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An innovative method of recursive images is presented to obtain solutions to the transient diffusion
equation in a N-layered material based on the superposition of Green functions for a semi-infinite
material. Through a sequential sum of image reflected functions a temperature solution is initially built
for a structure of one layer over a substrate. These functions are chosen in order to satisfy in sequence the
boundary conditions, first at the front interface then at the back interface then again at the front interface
and so on until the magnitude of the added functions becomes negligible. Based on this so-called 1-layer
algorithm, a 2-layer algorithm is obtained. This is accomplished through a sequential application of the
1-layer algorithm first to layer 1 then to layer 2 then again to layer 1 and so on. After that it is suggested
how the sequential application of the N � 1 algorithm leads to the N-layer algorithm. This present scheme
is valid for boundary conditions of the first and second kind but it will not applicable neither to the case
where there is a contact resistance between layers or to the case of convective heat transfer at the end
interfaces.
� 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction The diffusion equation is known for its difficulty in rendering
Diffusion through multiple layers is an occurrence which has
applications in a wide range of areas of heat and mass transport
[1,2]. The partial differential equation [3,4] governing this
phenomenon and in particular that of the heat diffusion in an N
layer material, is given for each layer i in its simplest form by,

Di
@2Ti

@x2 ¼
@Ti

@t
i ¼ 1;2; . . . N ð1Þ

where t (s) is time and T (K) and D (m2/s) are the temperature and
the thermal diffusivity of a layer material respectively. The bound-
ary condition at each interface involves the continuity of both the
temperature and of the heat flow i.e.

Ti ¼ Tiþ1 ð2Þ

ji
@Ti

@x
¼ jiþ1

@Tiþ1

@x
ð3Þ

where j (W/m-K) is the thermal conductivity for a material. The
boundary condition at the front face of the first layer will depend
on the specific problem under study.
closed form analytical solutions. Nevertheless, diffusion in multi-
layer materials has been solved analytically using the method of
separation of variables,[5–8] the Laplace and Fourier transforms
[9–11] and also numerically through the method of fundamental
solutions [12] or using proprietary or commercial software pack-
ages employing finite elements, finite differences [1] or boundary
element algorithms. For a thorough account of the state of the
art in this subject one can take a look at the papers of de Monte
[5,6].

The method of separation of variables in particular, is a widely
used method even though it becomes quite involved once the
number of layers increases [13]. In this paper, we propose a con-
ceptually simple method based on the principle of superposition
whose rules are easy to apply to a multilayer material, once the
heat diffusion solution for a semi-infinite material is known
together with the thermal properties of the various layers.
2. Theory: Green functions for an interface between different
media

The Green function for a heat source Tsiðx1; tÞ whose origin is
located at x1 ¼ 0 of medium-1, whose interface with a back medi-
um is at x1 ¼ d1 (see Fig. 1) is as follows [3] (see pp. 363–364). The
total temperature function for medium-1 T1ðx1; tÞ, consists of a
sum of the temperature function Tsiðx1; tÞ with the temperature
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x thickness coordinate
d thickness of a layer (m)
t time
Tðx; tÞ temperature solution (K)
Tsiðx; tÞ semi-infinite temperature solution (K)
tb, tf ‘‘transmission’’ strengths

rb, rf ‘‘reflection’’ strengths
j thermal conductivity (W/m-K)
D thermal diffusivity (m2/s)
q density (kg/m3)
c specific heat (J/kg)
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function rbTsið2d1 � x1; tÞ, whose origin is thus symmetrically
located a distance d1 to the right of the back interface and whose
strength is rb. The total solution in medium-1 is thus (see Fig. 1),

T1ðx1; tÞ ¼ Tsiðx1; tÞ þ rbTsið2d1 � x1; tÞ ð4Þ

where the ‘‘reflection strength’’ rb is given by,

rb ¼
j1

ffiffiffiffiffiffi
Db
p

� jb
ffiffiffiffiffiffi
D1
p

j1
ffiffiffiffiffiffi
Db
p

þ jb
ffiffiffiffiffiffi
D1
p ð5Þ

One should realize that both terms in Eq. (4) satisfy the diffu-
sion equation (i.e. Eq. (1)) as can be verified for a generic function
of the form CTsiðbþ ax1; tÞ where a, b and C are constants. Upon
substituting this function in Eq. (1) one gets,

C
@Tsiðbþ ax1; tÞ

@t
¼ Ca2 D1

@2Tsiðbþ ax1; tÞ
@ðbþ ax1Þ2

ð6Þ

This statement is true if Tsiðx; tÞ is a solution of the diffusion
equation which is obviously true, and a ¼ �1 which is also true
for both terms of Eq. (4).

For the back medium, the ‘‘transmitted’’ temperature function
is given, after some manipulation of Eq. (9), Section 14.6 in Carslaw
and Jaeger [3] by

Tbðxb; tÞ ¼ tbTsi d1 þ xb

ffiffiffiffiffiffi
D1

Db

s
; t

 !
ð7Þ

where the ‘‘transmission strength’’ tb is given by,

tb ¼
2j1

ffiffiffiffiffiffi
Db
p

j1
ffiffiffiffiffiffi
Db
p

þ jb
ffiffiffiffiffiffi
D1
p ð8Þ

One realizes that Eq. (7) also verifies the diffusion equation for
the back medium as can be concluded from the discussion of
Eq. (6). Furthermore, one can verify by direct substitution that
the above solutions for T1ðx1; tÞ and Tbðxb; tÞ (i.e. Eqs. (4) and (5)
and (7) and (8)) verify the conditions for continuity of both the
temperature and heat flow at the back face, (i.e. Eqs. (2) and (3)),

T1ðx1; tÞjx1¼d1
¼ Tbðxb; tÞjxb¼0

and

j1
@T1ðx1; tÞ

@x1

����
x1¼d1

¼ jb
@Tbðxb; tÞ

@xb

����
xb¼0

ð9Þ

We remark that if the back medium is highly thermally conduc-
tive, more specifically if jb=

ffiffiffiffiffiffi
Db
p

>> j1=
ffiffiffiffiffiffi
D1
p

, then rb � �1. In that
case the temperature at the back face will be,

T1ðx1; tÞ ¼ Tsiðx1; tÞ � Tsið2d1 � x1; tÞ ) T1ðd1; tÞ ¼ 0 ð10Þ

and therefore it will not change from its initial value which is an
indication of a thermal reservoir at the back face. If, on the contrary,
the medium-2 is an highly insulating material (i.e.
jb=

ffiffiffiffiffiffi
Db
p

<< j1=
ffiffiffiffiffiffi
D1
p

) then rb � 1 and very little heat will flow
across the back interface, i.e.

T1ðx1; tÞ ¼ Tsiðx1; tÞ þ Tsið2d1 � x1; tÞ )
@T1ðx1; tÞ

@x1

����
x1¼d1

¼ 0 ð11Þ
Using the results of this section one can solve for the tem-
perature in a multilayer material through a sequential sum of
‘‘reflected’’ temperature solutions which satisfy the boundary
conditions at the reflecting interface, as will be described in the
next section.

3. Temperature solution for a layer in-between two semi-
infinite media

Going back to Fig. 1 one realizes that Eq. (4) for T1ðx1; tÞ even
though obeying the BC (Boundary Conditions) at the back interface
now fails to fulfill the BC at the front face. We thus ought to change
Eq. (4) so that the series solution for T1ðx1; tÞ obeys the front face
BC too. Of the two terms of Eq. (4) the initial function Tsiðx1; tÞ
satisfies the BC at the front face but the second term does not.
We are thus facing an analogous problem as that of the previous
section although for a different interface and temperature function.
The second term of Eq. (4) appears as a result from the first image
reflection at the back interface (i.e. Trb;1 ¼ rbTsið2d1 � x1; tÞ) and has
its source located at x1 ¼ þ2d1 as was mentioned in Section 2. Thus
its image at the front face should have its source symmetrically
located relative to the front interface and thus its source should
be positioned at x1 ¼ �2d1. Furthermore the strength of its image
should be affected by coefficient rf which takes into account the
thermal properties of medium-1 and those of the front medium.
We thus obtain the third term which will make the series satisfy
the BC at the front face (see Fig. 2),

Trf;1 ¼ rf rbTsið2d1 þ x1; tÞ ð12Þ

Analogously to Eq. (7), the first ‘‘transmitted’’ temperature func-
tion into the front medium will be given by,

Ttf;1ðxf ; tÞ ¼ tf rbTsi 2d1 þ xf

ffiffiffiffiffiffi
D1

Df

s
; t

 !
ð13Þ

One can appreciate that this adjustment process should not stop
because now the BC at the back face will again fail to be fulfilled.
Thus a fourth term should be added to the series in order to fulfill
again the BC at the back face of the slab. If one proceeds with this
method of recursive images, the series solution we are seeking will
be given by,

T1ðx1; tÞ ¼ Tsiðx1; tÞ þ
X1
i¼1

Trb;iðx1; tÞ þ
X1
i¼1

Trf ;iðx1; tÞ 0 6 x1 6 d1

ð14Þ

where Trb;iðx1; tÞ represents the successive temperature solutions
‘‘ith reflected’’ at the back face of the slab (see Fig. 2), i.e.

Trb;i ¼ ri�1
f ri

bTsið2id1 � x1; tÞ ð15Þ

while Trf ;iðx1; tÞ represents those ‘‘ith reflected’’ at the front face (see
Fig. 2),

Trf;i ¼ ri
f r

i
bTsið2id1 þ x1; tÞ ð16Þ

These terms, summed at each image reflection, are chosen in
such a way that the boundary conditions are satisfied in turn
according to the rules set out by Eqs. (4)–(8). In addition, the



Fig. 1. The temperature in two different media assuming a temperature source located in x1 = 0 of medium 1. The interface between the media is located in x1 = d (xb = 0).
Parameters rb and tb can be thought of as the ‘‘reflection’’ and ‘‘transmission’’ coefficients respectively of the temperature solution ‘‘incident’’ on the interface between the
media.

Fig. 2. A computation scheme for calculating the temperature for a sandwich structure consisting of a front semi-infinite medium, a layer medium and a backside semi-
infinite medium. All media have different thermal properties. We assume a heat source at x1 = 0 whose temperature function is Tsi(x, t) applicable inside the layer medium,
considered semi-infinite. This temperature function is assumed to be consistent with the boundary condition at the front face.
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temperature solutions for the semi-infinite media at the back and
the front faces will be given respectively by,

Tbðxb; tÞ ¼
X1
i¼1

Ttb;iðxb; tÞ xb P 0 ð17Þ

T f ðxf ; tÞ ¼
X1
i¼1

Ttf ;iðxf ; tÞ xf P 0 ð18Þ

where each term in the right member of the above equations
represents the ‘‘transmitted’’ temperature solution into the
semi-infinite media, due either to an image reflection at the
back or at the front faces as described by Eqs. (7) and (8)
(see Fig. 2), i.e.
Ttb;iðxb; tÞ ¼ tbri�1
f ri�1

b Tsi ð2i� 1Þd1 þ xb

ffiffiffiffiffiffi
D1

Db

s
; t

 !
ð19Þ
Ttf ;iðxf ; tÞ ¼ tf ri�1
f ri

bTsi 2id1 þ xf

ffiffiffiffiffiffi
D1

Df

s
; t

 !
ð20Þ

Since the diffusion equation (Eq. (1)) is a linear equation, the
temperature solution for the slab T1ðx1; tÞ (Eq. (14)) as well as
the temperature solutions for the back Tbðxb; tÞ (Eq. (17)) and for
the front semi-infinite media T fðxf ; tÞ (Eq. (18)) will all verify the
diffusion equation in their respective media because they are all
linear combinations of functions which verify Eq. (1) as pointed
out above in the discussion of Eq. (6).
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We can also verify that the proposed temperature solutions ver-
ify the BC both at the back and front faces. For the continuity of the
temperature at the back face we obtain the following equation,

T1ðx1; tÞjx1¼d1
¼ Tbðxb; tÞjxb¼0 ð21Þ

while for the continuity of the heat flow we get,

j1
@T1ðx1; tÞ

@x1

����
x1¼d1

¼ jb
@Tbðxb; tÞ

@xb

����
xb¼0

ð22Þ

Upon expanding Eq. (21) through the use of Eqs. (14) and (17) and
grouping all the terms in the left member we realize that Eq. (21) is
true, i.e.

Tsiðd1; tÞ þ Trb;1ðd1; tÞ � T tb;1ð0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ Trf ;1ðd1; tÞ þ Trb;2ðd1; tÞ � T tb;2ð0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ � � � ¼ 0 ð23Þ

In fact the first three terms are the result of the first image reflec-
tion at the back face and thus they verify the continuity of tem-
perature at the back face then the next three are the result of the
second reflection at the back face and thus they also verify the
continuity of temperature at that interface and so on. If we expand
Eq. (22) for the continuity of the heat flow and group all the term in
the left member we obtain a similar equation as Eq. (23) which, in
groups of three terms, verify the BC of continuity of heat flow at the
back face. We conclude therefore that the temperature series
solution for the slab T1ðx1; tÞ and for the semi-infinite medium at
the back face Tbðxb; tÞ verify the BC at the back face.

For the BC at the front face we proceed in a similar manner.
Accordingly, for the continuity of the temperature solution we
have,

Tsið0; tÞ þ Trb;1ð0; tÞ þ Trf ;1ð0; tÞ � Ttf ;1ð0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ Trb;2ð0; tÞ þ Trf ;2ð0; tÞ � Ttf;2ð0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ � � � ¼ Tsið0; tÞ ð24Þ

while for the continuity of the heat flow we get,1

j1
@Tsið0; tÞ
@x1

þ j1
@Trb;1ð0; tÞ

@x1
þ j1

@Trf;1ð0; tÞ
@x1

þ jf
@Ttf ;1ð0; tÞ

@xf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ � � �

¼ j1
@Tsið0; tÞ
@x1

ð25Þ

Therefore, in the case of the front face, the above continuity
conditions show that this method of recursive images assures that
the proposed solutions do not affect the BC for the front face
imposed by the initial semi-infinite solution.

Finally it should be pointed out that, from a computational per-
spective, the number of terms needed to be included in the series
of Eqs. (14), (17) and (18) depends on the time. Obviously for very
short times the number of terms needed are few because those
terms originating from multiple reflections will have a negligible
value. As time progresses however, if the series is truncated too
‘‘early’’ then the BC either at the front face or at the back face will
not be fully satisfied. Thus the number of terms needed in the
series must increase due to the propagation of heat further and
further away from the source located at x1 = 0. As the semi-infinite
diffusion equation is expressed in terms of the similarity variable
[14] (i.e. x=

ffiffiffiffiffiffiffiffi
4Dt
p

), it seems natural that for the last term of the
series of Eq. (14) this variable should attain several units.
1 Note that the positive signal for the ‘‘transmitted’’ heat flow into the front
medium is due to the direction of the xf axis (see Fig. 2).
Summing up, this method starts with an temperature solution
Tsiðx1; tÞ for Eq. (1), valid for a semi-infinite medium of constant
properties, subject to boundary conditions coinciding with those
at the front face of the slab. Then in essence, what this method
does is a kind of folding of that solution (like ‘‘origami paper’’)
according to certain rules which are set by the boundary conditions
at each of the layer interfaces. At this point we should note again
that a thermally insulated wall or a thermal reservoir are extreme
cases of the general case of an interface between two different
media.
4. Analytical solution for a layer in-between a thermal reservoir
and a semi-infinite substrate

Using the results of the previous section, we look for the
temperature solution for a layer over a semi-infinite substrate of
zero initial temperature and whose front face comes into contact
with a thermal reservoir (T = To) at time t = 0. For a semi-infinite
medium the solution satisfying the BC at the front face, found in
any textbook, is,

Tsiðx1; tÞ ¼ To erfc
x1ffiffiffiffiffiffiffiffi
4Dt
p
� �

ð26Þ

where erfc is the complementary error function. This temperature
solution is thus the first term of the temperature series solution
inside the layer T1ðx1; tÞ (see Eq. (14)). We assume that rb and tb

are respectively the ‘‘reflection’’ and ‘‘transmission’’ strengths at
the back interface given by Eqs. (5) and (8) while rf = �1 is the
‘‘reflection’’ strength at the front face. This value for rf implies that
the front medium is a thermal reservoir and thus the temperature at
the front face is kept constant and equal to To as discussed previous-
ly in Eqs. (24) and (25) relating to the BC at the front face.

Therefore the temperature series solution for the layer using
Eqs. (14)–(16) is,

T1ðx1; tÞ ¼ Tsiðx1; tÞ þ
X1
i¼1

ð�1Þi�1ri
bTsið2id1 � x1; tÞ

þ
X1
i¼1

ð�1Þiri
bTsið2id1 þ x1; tÞ 0 6 x1 6 d1 ð27Þ

while the temperature for the substrate using Eqs. (17) and (19) will
be given by,

Tbðxb; tÞ ¼
X1
i¼1

tbð�1Þi�1ri�1
b Tsi ð2i� 1Þd1 þ xb

ffiffiffiffiffiffi
D1

Db

s
; t

 !
xb P 0

ð28Þ

In Fig. 3 we show the results of the simulation of this heat con-
duction problem where a layer is placed over a substrate of lower
thermal conductivity so that the ‘‘reflection strength’’ at the back
face rb is greater than zero and equal to 0.1716 while the value
for tb is 1.1716. In the same figure are also plotted curves calculat-
ed using PDETOOL from MATLAB [15] which uses Finite Elements
to solve partial differential equations. An observation of the plot
shows the excellent agreement between results of both methods
although the number of terms used for the proposed method
was just five reflections for each interface.

The temperature solution for this particular heat diffusion prob-
lem has been given before by Carslaw and Jaeger [3] (pp. 321–322
Eqs. (16) and (17)) which deduced it using Laplace transforms.
Nevertheless we have chosen to solve this simple problem using
the proposed method because it exemplifies the way in which
the method of recursive images work. In addition it will be useful
to compare the result for one layer of Fig. 3 with subsequent results
for a number of layers over a substrate.



Fig. 3. Results of the simulation of a thermal reservoir in contact with a layer over a
substrate (Eqs. (27) and (28)). All the parameters for the slab were taken as unity
namely: thermal diffusivity j1 = 1 W/m-K, mass density q1 = 1 kg/m3, specific heat
c = 1 J/kg-K and thickness d1 = 1 m. Parameters for the substrate were the same as
the layer except its thermal conductivity which is half that of the layer.

1 Back medium
1-layer algorithm

TbT1

Tsi

Tf

Front medium

Non-conformity to Boundary Condition (BC)
Conformity to BC
Non-conformity to Boundary Condition (BC)
Conformity to BC

Semi-infinite solution not conforming to BC

Solution for a layer conforming to BC

Semi-infinite solution conforming to BC

xb0 x1 d1 0xf

LEGEND:

Fig. 4. Computation scheme to determine the temperature in a multilayer structure
consisting of 1-layer over a substrate. The light yellow arrows represent a
temperature function valid for a semi-infinite layer while the dark blue arrows
represent temperature solutions conforming to its boundary conditions. The final
temperature for each layer is determined from the sum of all of its temperature
functions associated to dark arrows. The green round dots mean conformity of the
temperature function to the boundary condition at the interface while red triangles
represent non-conformity. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this article.)
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Finally we emphasize that this method of recursive images
allows in a straightforward manner, the analytical solution for
any 1-layer diffusion problem as long as a semi-infinite solution
satisfying the front face boundary condition is known as will be
illustrated below.

5. Numerical solution for two or more layers on a substrate

5.1. A brief description of the 1-layer algorithm

Although the ideas incorporated in Eqs. (14)–(20) are analytical
in nature it is too complex to find analytical expressions, like Eqs.
(27) and (28), for cases with more than one layer. Therefore a
numerical procedure was employed whose details will be the
object of a specific paper but which works along the steps
described below. The basis of this numerical approach is that a
temperature function, instead of an analytical expression, can
alternatively be defined in tabular form by a two row matrix, one
row for x and one row for the temperature values, whose length
and spacing take into account the specifics of the problem to be
solved.

Here we explain how the so-called 1-layer algorithm allows for
the computation of the temperature solutions represented by Eqs.
(14), (17) and (18). The problem consists of a layer-1 in-between a
front and a back semi-infinite media (see Fig. 4), so that the ‘‘reflec-
tion’’ coefficients are rb and rf for the back and the front interfaces
respectively while the ‘‘transmission’’ coefficients for those same
interfaces are correspondingly tb and tf.

(a) The process starts for time t with the definition of a two-row
matrix: one row containing the x values while the other row
vector contains the corresponding values for the semi-in-
finite temperature solution (i.e. Tsi row-vector) whose
extension in length should be several times the similarity
variable i.e. xmax P 10

ffiffiffiffiffiffiffiffiffiffiffi
4D1t
p

, sufficient for the temperature
to decay to zero at the end of the row-vector. Therefore
the minimum length of the initial Tsi row-vector does not
strictly depend on the thickness of the layer, but on the
extent to which the temperature would have diffused if
medium-1 was a semi-infinite medium. The resolution of
the x row-vector is determined also by the similarity vari-
able i.e. Dx 6 0:01

ffiffiffiffiffiffiffiffiffiffiffi
4D1t
p

but should also be high enough so
that the number of points inside the layer allow for a fine
interpolation of the semi-infinite solution. This is not too cri-
tical because diffusion solutions are in general well behaved
functions except possibly for very short times in which case
the layer will behave as a semi-infinite medium and this
whole method of images will be meaningless [16,17].

(b) The first term of T1ðx1; tÞ of Eq. (14) is then a segment sliced
out from the Tsi row-vector from x P 0 to x 6 d1, and which
is set aside in a cumulative T1 row-vector to evaluate the
temperature in the layer. We remark that the interface
points x1 ¼ 0 and x1 ¼ d1, where there is a continuity of tem-
perature and of heat flow, make also part of the temperature
solutions for the front and back media respectively. An x1

row-vector is also synthesized from a duplicate of the
x values between x P 0 to x 6 d1 which together with the
cumulative T1 row-vector constitute a table which in the
final will represent the temperature in layer-1 T1ðx1; tÞ.

(c) A duplicate is made from the remaining of the Tsi row-vector
(i.e. whose xmin P d1) which after its multiplication by tb is
the first term of semi-infinite Tbðxb; tÞ (i.e. T tb;1ðxb; tÞ, see
Eqs. (17), (19) and Fig. 2). An xb row-vector is also synthe-
sized from a duplicate of the remaining x row-vector after

multiplying it by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=Db

p
(see Eq. (7)). This two row matrix,

the xb and the cumulative Tb row vectors, will in the final
constitute a table corresponding to the temperature solution
of the back medium Tbðxb; tÞ (Eq. (17)).

(d) The remaining Tsi row-vector (i.e. whose xmin P d1) is then
multiplied by rb. The first reflection at the back interface
Trb;1ðx1; tÞ (see Eqs. (14), (15) and Fig. 2), is subsequently a
segment sliced out from the Tsi row-vector between x P d1

and x 6 2d1, which is after that flipped (mirror-reflected)
and added to the cumulative T1 row-vector.

(e) A duplicate is made from the remaining of the Tsi row-vector
(i.e. whose xmin P 2d1) which after its multiplication by tf is
the first term of semi-infinite T fðxf ; tÞ (i.e. Ttf;1ðxf ; tÞ, see
Eqs. (18), (20) and Fig. 2). An xf row-vector is also synthe-
sized from a duplicate of the remaining x row-vector after



1 2 Back medium
2-layer algorithm

TsiStage 0

Stage 2

T2 TbT1Tf

Stage 1

Stage 3

Stage 4

Front medium

== == == ==

xb0 x1 d1 0xf d2x20

Fig. 5. The 2-layer algorithm based on the successive application of the 1-layer
algorithm. For an explanation of the arrows see legend of Fig. 4. The final solutions
for each region are the result of the summation of temperature functions
represented by dark blue arrows.
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multiplying it by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=Df

p
(see Eq. (13)). This two row matrix

will in the final, constitute a table representing the
temperature solution for the front medium T f ðxf ; tÞ (see
Eq. (18)).

(f) The remaining Tsi row-vector (i.e. whose xmin P 2d1) is then
multiplied by rf. The first reflection at the front interface (i.e.
Trf ;1ðx1; tÞ, see Eqs. (14), (16) and Fig. 2), is then a portion
taken out from the Tsi row-vector between x P 2d1 and
x 6 3d1 and subsequently added to the T1 cumulative
row-vector.

(g) A duplicate is made from the remaining of the Tsi row-vector
(i.e. whose xmin P 3d1) which after its multiplication by tb is
the second term of semi-infinite Tbðxb; tÞ (i.e. Ttb;2ðxb; tÞ, see
Eqs. (17), (19) and Fig. 2). This row vector is added to the
cumulative Tb row vector.

(h) The remaining Tsi row-vector (i.e. whose xmin P 3d1) is then
multiplied by rb. The second reflection at the back interface
Trb;2ðx1; tÞ (see Eqs. (14), (15) and Fig. 2), is subsequently a
segment taken out from the Tsi row-vector between
x P 3d1 and x 6 4d1, which is flipped (mirror-reflected)
and added to the cumulative T1 row-vector.

(i) A duplicate is made from the remaining of the Tsi row-vector
(i.e. whose xmin P 4d1) which after its multiplication by tf is
the second term of semi-infinite T f ðxf ; tÞ (i.e. T tf;2ðxf ; tÞ, see
Eqs. (18), (20)). This row vector is added to the Tf row vector.

(j) The remaining Tsi row-vector (i.e. whose xmin P 4d1) is then
multiplied by rf. The second reflection at the back interface
Trf ;2ðxf ; tÞ (see Eqs. (14), (16)), is subsequently a segment
sliced out from the Tsi row-vector between x P 3d1 and
x 6 4d1, which is added to the cumulative T1 row-vector.

This process then repeats from step (g) until exhaustion of the
Tsi row-vector which gets shorter upon the successive reflections.
It should be mentioned here that the numerical implementation
of this procedure was performed under MATLAB [15].

In Fig. 4 we have drawn schematically the 1-layer algorithm.
The input of the algorithm is an arbitrary function Tsi satisfying
both the diffusion equation and the boundary conditions at the
front interface of a semi-infinite media but which, therefore, does
not conform to BC at the back interface of the layer-1. The 1-layer
algorithm then works out, based on the thermal properties at play,
what should be the temperature solutions in tabular form for all
three media.
5.2. Theory and algorithm for a two layer problem

To extend this method to the case of two layers over a substrate,
one should first observe that the temperature function for the
semi-infinite back medium Tbðxb; tÞ (i.e. Eq. (17)) has the same
merits as the initial semi-infinite solution Tsiðx1; tÞ that was used
to find the temperature solutions in 1-layer algorithm.

To solve a diffusion problem for a structure of two layers over a
substrate, given the semi-infinite solution Tsiðx1; tÞ for medium-1,
we start by applying the 1-layer algorithm (see stage 1 of Fig. 5)
to a structure made of a front-medium/medium-1/medium-2.
Note that we are considering medium-2 to be semi-infinite. As a
result we obtain, in tabular form, the temperature solutions for
medium-1 (i.e. T1ðx1; tÞ) and for the semi-infinite front medium
(i.e. Tf ðxf ; tÞ) both verifying their corresponding boundary condi-
tions. We also get a temperature solution in tabular form for a
semi-infinite medium-2 which does not conform to the BC at the
interface between medium 2 and the back medium. We then reach
stage 2 of this 2-layer algorithm (see stage 2 of Fig. 5) where we
again apply the 1-layer algorithm for medium-1/medium-2/back
medium, using as the initial semi-infinite solution, the solution
obtained in stage 1 for medium-2. As a result of stage 2 the solu-
tion for medium-2 and for the semi-infinite back medium will
now conform to the BC while the solution obtained assuming a
semi-infinite medium-1 will not satisfy the BC at the interface
between medium 1 and the front medium. Thus we reach stage
3 of this algorithm. This process should go on, back and forth, until
the temperature solutions get sufficiently small to become
negligible.

Finally, the temperature solution for each layer is given by the
sum of all the temperature solutions satisfying both BC conditions
obtained at each stage of the algorithm, while the same applies to
the semi-infinite solutions for both the back and front media.

It should be emphasized that the 2-layer algorithm procedure,
in its essence, is not different from the 1-layer algorithm. In both
algorithms temperature solutions are added in sequence to satisfy
the boundary conditions at each alternate interface, and thus build
the complete solution.

An analytical implementation of the above 2-layer algorithm
although theoretically possible is not as simple as in the case of
the 1-layer algorithm. Therefore, we have opted in the present
paper for the numerical approach where the initial analytical solu-
tion Tsiðx1; tÞ, is defined as an interpolating table. The temperature
solution for each layer obtained at different stages of the algorithm
is thus a table of temperature values calculated for a set of points
along the thickness direction. This set of temperature values
obtained at different stages of the computational algorithm are
summed to obtain the final temperature in each of the regions of
interest. The details of the implementation of this algorithm will
be object of a companion paper to be submitted in a journal in
the area of computational physics.

5.3. Results for a two layer over a substrate

In Fig. 6a is shown the result of the simulation using the above
theory and computing algorithm, for a structure of two layers over
a substrate in contact with a thermal reservoir at the front layer.
Again the simulation using the present method and that obtained
using finite element modeling agree very well. The thermal con-
ductivity values used in the simulation are, in SI units (W/m-K),
1 for the first layer, 0.5 for the second layer and 0.25 for the sub-
strate. The thickness of the two layers are the same and equal to
1 m and therefore the x coordinate in the plot reflects the thickness



Fig. 6. Simulation of an heat reservoir in contact with (a) a two layer over a substrate; (b) a three layer over a substrate. In the simulation, all properties of the layers and the
substrate are the same as in Fig. 3, except the thermal conductivity of the layers and the substrate which is indicated in the plot in SI units (i.e. W/m-K). The thickness of the
layers is the same and equal to 1 m. The simulation times can be seen in the graphs.
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wise dimension of the structure. The length of the initial tabular Tsi

solution for all times was 48.2 times the thickness of the first layer.
This means that the similarity variable for t = 5 s would be 10.78 at
the end of the Tsi table so that the temperature would be nearly
zero at the end of the table for all times in this simulation. The
resolution used was such that there would be 1000 points for the
first layer.
5.4. Three layers and more

To extend this method for a three layer over a substrate one has
first to apply the previous 2-layer algorithm of Fig. 5. This is stage 1
in Fig. 7. Then, using the semi-infinite solution for layer 3 apply the
1-layer algorithm (stage 2 in Fig. 7). After that, in stage 3, apply the
2-layer algorithm again and so on. In Fig. 6b is shown the result of
the simulation of three layers over a substrate with a thermal
reservoir in contact with the front layer. Again the agreement
between the method of recursive images and the FEM simulation
is excellent. Both the length of the initial solution Tsi and its resolu-
tion were the same as in the simulation of Fig. 6a.

It is now clear the way in which the Nth order algorithm can be
constructed from the (N � 1)th order algorithm. For example, for
the case of a material with four layers over a substrate one would
use the above 3-layer algorithm to reach stage 1 of the 4-layer
1 2
3-layer alg

Tsi

T1 T2Tf

Stage 0

Stage 2

Stage 4

Stage 1

Stage 3

Front medium

== == ==

0x1 d1xf x20

Fig. 7. The 3-layer algorithm based on the successive application of the 2-layer and
algorithm. Then, the use of the 1-layer algorithm would take us
to stage 2 of that algorithm, and so on.
6. A constant heat flux at the front face

Finally, we have simulated a different problem altogether in
which a constant heat flux is entering through the front layer of
a 3-layer over a substrate structure. For such a front face boundary
condition, the semi-infinite solution is,

Tðx; tÞ ¼
_q
j

ffiffiffiffiffiffiffiffi
4Dt
p

r
exp � x2

4Dt

� �
� xerfc

xffiffiffiffiffiffiffiffi
4Dt
p
� �" #

ð29Þ

where _q (W/m2) is the heat flux. The ideas as described in Figs. 1, 2,
4, 5 and 7 were used in this simulation. As is clear from Fig. 8, the
results continue to be excellent as regards the agreement between
the proposed method and FEM modeling. We point out that in this
simulation, the substrate was assumed to be insulating and thus
rb = 1 while the specific heat of layer 2 was set to 2 J/kg. Further-
more the reflection strength at the front face is set to rf = 1. This
value for rf means that all reflections taking place at the front face
of the first layer do not involve an heat exchange. Therefore the only
heat exchanged at the front face is that implied by the semi-infinite
solution Eq. (29) (see also Eq. (25)).
3
orithm

T3 Tb

Back medium

== ==

xb0d2 0 d3x3

the 1-layer algorithms. For an explanation of the arrows see caption of Fig. 4.



Fig. 8. Simulation of a constant heat flux into a three layer material placed over an
insulating substrate. In the simulation, all parameter properties of the layers and
substrate are the same as in Fig. 5 except their thermal conductivities whose values
can be seen in the plot and the specific heat of layer 2 which was set to 2 J/kg. The
simulation time can be seen in the graph. Properties in the plot are in SI units.
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7. Discussion

The proposed method has its roots in the method of images as
described by Carslaw and Jaeger [3] see Section 10.10. In effect,
for heat conduction in one layer, whose boundary conditions are
either thermally insulating or of fixed temperature, the proposed
method and the method of images give identical results. Therefore,
this method of recursive images first extends the boundary condi-
tions to situations which are in-between these two limiting cases
and secondly proposes a way to extend the method of images to
the case where there is a structure made of multiple layers. It is
interesting to note that the similar rationale as the present method
has been used by Powles et al. in their work on partially permeable
barriers [18].

As was demonstrated by the last example of the constant heat
flux problem, the way in which this method of recursive images
works, allows its use in a given heat diffusion problem whenever
the temperature solution in a semi-infinite solid is known.

It should be mentioned that this method, as shown in Figs. 1
and 2, is inherently analytical. However its analytical implementa-
tion, beyond the algorithm for a one layer structure, although
feasible is not easy. Therefore we have opted here for a numerical
approach in order to prove the validity of this method of recursive
images. Nevertheless, we acknowledge that an analytical device,
valid for any number of layers should be a desirable result as it
would allow in a straightforward manner to know, for example,
the temperature at the interface between the first and second layer
of a structure as a function of the thermal conductivity of the
second layer. Even so we point out that the temperature solution
for t = 5 s depends exclusively on the semi-infinite temperature
solution at that particular time i.e. Tsiðt ¼ 5 sÞ and on the proper-
ties of the materials involved.

It is perhaps worth mentioning here, a resemblance between
this method and that of the fundamental solutions [12]. Both of
these methods use the fundamental solution for a given heat
problem to solve the multilayer temperature problem however,
the way in which the points that contribute to the solution are
chosen as well as their weights is different. This point may be a
key one to obtain an analytical expression for this method and will
be addressed in the near future.

From Fig. 1 and Eq. (7) one realizes that for a multilayer struc-
ture the dimension of medium 2 is changed relative to that of the
medium 1 in such a way that the solution valid for medium 1 is
either stretched or compressed depending on the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
.

Using this result one can say that the total effective thickness of
a N-layer material having the first layer as the reference is,

deff ¼
XN

i¼1

di

ffiffiffiffiffiffi
D1

Di

s
ð30Þ

This result is quite useful to evaluate the length with which
the interpolating table should initiate. Regarding these thickness
matters, care must be exercised when the effective thickness of a
given layer is very thin compared to the other layers. In effect,
the resolution of the interpolating table must be such that enough
points are defined inside this layer. It is also worth noting that
Eq. (13) and this whole method justifies, in a way, the ‘‘natural
analytical approach’’ where in the separation of variables, the ther-
mal diffusivity is retained on the side of the modified heat conduc-
tion equation where the time-dependent function is collected [5].

An important type of boundary condition such as convection is
not contemplated in this study. This situation is not easy to simu-
late using this method of recursive images. This will be the object
of a near future work as this would turn this method even more
flexible.

Finally, this method of recursive images could be applicable
with suitable modifications, to other geometries such as cylindrical
and spherical as well as to problems of higher dimensionality
taking profit of the superposition and linearity of the solutions.
This is also a line of research worth pursuing.

8. Conclusions

In this paper, we propose a conceptually simple method to
determine the diffusion of heat in a multi-layer material. It is based
on the principle of superposition, whose rules are easy to apply,
given the heat diffusion formula in a semi-infinite material togeth-
er with the diffusion properties of the layers.

This method of recursive images was demonstrated to be valid
for heat diffusion in a structure of three-layer on a substrate with
its front face in contact with either a fixed temperature reservoir or
with a constant heat flux passing through it. It was also shown the
way in which this method of recursive images allows, in general,
its extension to N-layered material.

Although the proposed method has proven its validity,
improvements should be made in order to minimize its uncertain-
ties. The length of the initial table solution and its resolution as a
function of the thickness and thermal properties of the various
layers are topics which need further consideration. This has been
done in this paper but a detailed analysis will provide a procedure
which may involve adimensionalization to minimize the errors in
the calculations. It hoped that this task which also includes the
detailed description of the actual numerical computation will be
performed soon.
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