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1. I N T R O D U C T I O N  

Nonlinear systems, and in particular polynomial systems, arise, either directly or as a part of 
computing tasks, in many important mathematical areas, such as finite element methods, op- 
timization, with or without constraints or nonlinear least square problems [1,2]. On the other 
hand they also appear in a large number of fields of science such as physics, chemistry, biology, 
geophysics, engineering, and industry. See [3]. In all these contexts most of the practical methods 
for solving them are iterative. In [4] the reader can see other no iterative methods for solving 
polynomial systems. Given an initial approximation, x0, a sequence of iterates xk, k = 1, 2 , . . .  
is generated in such a way that, hopefully, the approximation to some solution is progressively 
improved. The convergence is not guaranteed in the general case and no global procedures are 
provided in order to find such a convenient approximation, x0. In [5] and [6] the reader can find 
the motivation and theoretical bases, and in [7-9] complete and recent surveys of such algorithms 
can be consulted. 

It is in the search for the above-mentioned approximations, x0, where this paper might con- 
tribute to improving such algorithms, by giving a general method, still in its early steps, that 
lets us locate zeros inside p-cubes in ~P, small enough to guarantee the convergence. 

Throughout this paper we consider polynomial systems of equations, written in the form 

F ( ~ I , . . .  , . p )  = ( / 1 ( x l  . . . . .  x~)  . . . . .  / . ( x l  . . . . .  x~ ) )  - -  (0  . . . . .  0) .  (1) 
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Given x = ( X l , . . .  , xp )  ~ ~.fl~, then  we set the  following nota t ion:  

x_~ = ( x l , . . . ,  X~- l ,X~+l , . . .  ,xp)  ~ 7~ ~-1, 

z - i - ~  = (Xl . . . .  , x s - l ,  x i+ l  . . . .  , x ~ - l ,  x~.+l, . . . .  xv)  C ~ p - 2 ,  

n~ -~ = {~-~; ~ E n~}, 

ni~ -2 = {~_~_~; = • T~P}, 

, 

~r~.i : 7~ ~ --, T~7~: ~. j  :, 

with  i < j ,  

(2) 

This ar t ic le  is organized as follows: in Section 2 a ma t r i x  model  is in t roduced  to  establ ish 
a sui table  order  to  solve the  unknowns from the  equat ions of  the  system. This  order  will be  

crucial  in the  following. Section 3 t rea t s  the  necessary condi t ions  for the  existence of  zeros in 
rectangles  of  ~P.  Section 4 deals wi th  sufficient condit ions,  and  the  main  result ,  Theorem 3, is 
in t roduced.  In Section 5, we bui ld a lower and upper  bound  of a kind of functions,  defined in 

the  next  pages,  t h a t  we will only  need for prac t ica l  calculations.  Final ly,  Section 6 provides a 
provisional  s t ruc ture  of  the  a lgori thm. An  example  is included to  i l lus t ra te  the  main  ideas. 

Throughout  th is  paper  the  e m p t y  set will be denoted  by  0. 

2. A M A T R I X  M O D E L  OF T H E  P R O B L E M  

Let  us s t a r t  this  sect ion with an  example of polynomial  systems,  given by  

f l ( x ,  y, z) ---- 6y 2 + 20y + 2x + 44z -- 170 = 0, 

f 2 ( x , y ,  z) = 3y 3 -- 43y -- 7x - 6z + 100 = 0, 

f s ( x , y ,  z) = z a -- 79z + 6x 2 -- 10y + 4 ---- 0. 

(3) 

The  a lgor i thm begins by  set t ing up a sui table  order  to  solve one different unknown from each 

equat ion of  the  system, in such a manner  t ha t  the  solved unknown from the  first equat ion,  say x, 
i t  also appea r s  in the  second one; the  solved unknown from the second equat ion,  for instance,  y, 

different to  the  unknown x, also appears  in the  th i rd  one; and  the solved unknown in the  th i rd  

equation,  z, different to  the  unknowns x and y, appears  in the  first one again, closing a loop. In  
this  sect ion we show tha t  a such choice can be done in the  general  case. To car ry  out  th is  t a sk  a 
ma t r i x  model  is developed.  

DEFINITION 1. 

1. Le t  Mp be the  set o f  matr ices  in T~pX~, wi th  p > 2, defined by 

Mp -- {A; A --  {aij}l<~,j_<p; a~j = 1 or  a~j --  0}.  (4) 

2. In Mp the relation " F "  is defined ~s 

(.4 = ~') ~ (g~, j  = 1, then ~ j  = 1).  (5) 

3. A matr ix ,  A ,  is said to he an a -ma t r i x ,  f f A  E M v and aU subsets  o£ k < p colmnns need, 

at  least, k + 1 rows to cover all i t s  ones. 

4. Le t  M be an a - m a t r i x ,  then M is said to be a m i n i m u m  a - m a t r i x ,  [rom now on (Ma)-ma-  
trix, f f  3 B = M so that  B is an a-matr ix ,  then B = M .  

The following proposi t ion  will be  used below. 
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PROPOSITION 1. CANONICAL FORM OF THE (Ma)-MATRIX .h~. I f  ~ E Mp is an (Mc~)-matrix, 
then by exchan~ng between themselves rows or columns (if required), it is always passible to 
obtain a mat r ix  in the form 

A d o =  

1 * * . , .  * 1 

1 * * . . .  * 0 
0 1 • . . .  • • 

? ? ! ::: : * 
0 0 0 0 1 1 

, (6) 

where the elements denoted by %" are either zero or one. The mat r /x  M¢ is said to be the 
canonical form of the matrix .hd. 

Proposit ion 1 can be easily proven from the following lemmas. 

LBMMA 1. I f  ¢4 E Mp is an a-matrix, then all its rows and eolumn.~ have, a t / ea s t ,  two entries 
equal to 1. 

LEMMA 2. fit E Mp is an a-matrix i~ and only if, there is no submatrix in 7~ ixk of zeros, with 
i + k > _ p .  

LEMMA 3. Let Ad E Mp, p > 2, be an a-matrix, then it is an  ( M a ) - m a t r i x  if, and only if,, for 
each element, m~j = 1, there is, at least, a submatrix in T~ r×s, C, with r + s = p, with mi~ = 1, 
and all its remaining entries being equal to zero. 

LEMMA 4. If.Ad E Mp, p > 2~ is an ( M a ) - m a t r / x  then there are no submatrices in ~2×2, so that 
all their entries are equal to 1. 

LEMMA 5. Let A4 C Mp be an (Ma)-matrix.  Consider that there is a submatrix, D E R (k+I)×k, 

2 <_ k ~_ p - 1, with the foflowing structure: 

2 )=  

1 * * . . .  * 

1 * * " ' '  * 

• l * ' ' "  * 

• * l , - -  * 

• * * * 1 

, (7 )  

where the elements denoted by %" are either 0 or 1. Then, by exchanging either columns or 
rows between themselves, i f  needed, it is always possible to obtain another submatrix, D1, with 
the same structure as D, so that  all the elements of D b  m~j, with i > j + 1 are equal to zero. 

DEFINITION 2. Given system (1), then the matrix A = {a~j}l<~,j<v E Mp defined as a~j = 1, i f  
the unknown xi belongs to ~he equation f j ,  and aq = 0 i[ it does not, is said to be the unknown 
distribution matr /x  of system (1), from now on, (UD)-matrix. 

REMARK 1. Notice tha t  all systems o fp  equations and p unknowns either are in the form f l ( x t ,  0, 

. . . ,  0) -- 0 , . . . ,  f p ( 0 , . . . ,  0, x~) = 0 or its (UD)-matrix is an a -ma t r ix  or its (UD)-matr /x can be 

decomposed into several submatrices to be a-matrices. 

THEOREM 1. Suppose tha t  the (UD)-matrix of  system (1) is an a-matrix, then i t  is always 

possible to build a sequence with all the equations and unknowns of (I), f ~ ,  f k~ , . . . ,  fk~ and 
xkl,xk2 . . . .  , xk ,  (the subscripts are a permutation o f { I , 2 , . . .  ,p} ), in such a way that  

1. the unknown xh, appears in the equations fkp and fkl ; 

2. each unknown zk~, 2 <_ j <_ p, appears in the equations fkj-1 and fk,~, with m > j - 1. (8) 
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With the aim of  simplifying the expression of the subscript ,  hereafter sequences (8) will be 
denoted, without loss of  generality, as /1 ,  f 2 , . . . ,  fp and xi,  x2, . . . , xp, respectiveIy, in such a way 

that Xl /s  in fp and A, x2 is in f l  and /2 ,  xa is in A and fa, . . . ,  xp is in fp-1 and fp. 

PROOF. As (1) is an ~-system, then we follow the steps. 

1. Compute the (UD)-matrix of (1), A. 
2. From A compute a (Ma)-matrix: 2~4 r- A. 
3. From A//, compute its canonical form: fl4¢. 
4. The new order of the rows of A4~ defines the sequence of unknowns: xkl . . . .  , zk~, and 

the new order of the columns of A4~ defines the sequence of equations: fkl . . . . .  fk~, that 
satisfy the required hypothesis due to the structure of )~4~. 

EXAMPLE 1. Coming back to system (3), the (UD)-matrix is as follows. 

Yl ~ A 
z 1 1 1 
x 1 1 1 
y 1 1 1 

(9) 

From (9) we get an (Mc~)-matrix 

/1 1~ A 
z 1 0 1 
x 1 1 0 
y 0 1 1 

that is its own Mr matrix. This leads us to the sequence of equations and unknowns 

. 

] i ,  I2, Az,~:, y{ 

N E C E S S A R Y  

z appears in f3 and f i ,  

x appears in f l  and f2, 

y appears in f2 and f3, 

and the loop is closed. 

C O N D I T I O N S  F O R  
T H E  E X I S T E N C E  O F  Z E R O S  

For the sake of clarity in the presentation we recall some results of [10]. 

FIRST. Let P(x)  be the polynomial function 

y = P(x)  = ao -4- a lx  + . . .  -4- a ~ x  m, 

(i0) 

(11) 

(12) 

where ao,al, . . . .  am are real numbers with al, a,~ ~ 0, then the series 

( (aO--y)a2"~q' f p ( y ) =  a o - - y  ~ d (q l , . . . , qm-1)  ~ ( - a ~  ) 
- - a  l n=O ql -I-.. .-i-q=~_ t m n  

/ ' \ 
with 

(2ql + ' "  + mqm-1)! 
d (q l , . . . ,  q,~-l) = ql! " "  q~-t[(1 + ql + " "  + (ra - 1)qm-1)!' 

is the inverse function of (12) in the region 

~y E T~; la0 - ylla21 D I p  + + 
L 

lao -yl'~-~l'~,~l < ( ~ -  1)'n-i ~ 
i m l  ~ - ~ J • 

(la) 

(14) 

(is) 
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SECOND. If 0 E DIp, then fp (0) is the root of P(x) closest to the origin. 
THIRD. 

d ( q l , . . . , q m - 1 ) q l [ ' " q m - l !  <- d(O,.. . ,O,n)nl; 

a(0,...,0,,) < i ( _~2 ~" (161 - ~ \ ( m - 1 ) ~ - ~ ]  ' v , ~  ___ 1 .  

Before s tar t ing polynomial systems~ we provide a new result of  polynomial equations tha t  will 

be needed in the following. 

PROPOSITION 2. The function fp  defined by (13) satisfies the inequMity 

I/v(y)l - ao - y m - a l  m -  1' Vy  E Dip. (17) 

PROOF. From (16) we arrive at 

co [ (~o- y__)~ " 
I:v(y)l < ~0-_____gy E ~ d(ql,...,q~-l) (-al)~ 

- - a l  n = o  t / l + ' - - + q m - -  l : n  

(ao -- y )m- lam q..-1 
-(_~)~ 
[ ~Z d(o ' , . ) (  (ao 

--~ ~ n=O "" T- -~I - '~  - ] - ' ' '  -[- ( - - a l ) m  ] 

I ( )° < "o -___2Y E d(O,...,,~) (~  - 1)'~-1 
- - a t  n=o ~ n - ~ "  " 

Taking into account tha t  1 is the closest root to the origin of z m - m x  + (m - 1) = 0, then 

( ° m - l E d ( O , . . . : n )  (re-_l)___ ~ - i ~  =1, 
m n=0  m m  J 

and the result follows. 

Next, we apply the above results to the case of polynomial system. 

DEFINITION 3. Wi$h the notat ion (8) let us assume that system (1) satisfies the conditions 

1. The (UD)-matrix of (/),  .4 , / s  an a-matr/x.  
2. They verify the following properties in f~: 

of~ aA 
Oxl' Oxl 

3. The determinants 

Oh 
Oxp 

o h  
021 

cA o12 Oh-1 oh 
- -  • 0 ;  Ox2' Ox2 ~ 0; . . . ;  Ox v , Ox v ~ O. 

oh 

oh 

Of~_: 
Oxj-1 

' O/ j_1 

Oz~ 

Oh , 
Oxj_ 1 

o h  
Oxj 

2 < j < _ p ,  

are nonzero in fL Then system (1) is said to be an a-system in ~. 

EXAMPLE 2. Consider polynomial system (3) aaad sequences (11) then 

(9 f l  (9 f l  Ofa = 3z 2 _ 79; = 44; = 2i 
Oz Oz Ox 
cA -7; oi2 of 3 - -  : - -  9 y  2 - -  43;  - -  = - 1 0 ;  
oz oy oy 

(18) 

(19) 

(22) 

(21) 

(20) 
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ay~ o/1 
oy Oy 
ay~ o/1 
Oz Oz 
oA of 2 
Oz Oz 
o £  0/2 
Ox Oz 
Of~ Ofz 
Ox Ox 
O f  2 O f  3 

Oy OV 

J .  MORBNO el: al ,  

= -440  - (20 + 12y) ( - 7 9  + 3z~); (23) 

= -296;  (24) 

= 20 + 12x(20 + 12y); (2~) 

Y~-~j(v- , )  = 

P R O P O S I T I O N  3 .  

the functions 

rn t m - 1  g~(v) = ~ , ~ ( ~ - ~ ) v ,  + ~ - ~ , ~ ( v - , ) v ,  + . - .  + ~ , ~ ( v - , ) v ,  + ~o ,~(v- , )  = o. (28) 

Then, for the equation f~, we define the auxiliary functions Kj  and Y1,i, Y~d . . . . .  Y~-I , j  as 

to , jCv_,) t~j(v_,)  *~, j (v- , ) t3 , j (v- i )  rod (y - i )  Yl,~(v-i) = Y 2 z ( y - ~ )  = 
Kj (y_s )  - - t l , j ( y - i ) '  ( - t l , j ( y _ i ) )  2 ' ( - t l , j ( y - i ) ) a  , 

m--2 m- - I  to.j ( v - , l t , ~ - l j (V -3  to,~ (y- , ) t~ .Av- , )  
(_tlj(y_,)), ,~-i  ' Ym-l j (Y-~)  = (_tl,~(y_,))m 

Let (1) be an a-system in f~ and r = (r l , . . .  ,rp) • T~p n fL For a / / ( i , j )  • S, 

(29) 

C O  

n = 0  qx +-..+q,,~- l ~ n  

are well defined in 

DO = { x - ,  e 7¢P~; , Y 1 . 3 ( ~ - , - r - , ) l + . . . + l Y . ~ - l j ( x - , - r - , ) , <  ( m - 1 ) r a - 1 )  -~ _ m ~  n fL 

and they satisfy f ~ ( ~ ,  . . . , ~,_~, ~ (~_,), ~,+ ~, . . . ,  ~ )  = O. 

PROOF. For each (i,j) E S, functions (29) are well defined, since from (20) and (27) one gets 

o f j  ogj o~, 0g,: = t l .Ay-,) .  

i x 

d(ql, q,,~-l)r~,~(z-, r _ , ) , . . ,  q--~ . . . .  - , Y ~ _ ~ , ~ ( ~ - ,  - ~_,), 
(30) 

(31) 

Therefore, 

and, finally, define f~t as the open subset of 7~ 3, so tha t  (22)-(25) are different from zero, then 
we can say tha t  system (3) is an a-system with sequence (11) in f~l. 

Let  (1) be an a-system in f~, .4, its (UD)-matrix, .&4, an (Ma) -ma t r ix  so tha t  . ~  = ~t, Me,  
the canonical form of A4, and finally the set of subscripts S = {(i, j ) ;  entries of A4c equal to 1}. 
Consider r E T~p fq f~, then for each (i, j )  E S, we can make the change of variables in the 
equation f j  

= u + r and g j (v )  = Yj(v + r) .  (26) 

Arranging the terms of f j  (x) according to  the powers of zi ,  one gets 

f j ( , )  = f j ( y + r )  = gj(y) 

= s ~ , A v - ,  + T_, ) (v ,  + r , )  ~ + ~ - I , A v - ,  + ~ - , ) ( v ,  + r , ) ~ - i  + . . .  (27) 

+ s i z ( y - i  + r - 0 ( w  + rl) + so.~(y-~ + r_~) = 0. 
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Observe that (28) can be considered as a polynomial in the variable yd. So, using (13) one gets 

y, = K j (y - , )  ~ ~ d(ql, a,~ l~Y'q'" " y .q~- l ,  , • " , -  - / 1 j t Y - ~ ) , ' " ,  m-lj[Y--d), 
n~O ql +'"+q,,- 1 =n 

(32) 

that is convergent in the region D~# (undoing the change of variables (26)) in agreement with (15). 

DEFINITION 4. Let (1) be an ~-system in ~, r • ~7, ng~ and let Gr be the set o£ functioas given 
by 

G~ = { ~ ( x _ ~ ) ;  with f j ( x l , - - - , x ,_ , ,  ~ ( x_ , ) , x ,+ , , . . . ,  xp) = 0; ( i , j )  • S } ,  (33) 

with 9o~ det~ned in (30). Then Gr is sakI to be a complete set of explicit func t ions  of system (1), 
around the point r, from now on (CSEF)r of system (1). 

THEOREM 2. Let (1) be an o~-system in fL Let a 6 ~ be a root of (1). Then there exists a c]osed 
p-cube, K = I1 X .,. X Ip C ~, a 6 K, where all the functions of the set Ga are wen defined. 

PROOF. If x = a, then 

tj(a~,a=,...,ap)=O=g¢(O,...,o)=to,~(o,...,o), l < j  <_p, 

and (31) holds. By continuity there is a neighbourhood of a , / 4  ~j, where (31) is verified. The 
result follows, by considering the intersection V = n /g~ i  with ( i , j )  • S, since we can take 
K C V and then ~ 6 Ga is well defined in /1  x . . .  × I~-1 × I~+1 x Ip, 1 < i < p, respectively. 

EXAMPLE 3. Consider again (3); in agreement with this theorem the algorithm must search 
regions, K,  in ~1, where the functions ~o~ are convergent. To accomplish this aim oae begins by 
looking for a point r • ~1, in such a way that the series function ~o~ • Gr, corresponding to the 
first row of the matrix Me, is convergent at the point r-1.  In this example we can take r -- 0, 
since 

(1) 0 • ~1, 
(2) by using (32), it is obtained the series function 

z - - ~ 3  l ( x , y ) =  4 + 6 x  2 - 1 0 y  oo 
79 ~ d(O, n)Z" (x, y) (34) 

n ,=0  

where, according to (14), 

1 ( 3 : )  and Z(x,  y) = (4 + 6x2 - 1 0 y )  2 
d(0, n) = 2n +-------1 493039 ' 

that  is uniformly convergent in the region 

D13 = ((x,y);  -270.2 < 4 + 6x 2 - 10y _< 270.2}, (35) 

and that,  obviously, contains the point (x, y) = (0, 0). 

Once this is done, the remaining functions of the set Go are considered, starting with ~oI, also 
corresponding to the first row of the matrix Me. 

z = ~]x(x,y) = 8 5 -  x -  1 0 y -  3y 2 (36) 
22 

defined in 
D n  = {(x, y), (x,y) • 7~u}. (37) 
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On the other hand, taking into account (17), 

4 + 612 - 10YI 3 
Izl = I ~ l f x ,  y) _< ~-9 t 2 -< 5.13, with (x,y) • D13. (38) 

Therefore the ranges of the functions 9s 1 and 91, defined in Dis  and D n ,  are contained in the 
intervals, 

113 = {-5 .13  < z < 5.13}, I l l  = TO, (39) 

respectively. Compute  now 

R 1 = Dl l  N DIS , Ix = 111 N I13. (40) 

Then  we conclude tha t  inside the region 

A1 = R1 × I1 # 0 (41) 

the graphs of  the functions 9~ and 9~ are well defined. We continue with the functions 92 ~ Go 
and 9~ E Go corresponding to the second row of the matrix M¢, 

x = 921 (Y, z) = 85 - 10y - 3y 2 - 22z, 

100 - 43y + 3y 3 - 6z (42) 

= ~ ( Y '  ~) = 7 
In an equivalent way the regions 

D21 ---- D22 ---- {(y,z);  (y,z) • 7~2), 

I21 ~ I22 = ~ ,  (43) 
R2 = D21 N D22, /2 = / 2 1  M 122 , and 

A2 = (RI x I1) n (R2 × I2) # O 

are computed. Then  we deduce tha t  the graphs of the functions 91, 9~ 1, 9 2, and ~ am well 
defined inside A2. Finally the functions 92 a • Go and 9~ E Go, corresponding to  the third row of 
the matrix M¢, are considered 

OO 

y = 923(x, z) = I00 - 7x -- 6z E d ( O , n ) Y , ( x , z )  ' 
43 .=o  (44) 

4 + 6 1 2 - 7 9 z + z  s 

where 
3(100 - 7x - 6z) 2 

Y(y,  z) = 1953125 

Then,  
Da2 = {(x,z);  -62 .66  < 100 - 71 - 6z _< 62.66), 

Dss = {(z ,z) ;  (x,z)  e T62}. (45) 

As 

lyl = l~(x,z)[  <-11°° 
i 

I ~ I 6Z  3 
43 ~ _ 2.18, with (x, z) E D32, (46) 

I 
then 

132 = {-2 .18  _< y _< 2.18}; 13a = ~ .  (47) 

And as a consequence all the graphs of  the functions of Go are well defined indde the region 

A~ = (RI × 11) n ( / h  × I~) n (R3 × 1~) ~ 0. (48) 

Finally the set K C A3 N f~l, given by 

g = {(x, y, z); 3.93 < x < 6.43; 0.82 < y < 1.82; 4.5 < z < 1.87} (49) 

is computed.  Note tha t  K is a compact  rectangle in f~l, where all functions of G0 are well defined. 
So K verifies the necessary conditions of Theorem 2, and it is a candidate region to contain a 

root. 
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4.  S U F F I C I E N T  C O N D I T I O N S .  T H E  M A I N  R E S U L T  

DEFINITION 5. Let  ( i )  be an a - sys tem in fL Assume  that  there is a closed p-cube, K = I1 x 
• ..  x I r, C f~ and r ~ T~v so that  MI the functions o f  Gr are well defined. Then the following 
functions can be defined: 

c ' ( = _ , )  = (~ ,  - ~ )  (=~, . . . ,=, ,_, ,  =,,), 
c ' ( = _ , )  = ( d  - d - J  (=, . . . . .  = , - , ,  = , + , , . . . ,  = , ) ,  2 < i < p ,  

(~o) 

in lr2 x . . .  x Iv, 11 x . . .  x I , -1 ,  1,+~ x . . .  x 1v, 2 < i <_ p, respectively. On the other hand, f f  we 
p--2 t~ke a ~ x ° e K n n~7~ ~ for G 1 and x ° ~ K n T£i_~,, for G i, 2 <_ i <_ p, then the rea/functions 

can be introduced 

~ ° ( ~ )  = ( ~ - d )  (~o,.. o 
• ~X~_I, Xp) 

~'~o(~,_~) = ( ~ -  ~ , - 1 ) ( ~ o , . .  o o o 2 ~ i < p ,  
(51) 

where xv 6 Iv, ~i-1 ~ Ii_~, with 2 < i < p, respectively. 

REMARK 2. From (20) and (21), we can deduce that  

OG~(x-~) # 0; o a ' ( x _ , )  ~= 0, with 2 < i < p, (52) 
Ox~ Ox , - i  

since 
Ofp O f  1 

~ v  Oxv 

Ofp Ofl  
OXl Oxl 

In the same way 

ofp o$1 oA of~ 
OXp 0331 OXp OX 1 ~ 0 

~ o~ 0,I dvb(~p 
--377. + ~ - 0zp 0zv 4 0 ~ dxp ¢ 0. 

Oza 

of,_~ of ,  

Of~_l Of, 
Oxi Ox, 

OA-~ Of, a f i  Of , -1 
= Ox~- lOx ,  O z , - i  Ox, 4 0  

o~,----7 o~,_~ ~o,_ 1 0~o~ 

Oa:t Oxl 

d a b  (~,,) # o, 2 < ~ < p. ::::~ - -  
d.Ti_ 1 

- - # o  

(53) 

(~4) 

Suppose that  sets V1, 1)i, 2 < i _< p, given by 

Vl = { ( ~ , , . . . , z p  e n ~ n a ;  ~1 = d ( ~ ,  . ,~P  = 1 .. ~A~,...,z~); c'(n,. . . ,=~) = o}, 
i Z 1), = {(z~ , . . . , zp)  ~ RYnn; z~ = ~ , _ ~ ( _ , )  = ~ ( z - O ;  a ' ( z _ , )  = o} 

(55) 

are not empty. Therefore, by applying the implicit function theorem to the functions G ~, there 
are suitable open sets, where the functions 

z,, -- Xp(~2,. . . ,  ~p-1), 

z~-i  = X ~ - l ( z - ( ~ - l ) - , ) ,  

with G l ( z2 , . . . ,  Xl,(z2 . . . . .  z p - 1 ) )  = 0, 

with G ' ( z l , . . .  , X , - l ( z - ( ~ - l ) - , ) , . . . ,  z v) = 0, with 2 < i _< p, 
(58) 
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are well defined. And finally, the following diffeomorphisms between open sets of ~P  can be built: 

I~l ; W 1 --o T 1, 

r l (~ )  = (~1 - ~ l ( * ~ , . . . , X ~ ( z - l - ~ ) ) , z = , . . . , z ~  - X~(z_l_p)) ,  
p--2 r l  : w  I ~ v l - - + T  1~1~1,v • 

In  the same manner,  for 2 < i < p, 

r,  : w i - ~  T i, 

r , ( , )  = (~1, . . . ,  , , -1  - X~_l(,_(,_~)_,),  ~, - v ~ ( ~ , . . . ,  X i - - l ( * - - ( i - - 1 ) - - i ) , . . . ,  Zp),  . . . .  Z p ) ,  

r~ : w * n v i  -+ T ~ n r~f-~, , .  

(~8) 

THEOREM 3. Le t  (1) be an a - s y s t e m  in f~. Then it has a zero, a, in 12 if, and only  if, there exists 
a closed p-cube, K -- I i  × . . .  x Iv C ~ ,  so tha t  each function G~o, 1 <_ i ~ p, in t roduced  in (50), 

is well defined and it has a zero in Ii.  Besides  a E K .  

P l m o F .  Let a = (ai . . . .  , av) be a zero of (1) in fl, then there is a compact  p-cube K ---- I1 x 
• . .  x I v c 12, with a E K,  tha t  satisfies the hypothesis of Theorem 2. So the functions G i exist. 
As a is a root, then a e ])l N . . .  n Vp and K can be taken so tha t  K c W 1 n . . .  N W v. Hence, in 
agreement with (57) and (58), it follows tha t  

r l ( K  n V1) = / 2  x . . .  x Iv - l ,  (59) 

and for 2 < i < p, 

From (59) 

r d K  n y,) = I1 x . . .  x I,_2 x 5 + ,  x . . .  x I~. (60) 

, ,Xv_l) = ( y l , x ~ , . .  o Yv) E K f] Vl; with ( ~ , . . .  4 - , )  c ~: × . . .  × ±~_~ rT~ (~o,..  0 • " ,  ~gp--1, 

yv = z .  (~o ,_p) • I~; (6i) 

~1 = ~I (~o , . . . ,~o  ~,xv (~o_~ _~)) = ~ ( ~ , . . .  x~ (~°_1_~)) e zl. ]j-- 

Therefore Gio(Xp(x°_ l ,_v ) )  = O. On the other side (52) implies tha t  (Xp(X°_l,_p)) is the unique 
zero. In a similar way, f~om (60), the remaining cases can be proven. 

Conversely, assume now tha t  there is a closed p-cube, K,  to  verify the required hypothesis. 
First  of  all, we are going to consider the projections Irp,1 and lri_l,i, introduced in (2). Having 

done this, V ( x l , . . .  ,xp) E l i  x -. .  x I m we arrive at 

rv, l ( Z i , . . - , ~ p )  

( r l )  -1 (0, ~2 , . . . ,  ~p-1, 0) 

G i ( z 2 , . . . ,  ×v- i ,  yp) 

Zl  

= ( 0 , x 2 , . . . ,  x p - 1 , 0 ) ,  

= ( * l , z 2 , . . . , % - i , y p ) ,  

= ~ ( ~ 2 , . . . ,  x ~ - l ,  Yv), 

with up e Iv, 

with zl E I i .  

(62) 

From (62), we take ( z i , x 2 , . . .  ,×v- i ,  yp) and define the following functions: 

-1,U(*l ,  x2,  . . . ,  x p -  1, yp) 

( r ~ ) - l ( 0 ,  0, x a , . . . ,  ~ v - 1 ,  yv) 

GU(yl, x a , . . . ,  xv-1 ,  yp) 

Z2 

= (O,O, xa,.. .  ,xv-l,yp), 

= (Yl ,  g 2 , Z 3 " ' ' , X p - I , Y p ) ,  

= 0~ 

= ~ ( y i ,  ~ a , . . . ,  z p - 1 ,  yp),  

with yl E I i ,  

with z2 E /2 .  

(63) 
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By going on this process, we take (Yl , . . . ,  Y~-~, z~, x~+~,..., zp_x,y~) from the i th previous step 
and define the following functions: 

~iO+ 1)(YI , . . . ,  ~li--1, gi, Xi+I ,  • . . ,  ~p--1, I/p) = (ff l , .  • •, ~]i--1, O, O, Z t a r 2 , . . . ,  Zp..-1, ~/p), 

(ri+l)  -1 (It1, . . . ,  y~-l, 0, 0, x i+2 , . . . ,  zp_l,  lip) : (y l , . .  •,/J~, Z~+l, x~+~, . . . ,  x~_l ,  ~ ) ,  

G~+l(yl,...,y~_~,y~,x~+2,...,xp_x,y~,) = 0 ,  with y~ • I~, 
. i+1 t_ Zi+l = Wi+lkYl,' ' '  ,y~- l ,y i ,x i+2, . . .  ,~p-l,Yp), with z~+l ~ h+t .  

(s4) 

And the last step will be 

~'p- la , (u l , .  • •, z ~ l ,  u~,) = (u,  . . . . .  y~,-2, O, 0), 

(rp) -~ (u~,.. •, ~,-2, o, 0) = (u, ..... up-2, up-l, ~), 
GP(Yl ,  ' ° '  , ~/F- 1) ~- O, with Yp-1 E Ip-1, 

with zp e I~. 

(~) 

Equations (62)-(65) allow us to define the continuous function 

F ~- (rp) -I o... o (r2) -1 o 7rl, 2 0  (rl) -1 o ~rp, 1 ( ~ )  

to verify F(Iz x . - -  x Ip) C It  x . . .  x /p ,  therefore, from the point fixed theorem of Brawer, F has 
a fixed point (Pl . . . . .  pp), that is a root of system (1) and it is in K.  The result is proved. 

EXAMPLE 4. Coming back to system (3), for all (x 0, yo, z o) E K,  K being the region introduced 
in (49), we introduce the functions 

a (z) = ( y o z )  

= _ 

z • [1.87, 4.51, 

z E [3.93, 6.43], 

e [0.82,1.82]. 

(6r) 

As required in Theorem 3, we must show that  V(x° ,y° ,z  °) E K,  0~o(1.87)G~(4.5) < 0, 
G~o(3.93)G~o(6.43) < 0, and GSo(0.82)Gl_0(1.82) < 0. In other words, functions (67) have azero  
in their intervals of definition. This issue will be treated in the following section. 

i 5.  L O W E R  A N D  U P P E R  B O U N D  F O R  T H E  F U N C T I O N S  ~ j  

PROPOSITION 4. A lower bound for (14) ~ given by 

n[ 1 1 
d(qi . . . . .  q m - 1 )  :> - -  q l ! ' "  " q r a - l [  n 3.75 3'75n' Vn > 1. (68) 

PROOF. First we are going to prove that  

d(n, O, . . . ,0) >_ 1-3,75 "-~, 
n 

Given the sequence 

,~ _> 1. (69) 

( 4 n + 2 ) ( n  + 1) Vn > 1, 
an : (n + 2)n ' 

it is easy to show that it is increasing for n _> 4. As a4 = 3.75, then a~ _~ 3.75, Vn _~ 4. For 
n = 1,2, and 3 inequality (69) holds true. For n = k, k > 3 we have tlmt 

d(k + 1 ,0 , . . .  ,0)(k + 1) 
d(k, 0 , . . . ,  O)k = a~ > 3.75. 
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Hence, 

d(k + 1 , 0 , . . . , 0 )  _> 3.75d(k, 0 , . . . , 0 )  k + 1" 

By induction, hypothesis (69) is concluded. 

d(q~, . . . ,  q,~_~)q~ l . . . qm-~ ! = 
(2ql + 3q2 +"  ' .  + mqra-1)! 

(q~ + 2q~ + . . -  + (m -- 1)q,~-~ + 1)! 
2ql + 3q2 + " "  + mqm-1 

ql + 2q~ + . . .  + (m - 1)qm-1 + 1 
2ql + 3q~ + ' "  + mq,~-i  - 1 
qa + 2q2 + . . .  + (m - 1)qra-1 

2q~ + 2q~ + . . .  + 2q,~-a + 1 (2n)! 
q~ +q~ + . . .  + q,.,.,_~ + 2  

(~o) 

(n + 1)I" 

Note tha t  the last term of product (70) is equal to d(n, 0 . . . . .  O)n!. As 

2 n + K  
n + l + K  -> 1, 

for all integer number K _> 1, then all the terms of product (70) are greater than  or equal to 1, 
so the proof is completed. 

THEOREM 4. Assume tha$ each fimction ~o~ ~ G~ is well defined, Gr defined in (33). Consider 

~ ( y - d  = Y~z(v-O + " "  + v.~-~,~(~-~), 
uAv-d = IYu(u-,) l  + ' "  + IY,,,-z,~(y-dl, (71) 

where Y I j , . . . ,  Ym-l , j  ~re the functions introduced in (29), and 

+ i I 1 H~,j (y_~) = 1 - ~ log ( - TVj (y_,)) - ~-~ log (1 - TUj (y_ , ) ) ,  

H,+j(y_,) -- 1 - __1 log (1 - 3.75V~(y_i)) - 7-~ log (1 - 3.75Uj(y_i)) 
7.5 

= tog ( 1  - 

1 ( 1  -- TVj (y_i) ~ 
H~d(y_,  ) = ~ l o g  1 - T U j ( y _ , ) ] '  

where T = m m / ( m  - 1) m- l ,  then the functions 

and 

f K~(v_,)H:j(v_,) - Kj(v_,)H;,j(;_,), 
l Ki(y_i)Hl+j(y-i)  - K ; ( y - i )H~ , j ( y - , ) ,  

( 7 2 )  

i f  g j ( y_ , )  > 0, (~a) 
if g~ (y_,) < 0, 

{ gj(y_,)g,+j(v_,) - KAy-OH~.j(U-O, if gj(v_~) > O, 
L~(U_~) = g jcy_ , )n : j (u_ , )  - Kj(V_,)H?,~(V_,), ~gj(v_, )  < 0, 

with K j ( y - i )  introduced in (29), and defined in region (31), they  satisfy the inequalities 

q ( y - , )  < ~(v- , )  < vj(y_,). 

(74) 

(75) 

PROOF. Assume, with loss of generality, tha t  Y l d ( Y - i ) , . . . ,  Yv,j(Y-i)  are negative and the re- 
maining Yp+l,j(y-~), . . . .  Ym-xd(Y-~), positive. Then, ~.(y_~) can be writ ten as 

~ ( v - , )  = KAy- , )  (H?(v- , )  - H}(v_,))  , (76) 
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where 

oo 

H~'(Y-') = 1 +  E E 
• t = l  2t+v----n ql + " ' + q p = 2 t  

ql~+ t "[" "" + q m -  ~. ---------'~ 

and 

[Y,,-z j (l/- ,)l  q - - '  

(77) 

oo 

It;'(r(~/_¢)) = E E E d(ql,...,qm-1) IY,~(Y-,)I" 
r i f t  2 ~ + i + v = n  ql+.. .+q~ff i2t+l  

qp+z + ' " + q ~ -  t = v  

• .. [y,~_l~(~/_~)[q--~. 

We recall that using the Taylor expansion we have 

(78) 

log ((1 - ~(y- , ) ) (1  - T..T~ (~,_())) 

n! 1 
= - 2 E  E E ql!...q,,~-tln 

~ = 1  2 t - ~ = n  q i + . . . + q l , , , , 2 t  
ql~-I "}" "'+qm--t =~ 

l og / '  1 - ~ ( ~ - , ) ' ~  
k,1 - U j ( y _ ~ ) , /  

oo nl  1 

= 2 ~  ~ ~ q x l ' " q m - t l "  
n----1 2 t + l - F v = n  q l+- . .+qp- - - -2 t+ l  

q p + t + ' " + q m - l = t '  

, (7'0) 

(80) 

Taking into account inequalities (16) and (68), from the Taylor series (79) and (80) it follows 
that 

/'~j(Y(I/-,)) __ H~(Y(y_,)) <_ H+~(Y(~/_,)) (81) 

and 
H~j(Y(~t-,)) <_ H~-(Y(y-I)) <_ H~o(Y(v-,)). (82) 

And the result is proved. 

EXAMPLE 5. Taking again system (3), by computing functions (73) and (74), the change of sign 
of the functions G~(z), G~zo(z), and G-~0(g) can be calculated fDllowing the method, for instance, 
of consecutive subdivisions of intervals. Finally we get a root fur (3) in the region 

( ( x , y , z )  E 7~s; 6.05 > z > 5.8; 1.5 > y > 0.82; 3.15 > z > 2.76} .  (83) 

Then taking as initial value z -- 6.05, y = 1.5, and z = 3.15, for instance, using Newton method, 
the root x = 6, y = 1, and z = 3 is obtained. 

6.  A L G O R I T H M  S T R U C T U R E  

This algorithm, whose structure is introduced, searches initial values for solving polynomial 
system (1) in a bounded and dosed region of ~P, F, so that F C fl, ~ being the region where (1) 
is a-system (see Definition 3). 

STEP 1. Compute the (UD)-matrix of system (1), .A1, according to Definition 2. 

STEP 2. If -~1 is an a-matrix, then go to the following step. In another case, in agreement with 
Remark 1, decompose the matrix A1 into several m-matrices, denoting by ~4 each one of them. 

STEP 3. Compute a (Ma)-matrix, ~4 C .4, in accordance with Definition 1. 

STEP 4. Compute the canonical form of ~ ,  J~tc, in agreement with Proposition 1. 

STEP 5. Introduce sequence B satisfying Theorem 1. 
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STEP 6. Taking into account the sequence S t search a point r E 7 ~  verifying inequalities (20) 
and (21), so tha t  the function ~[ (see Proposition 3) is convergent at  the point r - t .  

STEP 7. Compute the functions ~ of G~, introduced in Definition 4. 

STEP 8. 

1. Compute the functions ~o~, ~ E Gr, corresponding to the first row of M~. 
2. Find Dl t  and Dip, the regions of convergence of the series functions ~11 and ~1, respec- 

tively, according to Proposition 3. 
3. Find I l l =  [ -Mr ,M1]  7 t 0 and llp = [-Nz,  N1], where, in agreement with (17), M1 satis- 

fies the inequalities - M 1  < ~ ( x - 1 )  _< M1, with x-1 E Dxl, and Nt,  - N 1  < 
~l(x_l.) _< N1, with x_,  E DIp. 

4. Find Rt = Dlx N D1p and /1  = I l l  [3 Ilp. 
5. If Ax = Rt  × I1 = 0, then, from Theorem 2, there are no zeros in (Dlx x Izz) ~ ¢, and 

return to Step 6, taking other r outside (Dr1 x/11)- If, on the contrary, I1 x R1 ~ 0, then 
go to the following step. 

STEP 9. 

1. Compute ~21, ~o~ E Gr, corresponding to the second row of M~, and the regions R¢ = 
D2I n D ~ , / 2  = I2~ n I ~ .  

2. If  A~. = (Ix x R1) ~ (R~ x I2) = {~, return to Step 6. Otherwise go to the following step. 

STEP 10. Continue this routine until covering all the rows of the matr ix  Mc and all the functions 
of Gr: then there ate no zeros in the bounded region, F, and the algorithm ends, or Ap = 
(I1 x R~) ~ . . .  n (Rp x Ip) # ~ and go to the following step. 

STEP 11. Compute K = Ja x . . .  x Jp C Ap, so that  (1) is an a-system in K.  

STEP 12. Introduce the functions G ~, 1 < i < p, in K (see Definition 5), and the functions F~, FI ,  
so that  F~ ~ _< G ~ < F i ,  1 < i < p; such functions are built fzom (73) and (74). 

STEP 13. By using the functions ~ and/ ;~,  compute the sign of the functions G { in the estab- 
lished conditions in Theorem 3, then, 

1. if all the functions G ~, 1 < i < p, change their signs, there exists ~ zero of system (1), 
going to Step 6 for the search of other possible zeros; 

2. if some function G i preserves its sign, there is no zero and algorithm goes to Step 6, 
3. otherwise the intervals J~, 1 < i < p, are divided into subintervals until Theorem 3 is 

satisfied. 
4. The algorithm ends when all the bounded region r is covered, by regions of type A#. 
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