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1. INTRODUCTION

Nonlinear systems, and in particular polynomisl systems, arise, either directly or as a part of
computing tasks, in many important mathematical areas, such as finite element methods, op-
timization, with or without constraints or nonlinear least square problems [1,2]. On the other
hand they also appear in a large number of fields of science such as physics, chemistry, biology,
geophysics, engineering, and industry. See [3]. In all these contexts most of the practical methods
for solving them are iterative. In [4] the reader can see other no iterative methods for solving
polynomial systems. Given an initial approximation, xg, a sequence of iterates z¢, & = 1,2,...
is generated in such a way that, hopefully, the approximation to some solution is progressively
improved. The convergence is not guaranteed in the general case and no global procedures are
provided in order to find such a convenient approximation, zo. In [5] and [6] the reader can find
the motivation and theoretical bases, and in [7—8] complete and recent surveys of such algorithms
can be consulted.

It is in the search for the above-mentioned approximations, xp, where this paper might con-
tribute to improving such algorithms, by giving a general method, still in its early steps, that
lets us locate zeros inside p-cubes in RP, small enough to guarantee the convergence.

Throughout this paper we consider polynomial systems of equations, written in the form

F(zr,...,zp) = (A(z1,. .. %p)s - p(Z1y-- - 2p)) = {0,...,0). (1)
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Given z = (z1,...,%,) € R, then we set the following notation:

T_i = (T1,.-0, Bic1, Bigl,.--,Tp) € RPTL
Teimf =(T1ye e s Bin 1y Tiglae e v E5—1, Tty e-,Ep) € 'R.p_z, with i < 7,
RE = {z_s z e RP},
Ry ® = {5y z € R}, @
mi i RP = R mi(z) = 2oy,
Tt RP o REE my(r) = 2oy

This article is organized as follows: in Section 2 a matrix model is introduced to establish
a suitable order to solve the unknowns from the equations of the system. This order will be
crucial in the following. Section 3 treats the necessary conditions for the existence of zeros in
rectangles of R?. Section 4 deals with sufficient conditions, and the main result, Theorem 3, is
introduced. In Section 5, we build a lower and upper bound of a kind of functions, defined in
the next pages, that we will only need for practical calculations. Finally, Section 6 provides a
provisional structure of the algorithm. An example is included to illustrate the main ideas.

Throughout this paper the empty set will be denoted by 8.

2. A MATRIX MODEL OF THE PROBLEM

Let us start this section with an example of polynomial systems, given by

filz,y, 2) = 6y° + 20y + 2z + 442 — 170 = 0,
falz,y,2) = 3y® — 43y — Tz — 62+ 100 = 0, (3)
falzy,2) =22 =792 + 622 — 10y + 4 = 0.

The algorithm begins by setting up a suitable order to solve one different unknown from each
equation of the system, in such a manner that the solved unknown from the first equation, say x,
it also appears in the second one; the solved unknown from the second equation, for instance, v,
different to the unknown =z, also appears in the third one; and the solved unknown in the third
equation, z, different to the unknowns x and y, appears in the first one again, closing a loop. In
this section we show that a such choice can be done in the general case. To carry out this task a
matrix model is developed.

DEFINITION 1.
1. Let My, be the set of matrices in RP*P, with p > 2, defined by

My = {A; A= {ai;}1gig<pi aiy =1 or ay; = 0}. (4)
2. In M, the relation “C” is defined as
(AC A') &= (ifa;; =1, thenaj; =1). (5)
3. A matrix, A, is said to be an a-matrix, if A € M, and all subsets of k < p columns need,
at least, k + 1 rows to cover all its ones.

4. Let M be an a-matrix, then M is said to be a minimum g-matrix, from now on (Ma)-ma-
trix, if 3B C M so that B is an c-matrix, then B = M.

The following proposition will be used below.
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PROPOSITION 1. CANONICAL FORM OF THE (Ma)-MATRIX M. If M € M, is an (M a)-matrix,
then by exchanging between themselves rows or columns (if required), it is always possible to
obtain a matrix in the form

* O ¥ *
¥ OE O =

o O =
= S
% % %

o 0 0 0 1 1
where the elements denoted by “” are either zero or one. The matrix M, is said to be the
canonical form of the matrix M.

Proposition 1 can be easily proven from the following lemmas.

LemMma 1. If A € M, is an o-matrix, then all its rows and columns have, at least, two entries
equal to 1.

LEMMA 2. A € M, is an o-matrix if, and only if, there is no submatrix in R*™** of zeros, with
i+k>=p.

LEMMA 3. Let M € My, p > 2, be an a-matrix, then it is an (M «)-matrix if, and only if, for
each element, my; = 1, there is, at least, a submatrix in R™*, C, withr + s = p, with m;; =1,
and all its remaining entries being equal to zero.

LEMMA 4. If M € My, p > 2, is an (Mo)-matrix then there are no submatrices in R¥*2, so that
all their entries are equal to 1.

LEMMA 5. Let M € M, be an (Ma)-matrix. Consider that there is a submatrix, D € R*+1)%k
2 <k <p—1, with the following structure:

* ¥ ==
¥ = ¥ ¥
[l S N
* O * X ¥

* * * * 1

w©,»
*

where the elements denoted by are either 0 or 1. Then, by exchanging either columns or
rows between themselves, If needed, it is always possible to obtain another submatrix, Dy, with
the same structure as D, so that all the elements of Dy, my;, with i > j 4+ 1 are equal to zero.

DEFINITION 2. Given system (1), then the matrix A = {a;;}1<i j<p € My defined as a;; =1, if
the unknown x; belongs to the equation f;, and a;; = 0 if it does not, is said to be the unknown
distribution matrix of system (1), from now on, {(UD)-matriz.

REMARK 1. Notice that all systems of p equations and p unknowns either are in the form fi{z1,0,
0 =0, f5(0,...,0,2,) = 0 or its (UD)-matriz is an e-matrix or its (UD)-matriz can be
decomposed into several submatrices to be a-matrices.

THECREM 1. Suppose that the (UD)-matrix of system (1} is an a-matrix, then it is always
possible to build a sequence with all the equations and unknowns of (1), fi,, frss..., Sk, and
Thy s Thoy .-+ Tk, (the subscripts are a permutation of {1,2,...,p}), in such a way that

1. the unknown 2, appears in the equations fi,, and fy, ;

8
2. each unknown zy,;, 2 < j < p, appears in the equations fi,_, and fy, , with m > j — 1. ®)

-1
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With the aim of simplifying the expression of the subscripts, hereafter sequences (8) will be
denoted, without loss of generality, as f1, fa,..., fp and z1, %2, ..., 2,, respectively, in such a way
that x1 isin fp and f1, z2 isin fy and fp, z3 isin f and f3, ..., xp is in fpy and fp.
PROOF. As (1) is an a-system, then we follow the steps.
1. Compute the (UD)-matrix of (1), A.
2. From A compute a (Ma)-matrix: M C A.
3. From M, compute its canonical form: M..
4. The new order of the rows of M, defines the sequence of unknowns: z,...,zx,, and
the new order of the columns of M, defines the sequence of equations: fy,,..., fi,, that
satisfy the required hypothesis due to the structure of M.,

ExaMPLE 1. Coming back to system (3), the {UD)-matrix is as follows.

H fo fs
z |1 1 1
9
z| 1 1 1 ®)
y| 1 1 1
From (9} we get an (Ma)-matrix
hHi fr f
z | 1 0 1
1 1 0 (10)
y | 0 1 1

that is its own M, matrix. This leads us to the sequence of equations and unknowns

z appears in f3 and fi,
x appears in fi and fa,

fl) f21 f3 55y . (11)
y appears in f2 and f3,

and the loop is closed.

3. NECESSARY CONDITIONS FOR
THE EXISTENCE OF ZEROS

For the sake of clarity in the presentation we recall some results of [10].
FIRST. Let P(x)} be the polynomial function

y=Plx)=ac+mzx+--- + mz™, {12)
where ag,61,. .., G are real numbers with a;, a,,, # 0, then the series
Go — Y — ag — ylaz\ ™
PH=2" Y Y dayergm) ((—E-’_GL))ZZ)
a1 n=0 g1+ +gm_1=n 1 (13)

with (gt Y
g1 P Mgm—1 }!
dlgr,. .. @m-1) = , 14
(QI Im 1) Q1!"‘qm-1!(1+q1+"'+(m_1)Qm-1)! ( )
is the inverse function of (12} in the region
|a0 — yllaz| lao — 4™ |am| . (m— 1)
D, = . . < . 15
ip {y eR; mp Tt e < (15)
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SECOND. If 0 € Dy, then fp(0) is the root of P(x) closest to the origin.
THIRD.
d{gr, ..., gm-1)ql! - gm_1! < d(0,...,0,n)nl;
m " 16
do,...om<i{—™ ), va>1i (16)
n\(m-1ym-1!
Before starting polynomial systems, we provide a new result of polynomial equations that will
be needed in the following.

PrOPOSITION 2. The function fp defined by (13) satisfies the inequality

m
—Tn——_l’ VyEDfP. (17)

ag — Y

|fe(y)] <

Proor. From (16) we arrive at

ap — ¥| o ag —y)ag ¥
|fe(y)| < ?-_ay > Y, A gme1) E“f:';y))z—z
1 Taz0 it Fam_1=n L
[teo ) la
—aq ™
ap — y( °°1) (a0 — y)as (a0~ )" 'am|\" a9
. FORY (PN [C )
o (55 Ca
_ o0 _qym—1\"
<|2=¥3u,...,n) (%) .
—ag n=0 m
Taking into account that 1 is the closest root to the origin of 2™ — mz + (m — 1) =0, then
m—1 o= (m—1)mI\"
ng(o,...,n) (T) =1, (19)

and the result follows.
Next, we apply the above results to the case of polynomial system.
DEFINITION 3. With the notation {8} let us assume that system (1) satisfies the conditions

1. The (UD)-matrix of (1), A, Is an a-matrix.
2. They verify the following properties in §t:

8fp 0Hh ,, oh B8fs , . Bfpa Bfp
o 95 7O 9wy B2 0 Y oz, Bz, T (20)
3. The determinants
of Ofi) |8fix OF
a.'L'p 6:17? ij_.l 63:_.;_1 ,
? 1 2 S S 3 21
o, Of| | O J=r )
Bml 63:1 Bscj 6.’):_,'
are nonzero in §). Then system (1)} is said to be an a-system in ).
ExAMPLE 2. Consider polynomial system (3) and sequences (11) then
9fs _ 3,2 g, Oh _ gy, %=2;
az oz Oz 22)

Fra dy Oy
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s 9
oy Oy 2

= —440 — (20 + 12¢) {(—79 4+ 32°) ; 23
8fs o ( v) ( z%) (23)
dz Oz
o on
dz Oz

= —206; 24
oh of ’ 24
dr O=x
o 0fs
dr Oz | _ .
8fs Ofs|™ 20 4+ 122(20 + 12y); (25)
gy 8y

and, finally, define ; as the open subset of R3, so that (22)-(25) are different from zero, then
we can say that system (3) is an c-system with sequence (11) in ;.

Let (1) be an a-system in {2, A, its (UD)-matrix, M, an (M «)-matrix so that M C A4, M.,
the canonical form of M, and finally the set of subscripts § = {(4, j); entries of M, equal to 1}.
Consider r € R? N 1), then for each (¢,7) € 5, we can make the change of variables in the
equation f;

r=y+r and  gi(y)=fily+r) (26)
Arranging the terms of f;(z) according to the powers of z;, one gets
fi(®) = fily+71) = g;(v)
= 8m, (Y- =) (H + 7)™ + 1,5 (y—i F o)y )T+ (27)
+ 81,5{y-i + 7o) (y1 + 1) + S0,5(y—i +7-5) = 0.

Therefore,
9i(¥) = tm,5 (Ui UP" + b (Y=)ul ™ + - b1 (=i + to,(y—s) = 0. (28)
Then, for the equation f;, we define the auxiliary functions K; and Y3 ;,¥24,...,Ym—1,; 88

18 5 (y—i)t3,5(y—i)
(—tr(y-))3

(29)

_ toi{y—a) o ) = D0 (y-)t25(y—0) ) =
Kj(y-i)—m, Yii(y-i) = (—t1;(g-0))2 Yo i(y—i) =

2 (Y1, (y—:) =y tm. g (y—i)
(=t (=)™t 7 (—t1,5(y—H™

ProposITION 3. Let (1) be an a-system in Q and r = (r1,...,7p) € RPNQ. For all (i,7) € S,
the functions

Yin—2,5(y-i) = Yon-1,j(y-i) =

i = 50;(.’.[’,‘_") =7

K@i —r-i) Y Yo dn. s gme )Y@ — o), YT — ),

n=0 qi1+-+gm—1=n
are well defined in

(30)

r . (m - l)m_l Q
Dij = q2-i € RE; [V 5(@—i —r-i)[ + -+ Y1 5(@—i — )| S 20— N8, (31)
and they satisfy f;(xq,. .. .,.’L‘,'_l,tp;(ﬂ:_,;), Liglyees ,:r:p) = 0.

ProoF. For each (%,7) € S, functions {29) are well defined, since from (20) and (27) one gets

ij _ Bg_.,- B:c,- _ _C‘:Lgl

0 — =
# Oz, OziOyi Oyl

= t1,5(y—4).
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Observe that (28) can be considered as a polynomial in the variable y;. So, using (13) one gets

Yi = Kj (y—i) Z Z d(‘fla au 1Q'm—1)Y]3;' (y—i)’ Ty Y,—E::I,lj (y—t')i (32)

n=001++gm-1=n

that is convergent in the region D;; (undoing the change of variables (26)) in agreement with (15).

DEFINITION 4. Let (1) be an a-system in §2, r € RPN &t and let G, be the set of functions given
by
Gy = {(P;(x—‘l)! with fj(l‘l: -1, ‘P;(I—i)ami+l, vy 'Tp) =0; (i,j) € S} y (33)

with tp; defined in (30). Then G, is said to be a complete set of explicit functions of system (1),
around the point r, from now on (CSEF), of system (1).

THEOREM 2. Let (1) be an a-system in §3. Let a € Q be a root of (1). Then there exists a closed
pcube, K=1I) x ... x I, CQ, a € K, where all the functions of the set G, are well defined.

ProOF. If z = a, then
fj(al,ag,...,ap) = 0=g,-(0,...,0) = tolj(U,...,D), 1<5<p,

and (31) holds. By continuity there is a neighbourhood of @, U*, where (31) is verified. The
result follows, by considering the intersection V = N U*, with (i,j) € §, since we can take
K CV and then ¢} € G, is well defined in I; x -+ X J;—1 X Ji+1 x I, 1 < i < p, respectively.
ExaMPLE 3. Consider again (3); in agreement with this theorem the algorithm must search
regions, K, in £}, where the functions rp; are convergent. To accomplish this aim cne begins by
looking for a point 7 € 4, in such a way that the series function ¢} € G;, corresponding to the
first row of the matrix M., is convergent at the point _;. In this example we can take r = 0,
since

(1) 0ey,

{2) by using (32), it is obtained the series function

4+ 622 — 10y
E : Zn T 4

n=0

z=pi(z,y) =

where, according to {14),

1 [3n 4.+ 622 — 10y)*
4O = 1 (n) wd 7o) = 293039

that is uniformly convergent in the region
Dy3 = {(z,y); —270.2 € 4+ 62 — 10y < 270.2}, (35)

and that, obviously, contains the point (z,y) = (0,0).

Once this is done, the remaining functions of the set Gy are considered, starting with ¢}, also
corresponding to the first row of the matrix M..

85 —x — 10y — 3y%
z= (Pi(x’ y) = 29 3 (36)

defined in
Dll = {(g‘.'l y)7 (I1y) € R2} . (37)
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On the other hand, taking into account (17),
2 _
W\ g <513,  with (z,y) € Dya. (38)

Therefore the ranges of the functions 3 and ¢!, defined in D)3 and D;;, are contained in the
intervals,

2] = el 9) < \

La={-513<2<513}, I;1=R, (39)
respectively. Compute now
Ry = Dy N Dy, Iy =i nl;. (40)
Then we conclude that inside the region
Ai=R xI1 £0 (41)

the graphs of the functions ¢} and ! are well defined. We continue with the functions ¢? € Gy
and @2 € Gp corresponding to the second row of the matrix M.,
T = pa(y,z) = 85 — 10y — 3y? — 22z,
100 — 43y + 333 — 62 (42)
- .

T = @i(y,2) =
In an equivalent way the regions
Doy = Day = {(y,2); (v,2) € R?},
In=1I»n=R,
Ry = Doy N Dag, I =I NI, and
Ay=(Ryxh)N(Ra x I} # D
are computed. Then we deduce that the graphs of the functions 3, 1, ¢, and 3 are well

defined inside A;. Finally the functions v3 € Go and ¢3 € Gy, corresponding to the third row of
the matrix M., are considered

(43)

100 — 7z — 62 n
y=ed(@ ) = > d(0, W)Y "(x,2)
n=0 (44)
— (5, 2) = 44 6x° — 79z + 2°
y= 9’3 H - 10 3
where 3(100 — Tz — 62)2
—Tr—6z
Y(:2) = ——1o53135
Then,
Dyy = {(z,2); —62.66 < 100 — 7z — 6z < 62.66}, (45)
D33 = {(z,2); (z,2) € R?}.
As 100 — 7Tz — 62| 3
lvl = |¢3(z, 2)| < |—%; g S218,  with (z,2) € D, (46)
then
Ing = {—2.18 <y < 2.18}; Ias =R. (47)
And as a consequence all the graphs of the functions of Gp are well defined inside the region
As = (R1 X Il) M (sz x Iz) n (R3 X I3) 9’: @ (48)
Finally the set K C A3 N, given by
K={(z,9,2);393<z<643; 082 <y <1.82; 45< 2 <1.87} (49)

is computed. Note that K is a compact rectangle in £21, where all functions of Gy are well defined.
So K verifies the necessary conditions of Theorem 2, and it is a candidate region to contain a
root.
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4. SUFFICIENT CONDITIONS. THE MAIN RESULT

DEFINITION 5. Let (1) be an a-system in Q. Assume that there is a closed p-cube, K = I X
<o x I, € Q and r € RP so that all the functions of G, are well defined. Then the following
functions can be defined:

Glz_1) = (wp — #1) (T2,- - -, Tp_1,Zp),

i i . (50)
Giz—_) = (i — ¢i_y) (m1, .o s, Tig1, -, Zp), 2<i<p,

inlpx . xIp, Iy x-+-x iy, Iiyy x --- x Ip, 2 < i < p, respectively. On the other hand, if we
take a fixed z° € K NRE,? for G and 2° € KNRIZS, for G¥, 2 < i < p, then the real functions
can be introduced

G:]r:-"(xp) = (‘P}; - ’P{) (zg: .- 732—1’1';7) ’

; . ) , (51)
G;O(mi—l) = ((P: - <PZ—1) (mfl)'l L ,I?_g, 1’5_1,1:?_'_1, v 31'?;) 3 2 S 1 < P
where T, € I, i1 € I;_y, with 2 < i < p, respectively.
REMARK 2. From (20) and (21), we can deduce that
8G (2_1) 8GH(z—;) .
; 0 <i<
B, #0; F T #0, with2<i<p, (52)
since
8 6h
Oz, Oz, | _0fs 6f1 0110
% Qf_l Oz, 0x; Ozxp 811
bx, Oz (53)
] 8
LoBm B O Od | dOhm)
g{z;. gh = Omp  Omp dzp
In the same way
0fic1 8%
Oxiy Omiy | _8fi18fi  Bfi 8fia £0
6f,;_1 % - 61:,;_1 6:5,- 81',;_1 3:,—
63:,; 6.7:,:
Bfi— 8f; i i
= _555:: + Bxi1 - aSoi—l _ a‘Pi ?é 0 (54)
a—gi_—:l %E_— Ori v Oz
dG' o (zp) .
el 2.\ . <i<p.
= e #0, 2<i<p
Suppose that sets Vi, V;, 2 < i < p, given by
Vi={{z1,--12) € RPN 21 = ¢} (22,...,2%) = 0p(22,...,2); G'(22,...,2) =0}, (55)

Vo= {(a1,y2) ERP O 2 = ghy(2-0) = phla—i); GH(zs) = 0}

are not empty. Therefore, by applying the implicit function theorem to the functions G, there
are suitable open sets, where the functions

Zp = XP(ZQ, saay Zp_l), with G1(22, e ,Xp(Zg, ey ZP..]_)) = 0,

: . . (56)
Zi—1 = X'—l(z—(i—l)—z‘), with G"(zl, ‘e ,X,-_l(z_(,-_l)_,-), ey zp) = 0, with 2 <i< v,
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are well defined. And finally, the following diffeomorphisms between open sets of RP can be built:

Ty Wl Tl
I'i(z) = (21 — 122, .., Xp(2-1-p}) 22, - . -, 2p — Xp(2-1-5)) (57)
T :WinV - T nREA

In the same manner, for 2 <i < p,

I‘,‘ . Wi — Ti,
Li(z) = (21, .-, zic1 — Xic1(2-(im1y—i)s 2 — @210, Kic{2_(i=1)=i)s+ - » Z0)y -2 %) » (58)
L WinV, > TinREZE

i—1,i"

THEOREM 3. Let (1) be an a-system in 2. Then it has a zero, a, in  if, and only if, there exists
a closed p-cube, K = I x - -+ x I, C 2, so that each function Gi,, 1 < i < p, introduced in (50),
is well defined and it has a zero in I;,. Besides a € K.

PRroOOF. Let a = (a1,...,4,) be a zero of (1) in £, then there is a compact p-cube K = I; x
-+« x I, € Q, with @ € K, that satisfies the hypothesis of Theorem 2. So the functions G* exist.
As a is a root, then a € V1 N---NV, and K can be taken so that K ¢ W!n...NnW?. Hence, in
agreement with (57) and (58), it follows that

Pl(K OVI) = Iﬂ X e X Ip—la (59)

and for 2 <i < p,
I‘l-(KnV,:)zflx---xI.,-_sz.-Hx---xIp. (60)

From (59)

(29,...,2g_ 1) €l x - X Ipmy — it (23,20 1) = (y1,2%,. .., 7p_1,¥p) € KNVy; with
Yp = Xp (:Egl,_p) S Ip; (61)
v1 =19} (-'rga e s'rg-.‘l’XP (Igl,—p)) = "0111 (xg! P (Igl,-p)) eh.

Therefore GL,(Xp(z2, _,)) = 0. On the other side (52) implies that (X,(z2, _,)) is the unique
zero. In a similar way, from (60), the remaining cases can be proven.

Conversely, assume now that there is a closed p-cube, K, to verify the required hypothesis.
First of all, we are going to consider the projections 7, and ;.1 ;, introduced in (2). Having
done this, ¥ (21,...,%p) € Iy X -++ X I, we arrive at

Wp,l(.’l.‘l, - ,:I:p) = (0,.’172, e ,a:,,_l,O),

(]:‘1)_1 (Of T2yenn 1$p—110) = (215552} ves 1xp—1:yp) [ (62)

Gz, -, Tp—1,%p) =0, with y, € I,

21 = P}HZ2y e e vy Tpent,y Yp)s with z; € I3.

From (62), we take {21,22,...,Zp_1,Yp) and define the following functions:
71,2(2113:2’ veeyTp—1, yp) = (0,0,.’]33, ey Tp—1, yp)-:
(P2)_1(0; 0,z3,... ’mp—layp) = (yls Z2, T3 ... ,mp—lsyp)s (63)
Gz(?!la-'l?aa oy Tp—1, yp) = 01 with I = Il?

22 =90§(y1=$31-'-amp—1!y‘p)! with zZ; € I.
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By going on this process, we take (y1,...,%i—1, % Fit1s- - -, Tp—1,Yp) from the i*® previous step
and define the following functions:

i+ 1) (Ylr- o Yim1s Ziy Titly o+ Zp—1,Yp) = W14+ - -2 %51, 0,0, Zig2, . . o, Zp—1, ¥p),

(Pi+1)-1 (yl’ ) ’yi—1:0’032i+2’ e "Tp—hyp) = (yl’ oy W Zig 1, Tig2y - - - 1mp—1:yp)i

) 64
G‘+1(y1’-"syi—1|yi)mi+2;-stp-hyp) =10, with % E Iir ( )
Zipl = i (ML oy Wim Lo Vi Tig2y o9 Tp-1,¥p),  With 2041 € Jipr.
And the last step will be
”p—l.ﬂ(yl'i cenyZp-l, yp) = (yl.: e syp—ﬂsoy 0))
(PP)—I (yh LR !yp*2s0! 0) = (yls ey lp=2:¥p—1, zp) 1 (65)
Gp(yli'"vyp—l) =0, with Yp-1 €1 —1,
Zp = ‘P;(yly cenr¥p-1)y with z, € I,.
Equations (62)—(65) allow us to define the continuous function
F= (l:',,)_:l 0-.-0 (]f‘z)_1 om0 (I"l)"l ©Mp1 (66)

to verify F(Iy x:--x I} C Iy x .-+ x I, therefore, from the point fixed theorem of Brawer, F has
a fixed point (py,...,p,), that is a root of system (1) and it is in K. The result is proved.

EXAMPLE 4. Coming back to system (3), for all (z°,3°, 2%) € K, K being the region introduced
in (49), we introduce the functions

Glo(z) =} (4%, 2) —0s (4%, 2),  z€[1.87,45],
Gh(z) = ¢} (z,2%) - ¢} (x,2%), =z €13.93,643] (67)
G(y) =03 () — 3 (%), v e€[0.82,1.82]

As required in Theorem 3, we must show that V(z°,4°,2°) € K, GL,(1.87)G}x(45) < O,
G2,(3.93)G%,(6.43) < 0, and G2,(0.82)G1,(1.82) < 0. In other words, functions (67) have a zero
in their intervals of definition. This issue will be treated in the following section.

5. LOWER AND UPPER BOUND FOR THE FUNCTIONS gog-
ProrosITION 4. A lower bound for (14) is given by

!
Ao met) 2 L2 sme,  vaxl (68)

1 Gm-1 7375

ProoF. First we are going to prove that

d(n,0,...,0) > %3, -1, a>1. (69)
Given the sequence Y
An+2)(n+1)
ey >
n+2n °’ vn21,

it is easy to show that it is increasing for = > 4. As a4 = 3.75, then a, > 3.75, ¥n > 4. For
n = 1,2, and 3 inequality (69) holds true. For n = &, k > 3 we have that

d(k+1,0,...,00(k +1) _
qk0,.., 0k %2 3.75.
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Hence,

=

d(k +1,0,...,0) 23.75d(k,0,...,0)k+1.

By induction, hypothesis (69) is concluded.

_ (21 +3g2 + - - + Mgm_1}!
d(qr,- .. Gm-1)@1l* g1l = OIS T Y e PR
_ 2q1 +3g2 + -+ + M@m—1
T a+2p+-+(m—=Dgm_1+1
2014324+ mgm_1 — 1
g1 +2¢ + -+ (m—1gm_y
.HQQ1+2q2+---+2qm—1+1 (2n)!
ittt gma1+2 (410

(70)

Note that the last term of product {70) is equal to d(n,0,...,0)n!l. As

In+ K
L
n+l1+K =7

for all integer number X > 1, then all the terms of product (70) are greater than or equal to 1,
so the proof is completed.

THEOREM 4. Assume that each function (p;- € G, is well defined, G, defined in (33). Consider

Vily—i) = Y1,5(y-4) + -+ + Yin-1,5(y—s),
Ui(y—a) = [Y1,; (=i}l + - + [Yrm—1,3 (-3},

where Y1 ;,...,¥m—1,; are the functions introduced in (29}, and

(71)

1 1
+ N = - - f Y _ , ,
HYj(y—s) =1 - 55 log (1 - TVj(y-:)) g7 108 (1 = TU{y-1)),
1 1
Hby-)=1- 75 log (1 —8.75V;{y:)) — 7z log (1 —3.75U;(y—¢)) »

e 1 1 —3.75V;{y—s) 72
Hyj(y-4) = 75 log (1 - 3.75U,-(y_¢)) ’

- _1 1 —TV;(y—s)
Hu;j (y—i) - 5.]_1 ]'Og (1 _ TUJ(y_@) L

where T = m™ /(m — 1)™~!, then the functions

Ui(ys) = { Ki(y-s)HY (y—s) — K3 (y—) H; (v-s), 3 Ki{y_s) 20, )
Kji{y-)H(y-:) - Kj(y-s)H, ;(y~4), if K;(y-s) <0,
and _ )
Liys) = { Ki(y-)H(y-) — Kily-o)H, ;(y~s), i K;(y-4) 20, (74)
Kj(y_o)HY j(y-i) — Kily-)H;(w-i), if Ki(y—s) <0,
with K;({y_;) introduced in (29), and defined in region (31), they satisfy the inequalities
Li(y—:) < (P;' (y—i) < Uiy} (75}

PROOF. Assume, with loss of generality, that Y3 ;(y_:),...,Yp j{¥—i) are negative and the re-
maining Yp41,5(y—-:), ..., Ym—1,7(y—:), positive. Then, ¢}(y—s) can be written as

P5(y—s) = K;(y-o) (B (y-i) = Hy (v-3)) (76)
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where

Hfg-)=1+> Y Y dan @)Y - - Yoo i ()

A=l 2ttv=n g =2t
gp+1b et gmo1=v

(77)
and

Hy (Y(y-)=Y, 3 3. (@1, - - -2 m-1) [Yi,5(y=0)|"

n=1 A+ltv=n a1t++ep=2t+1 (78)
o1t Fm—1=v

B ) ATV | L
We recall that uvsing the Taylor expansion we have

log ((1 = V(y-4)) (1 — Us{y-)))

o0
n! 1
2 Y PR VR oot LU RV
n=1 2t4+v=n q:+'"+q,-2t : m—
o1+ Fem—_1=v

(=)

o0
n! 1
=23, > Y g M- Y-t (80)
n=126414v=n g pogg=2t4+1 q1* Q-1
fp+1ttdm_1=v

Taking into account inequalities (16) and (68), from the Taylor series {79) and (80) it follows
that

H (Y (y-)) < Hf (Y(y-s)) < Hf (Y (y-4)) (81)
and

Hi (Y (y—4)) < Hy (Y(y-4)) < Hy ;(Y(y-i))- (82)
And the result is proved.

ExaMpPLE 5. Taking again system (3), by computing functions (73) and (74), the change of sign
of the functions Gl,(2), G%(z), and G3.(y) can be calculated following the method, for instance,
of consecutive subdivisions of intervals. Finally we get a root for (3} in the region

{(z,y,2) € R*;6.05 > x> 58; 1.5>y >0.82; 3.156 > z > 2.76}. (83)

Then taking as initial value z = 6.05, y = 1.5, and z = 3.15, for instance, using Newton method,
the root x =6, y = 1, and z = 3 is obtained.

6. ALGORITHM STRUCTURE

This algorithm, whose structure is introduced, searches initial values for solving polynomial
system (1) in a bounded and closed region of R?, T, so that T’ C (1, §2 being the region where (1)
is a-system (see Definition 3).

STEP 1. Compute the (UD)-matrix of system (1), A;, according to Definition 2.

STEP 2. If 4; is an a-matrix, then go to the following step. In another case, in agreement with
Remark 1, decompose the matrix A; into several a-matrices, denoting by .4 each one of them.

Step 3. Compute a (Ma)-matrix, M C A, in accordance with Definition 1.
STEP 4. Compute the canonical form of M, M., in agreement with Proposition 1.
STEP 5. Introduce sequence S satisfying Theorem 1.
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STEP 6. Taking into account the sequence S, search a point r € R? verifying inequalities (20)
and (21}, so that the function ¢! (see Proposition 3) is convergent at the point r_;.

STEP 7. Compute the functions ¢} of Gy, introduced in Definition 4.
STEP 8.

1. Compute the functions 1, (p}, € G, corresponding to the first row of M..

2. Find Dy and Dy, the regions of convergence of the series functions ¢ and ¢, respec-
tively, according to Proposition 3.

3. Find Iy = [-M;, Mi] # 0 and I, = [-N1, N1], where, in agreement with (17), M; satis-
fies the inequalities —M; < ¢i{z_1) € M, with z_; € Dy, and Ny, —N; <
(p:',(.’.l’,‘_l) <N, withw_) € Dy,.

4, Find Ry = Dy n Dlp and [ =111 N Ilp.

5. If Ay = Ry x I = @, then, from Theorem 2, there are no zeros in (D13 x I1;) # @, and
return to Step 6, taking other r outside (Dy; x [11). If, on the contrary, I, x Ry # @, then
go to the following step.

STEP 9.

1. Compute 3, ¢? € Gy, corresponding to the second row of M., and the regions R, =
D2y N Dag, Iz = Iz1 N Ips.
2. If Ay = (I) x B) N (Rz x I;) =0, return to Step 6. Otherwise go to the following step.

STEP 10. Continue this routine until covering all the rows of the matrix M, and all the functions
of G, then there are no zeros in the bounded region, I', and the algorithm ends, or A, =
(In x Ry)n---nN{Rp x Ip) # ¥ and go to the following step.

STEP 11. Compute K = J; x -++ x J, C A,, so that (1) is an a-system in K.

STEP 12. Introduce the functions G*, 1 < i < p, in K (see Definition 5), and the functions F}, F},
so that F} < G* < Fi, 1 <1 < p; such functions are built from (73) and (74).

STEP 13. By using the functions F} and F, compute the sign of the functions G* in the estab-
lished conditions in Thecrem 3, then,

1. if all the functions G¥, 1 < i < p, change their signs, there exists a zero of system (1),
going to Step 6 for the search of other possible zeros;

2. if some function G* preserves its sign, there is no zerc and algorithm goes to Step 6,

3. otherwise the intervals J;, 1 < i < p, are divided into subintervale until Theorem 3 is
satisfied.

4. The algorithm ends when all the bounded region I is covered, by regions of type A;.
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