity’s Rainbow can be considered as a good tool for probing the spacetime foam picture
suggested by Wheeler.

Appendix A. The electromagnetic energy–momentum tensor in SI units

The electromagnetic energy–momentum tensor in free space and in SI units is defined as

Tμν = 1

μ0

[
Fμγ Fγ

ν − 1

4
gμνFγ δF

γ δ

]
, (A.1)

where μ0 is the vacuum permeability, Fμν = ∂μAν − ∂νAμ is the electromagnetic field strength
tensor. For a pure electric field, the electromagnetic potential Aμ assumes the form

Aμ =
(

Qe

4πε0rc
,0,0,0

)
�⇒ Fμν = F01 = − Qe

4πε0r2c
, (A.2)

where ε0 is the vacuum permittivity, c is the speed of light and Qe is the electric charge. On the
other hand, for the pure magnetic field, the form is

Aμ =
(

0,0,0,−μ0
Qm

4π
cos θ

)
�⇒ Fμν = F23 = μ0

Qm

4π
sin θ, (A.3)

where Qm is the magnetic charge measured in Ampère·meter (A m). Thus the T00 component of
the energy–momentum tensor for the electromagnetic charges becomes

T00 = 1

μ0

{
1

2
g11(F01)

2 − 1

2
g00

(
g22g33)(F23)

2
}

= 1

2μ0(4πr2)2

{
g11 Q2

e

ε2
0c2

− g00μ
2
0Q

2
m

}
= 1

2(4πr2)2

{
g11 Q2

e

ε0
− g00μ0Q

2
m

}
, (A.4)

where we have used the following relationship c2ε0μ0 = 1. With the help of the time-like vec-
tor uμ, we obtain

Tμνu
μuν = 1

2(4πr2)2

{
Q2

e

ε0
+ μ0Q

2
m

}
. (A.5)

For a spherically symmetric metric described by (2) with g1(E/EP ) = g2(E/EP ) = 1, it is easy
to recognize that the classical constraint (11) reduces to

3R = 2κ

c4
Tαβuαuβ �⇒ b′(r) = G

4πr2c4

{
Q2

e

ε0
+ μ0Q

2
m

}
, (A.6)

whose solution represents the Reissner–Nordström metric if

N2(r) =
[

1 − b(r)

r

]−1

(A.7)

and

b(r) = 2MG

c2
− G

4πrc4

{
Q2

e

ε0
+ μ0Q

2
m

}
. (A.8)

Note that in CGS units, one defines ε0 = (4π)−1 and μ0 = 4π and the energy–momentum tensor
is in agreement with the expression in (4).
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