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Abstract

Spirochaetes are prominent in the polymicrobial infections that cause periodontal diseases. Periodontitis is a chronic inflammatory con-

dition of the periodontium, characterized by proinflammatory soft tissue damage and alveolar bone loss. Treponema denticola is the most

well-understood oral spirochaete, expressing a wealth of virulence factors that mediate tissue penetration and destruction as well as

evasion of host immune responses. This review focuses on emerging knowledge of virulence mechanisms of Treponema denticola as well

as mechanisms of other less-studied oral treponemes.
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Introduction

Periodontitis is characterized by chronic inflammation, alve-

olar bone loss and destruction of the gingival and periodon-

tal ligament attachment to teeth, coincident with a shift in

the microbial population in the gingival pocket. Spirochaetes

comprise up to 50% of the polymicrobial population in

subgingival plaque in periodontitis, and <1% in health [1].

Spirochaetes are divided into three families: the Spirochaeta-

ceae, Leptospiraceae and Brachyspiraceae [2]. Only phylotypes

of the genus Treponema, a member of the Spirochaetaceae

family, have been found in the mouth [3]. Ten species of

Treponema (Treponema denticola [4], Treponema pectinovorum

[5], Treponema socranskii [6], Treponema vincentii [7], Trepo-

nema lecithinolyticum [8], Treponema maltophilum [9], Trepo-

nema medium [10], Treponema parvum [11], Treponema

putidum [12] and Treponema amylovorum [13]) have been

cultivated from the oral cavity, whereas over 70% of Trepo-

nema phylotypes remain uncultivatable, their characteriza-

tion being limited to genetic identification [3,14]. T. denticola

is well characterized in terms of its pathogenic mechanisms

and association with periodontitis. T. denticola expresses a

variety of factors that allow for its survival, host tissue pen-

etration and immune evasion. Treponema species in addition

to T. denticola have also been identified in various forms of

disease and at differing pocket depths [15], raising a need

for greater understanding of their potential virulence.

Advances in genome sequencing have furthered our

understanding of the pathogenicity of oral spirochaetes.

The genome of T. denticola ATTC 35405 has been anno-

tated [16], and annotation of T. vincentii ATCC 35580

(Human microbiome project, Venter Institute) and T. leci-

thinolyticum OMZ 684T (Human Oral Microbiome Data-

base) is underway. Genetic manipulation, including directed

gene mutagenesis and plasmid transformation, of T. dentico-

la has become more routine [17–19]. The development of

a transposon system for T. denticola provides new opportu-

nities for whole genome mutagenesis and investigation

[20].

A number of recent reviews have described the virulence

factors of T. denticola in detail [21–24] (Table 1). This review

focuses on emerging knowledge of the pathogenic factors of

T. denticola and factors established in other oral treponemes,

selected for their novelty and likelihood of leading to major

advances.
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TABLE 1. Pathogenic factors of oral spirochaetes

Pathogenic factor Activity References

Adhesins
Major outer sheath protein (Msp) Binding to fibronectin, laminin, collagen types I and IV, hyaluronic acid [67,71,137]

Co-aggregation with Porphyromonas gingivalis and Fusobacterium nucleatum [51]
Oligopeptide transporter unit (OppA) Binding to soluble fibronectin and plasminogen; not immobilized forms or epithelial cells [68]
Dentilisin (PrtP, CTLP) Adherence to fibrinogen [66]

Ligand for co-aggregation with P. gingivalis fimbriae [49]
Fibronectin-binding protein (Fbp, 52 kDa) Adherence to soluble and immobilized fibronectin [59]
Leucine-rich repeat (LrrA) Adherence/penetration of epithelial cells.

Ligand for co-aggregation with Tannerella forsythia
[50]

FHL-1-binding protein B (FhbB) Adherence to factor H-like protein 1 [138]
Collagen-binding protein
Td92

Binding to collagen types I, IV and V [139]
Binding to epithelial cells [119]

M23 domain fibronectin-binding family
of proteins

Binding to matrix and plasma fibronectin [69]

Proteases/peptidases Substrates
Dentilisin Transferrin, laminin, collagen, fibronectin, IgG, fibrinogen, a1-antitrypsin, complement C3, IL-8, IL-6,

TNF-a, intercellular adhesions, bradykinin, substance P, angiotensin I
[79,80,82,83,99,140]

Trypsin-like protease (OpdB) N-a-benzoyl-DL-arginine-2-naphthylamide (BANA) [85]
Ester, amide and peptide bonds involving arginine and lysine [87]

Dentipain (cysteine protease) Insulin b-chain [91]
Proline iminopeptidase Dipeptides: Pro-Arg, Pro-Lys, Pro-Gln, Pro-Asn, and Pro-Ala [86]
Endopeptidases Bradykinin, collagenase substrates [88]

Substance P, neurotensin, angiotensins, oxytocin, vasopressin, and human endothelin
fragment 22–38

[141]

Cytoxicity
Msp Pore formation in cell membranes [70,75]

Lysis of epithelial cells, erythocytes [92]
Cytoskeleton disruption, impaired host cell migration, disruption of calcium signalling [93,97,128,129]

Dentilisin Lysis of epithelial cells, cytoskeleton disruption [92,96]
Cytalysin Haemolysis [37,142]

Motility
Periplasmic flagella Directed movement, cell invasion [143,144]
Chemotaxis system Environmental sensing and response, cell/tissue invasion [101]

Immune activation
Msp TNF-a production through TLR2–MyD88 in macrophages [115]
MspTL ICAM-1, IL-6, IL-1b, IL-8, IFN-b, COX-2, RANTES and PGE2 production in monocytes and

PDL cells
[113,114,122]

MspA ICAM-1, IL-6 and IL-8 production in monocytes and PDL cells [114]
Td92 IL1-b, TNF-a, IL-6, COX-2 and PGE2 production in monocytes and PDL cells [119]
LOS TLR4–MyD88 activation in macrophages. [115]

IL-6, IL-8, MCP-1, nitric oxide and PGE2 production in fibroblasts [124]
Glycolipids TLR2–MyD88 activation [116]
Peptidoglycan IL1-b, IL-6, IL-8, TNF-a, RANTES and PGE2 production in macrophage-like cells [145]
Lipoprotein Nitric oxide, TNF-a and IL-1 production in macrophages [117]

Immune evasion
Resistance to defensins Inhibit human b-defensins 1, 2 and 3 through TLR2 [146–148]
TLR inhibition (immune tolerance) Glycolipids or phospholipids inhibit TLR activation with CD14 and LPS-binding protein of host cells [121,125,126,149]

Msp and LOS mediate macrophage tolerance through TLR4 inhibition [115]
Msp Inhibits neutrophil polarization and chemotaxis through Rac1 inhibition [128]

Perturbs actin assembly, calcium transients and phagocytosis in neutrophils [93,129]
Osteoclastogenesis
Td92 Osteoclast formation in clavaria–bone marrow cell co-culture

Increased production of RANKL and PGE2, decreased OPG production in osteoblasts
[150]

LOS Osteoclast formation in clavaria–bone marrow cell co-culture
Increased expression of RANKL and PGE2, decreased OPG production in osteoblasts

[151]

Mobile DNA elements
Bacteriophage (utd1) Temperate bacteriophage

Genetic transfer, survival?
[45]

Transposases IPR010106 family
Genetic transfer, regulation?

[45]

Miscellaneous
Toxin–antitoxin system 33 predicted systems

Programmed cell death? Biofilm persistence?
[45]

Two-component systems AtcSR system
Survival? Virulence?

[27]

Hpk2–Rrp2 system
Oxygen sensing? Survival?

[28]

Metal transport/regulation
Haemin-binding protein (HbpA, HbpB) Haemin binding, iron acquisition [34,152]
Lactoferrin-binding protein Iron acquisition [36]
Transport-related operon (TroABCD) Manganese and iron transport, manganese-dependent and iron-dependent transcriptional

regulator (TroR)
[39]

Host protease modulation
Td92 MMP-9 production in monocytes [119]
LOS MMP-3, MMP-8, MMP-9, MMP-10, MMP-13 and MMP-14 gene transcription in osteoblasts [151]

MMP-3 production in fibroblasts [124]
Peptidoglycan MMP-9 production in macrophage-like cells [145]

MMP-9 production in neutrophils [153]
Msp MMP-9, cathepsin G, elastase and MMP-8 production in neutrophils [153]
Dentilisin MMP-2 activation [83]
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Environmental Sensing and Adaptation by

T. denticola

The periodontal pocket undergoes dramatic environmental

changes during disease pathogenesis [25]. How oral spiro-

chaetes sense and respond to their changing extracellular

environment is relatively unknown, although two-component

systems (TCSs) are key signal transduction elements involved

in adaptation. TCSs consist of a sensor histidine kinase and a

response regulator that influences gene transcription and cel-

lular activity [26]. T. denticola genome annotation has

revealed eight putative histidine kinases and nine response

regulators [16]. The AtcSR and Hpk2–Rrp2 TCSs have

recently been characterized in T. denticola. These were con-

firmed to encode functional systems, with expression in a

growth-dependent manner [27,28]. The AtcR regulator

sequence contains a LytTR domain [27], which affects viru-

lence factors such as polysaccharide synthesis, fimbriae, toxin

production and quorum sensing in other microorganisms

[29].

The Hpk2 regulator evidently contains a PAS-haeme-bind-

ing domain, which functions in oxygen sensing [28], suggest-

ing involvement of this TCS in treponemal responses to

changing oxygen tension in the periodontal pocket. The

Hpk2–Rrp2 TCS is part of a larger operon, which includes

genes involved in peptidoglycan synthesis, DNA replication

and translation, possibly allowing T. denticola to outgrow

other microorganisms in the diseased periodontal pocket

[28].

Recently, T. denticola genome profiles in response to envi-

ronmental stresses encountered in the periodontal pocket,

including heat shock, osmotic downshift, oxygen exposure

and blood exposure, were examined [30]. Although each

condition identified a specific set of genes that changed upon

exposure, a set of ‘core stress response’ genes induced

across all conditions were also identified. These included

genes encoding chaperones and proteases, consistent with

general cellular stress responses, along with a predicted r70-

factor (TDE0937), which may be a global regulator of the

stress response.

Blood exposure does not appear to activate a severe

stress response, consistent with the fact that T. denticola

resides in an environment that is prone to bleeding and has

been implicated in systemic infections. However, a specific

set of genes was activated, including transcriptional regula-

tor and transport genes, probably representing genes rele-

vant to infection and survival [30]. Also, transcription of

treponeme surface antigens able to initiate an immune

response in humans [31] was downregulated following

blood exposure, representing a possible immune evasion

strategy [30].

Like most bacteria, oral spirochaetes require essential

elements such as iron, zinc and manganese for survival.

Although these elements are often not freely available in

the human host, fluctuations may occur because of bleeding

and increased gingival crevicular fluid flow. T. denticola is

known to possess orthologues of many metal-dependent

enzymes and at least eight metal uptake pathways [16,32].

Both lactoferrin-binding and haemin-binding proteins,

involved in iron acquisition, have been characterized in

T. denticola [33–36]. Also, a haemolysin (cytalysin) has been

reported to lyse erythrocytes and haemoxidize haemoglobin

[37] as well as acting as a cysteine desulfhydrase to produce

pyruvate as an energy source, and the toxic metabolites

ammonia and hydrogen sulphide [38]. A troABCD operon,

encoding a zinc and manganese transport system, has also

been characterized [39]. The iron-dependent and manga-

nese-dependent transcriptional repressor, TroR, is also pres-

ent, acting to negatively regulate the Tro operon. It

probably plays an important role in manganese and iron

homeostasis in T. denticola.

Motility and chemotaxis are also involved in bacterial envi-

ronmental responses. Oral treponemes have complete che-

motaxis systems, with up to 2% of the total genome in

T. denticola being devoted to chemotaxis and flagella [16]. The

TABLE 1. (Continued)

Pathogenic factor Activity References

Host cell signalling
LOS Fos, MKK1, MKK2, MKK3/6, NF-jB p50 and NF-jB p65 phosphorylation in fibroblasts [124]
Peptidoglycan ERK1/2, GRK2 and Lyn phosphorylation in macrophage-like cells [145]
Msp ERK1/2 and p38 phosphorylation in fibroblasts. Additional stress kinases activated in

phosphokinase screening assays
[154]

Rac1, RhoA and Ras activation in fibroblasts (M. B. Visser, R. P. Ellen, unpublished data)
Rac1 inhibition in neutrophils [128]

MspTL STAT-1 phosphorylation in monocytes [113]

COX, cyclooxygenase; ICAM, intercellular adhesion molecule 1; IFN, interferon; IL, interleukin; LOS, lipooligosaccharide; LPS, lipopolysaccharide; MCP, monocyte chemotactic
protein; MMP, matrix metalloproteinase; NF-jB, nuclear factor kappaB; OPG, osteoprotegerin; PDL, periodontal ligament; PGE, prostaglandin E; TLR, Toll-like receptor;
TNF, tumour necrosis factor.
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chemoreceptor component (methyl-accepting chemotactic

protein (CP)) of the system monitors the environment, lead-

ing to signal transduction resulting in flagellar movement.

T. denticola has over 20 genes encoding CPs [16], reflecting

the complex niche that oral spirochaetes occupy. Serum,

albumin and glucose, substances whose levels are increased in

the diseased periodontal pocket, are chemotactic for oral

treponemes in vitro [40,41]. The chemosensor DmcB was also

identified as part of an environmental ‘core stress response’,

confirming the importance of chemotaxis in response to envi-

ronmental changes [30].

Mobile Elements and Genetic Exchange in

Oral Spirochaetes

Bacteria in the periodontal pocket form biofilms, an ideal

environment for genetic exchange [42]. Some treponemes

harbour plasmids, such as pTS1, which has been found in

both T. denticola and T. socranskii isolated from the same

patient, suggesting the possibility of DNA transfer among

species in the periodontal pocket [43]. Intergenus genetic

transfer has also been demonstrated between T. denticola

and the early biofilm colonizer Streptococcus gordonii [44].

Shuttle plasmid transformation from T. denticola to S. gordonii

occurred in broth culture and artificial biofilms.

More recently, a microarray study of gene expression

changes in planktonic and biofilm T. denticola cultures found

a family of transposases within the genome [45]. Thirty-

five genes with similarity to the IPR010106 domain found

in known transposases are present in the T. denticola

35405 genome, 70% of which are upregulated in biofilm

cultures. These elements may be involved in internal chro-

mosomal rearrangement or horizontal gene transfer. A

functional temperate bacteriophage, utd1, was also iso-

lated, and prophage gene expression was increased in bio-

films. utd1 may also play a role in horizontal gene

transfer, as many of its genes can be traced to pathogens

such as Yersinia pestis and other bacteriophages [45]. Addi-

tional regions of unusual DNA composition representing

phage remnants, along with a ‘clustered regularly inter-

spaced short palindromic repeat’ (CRISPR) locus together

with adjacent CRISPR-associated genes, thought to be a

mobile element, occur in T. denticola [16]. The presence of

multiple elements involved in lateral DNA transfer suggests

that genetic exchange is important for T. denticola survival

in the periodontal biofilm.

Intragenomic recombination within the T. denticola gen-

ome also needs to be considered, as the genome contains

redundancies and duplications [16], together with multiple

variable segment regions, including CRISPR-associated

regions, which have been suggested to be ‘hot spots’ for

homologous recombination [46]. It is well established that

other spirochaetes, such as Borrelia burgdorferi, are able to

adapt to their multi-host environment and evade host

immune responses by intragenomic recombination of silent

cassettes, allowing for antigenic variation and switching of

virulence genes [47].

Adhesion and Proteolytic Mechanisms of

Oral Treponemes

Colonization of the oral cavity and formation of the multi-

species dental plaque biofilm requires adherence to other

microorganisms in addition to host proteins [42,48]. T. den-

ticola co-aggregates with oral bacteria, including Porphyro-

monas gingivalis, Fusobacterium nucleatum and Tannerella

forsythia, through interactions involving spirochaete surface

proteins [49–51]. P. gingivalis cell surface components such

as fimbriae and haemagglutinins, together with the prote-

ases, gingipains, also contribute to bacterial adhesion

[48,52]. Recently, involvement of P. gingivalis ligands in

co-aggregation with T. denticola has been further investi-

gated, and the haemagglutinin domains (Hgp44) of gingipains

and haemagglutinin A are key ligands for co-aggregation

between these organisms [53]. A number of Gram-negative

bacteria, including P. gingivalis and T. denticola, produce

outer membrane vesicles (OMVs) [54,55], potent virulence

factor ‘packages’, which can also aid in bacterial co-aggrega-

tion [54,56]. P. gingivalis is able to preferentially package

gingipains in OMVs while excluding other abundant mem-

brane proteins [57], implicating OMVs in T. denticola

co-aggregation.

Adherence to human cells and extracellular matrix (ECM)

is the first step in tissue penetration and resultant pathogen-

esis. Intact treponemes are able to bind to epithelial cells

(T. denticola, some T. socranskii subspecies, T. pectinovorum

and T. lecithinolyticum) [58–60], fibroblasts (T. denticola and

T. lecithinolyticum) [61,62], endothelial cells (T. denticola,

T. socranskii and T. vincentii) [63] and the ECM proteins lami-

nin, fibronectin and collagens [59,63–65]. T. denticola pos-

sesses specific adhesins, including the major outer sheath

protein (Msp), the oligopeptide transporter unit OppA and

the chymotrypsin-like protease dentilisin [66–68].

OppA binds soluble fibronectin and plasminogen but not

immobilized forms and, unlike other spirochaete surface pro-

teins, it is not cytotoxic to epithelial or fibroblast cells. It has

been proposed that, rather than undergoing direct host cell-

binding interactions, OppA binds soluble matrix proteins to
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the bacterial surface as a means to evade the host immune

response. OppA is also involved in peptide uptake and thus,

indirectly, bacterial survival. It is present in T. denticola and

T. vincentii but not in T. socranskii and T. pectinovorum, reflect-

ing the differing metabolic requirements between Treponema

species. A 52-kDa fibronectin-binding protein has also been

identified in T. lecithinolyticum; it binds soluble and immobi-

lized fibronectin [46], suggesting involvement in adhesion in

both serum and tissue.

Recently, a comparative sequence analysis strategy used

the Treponema pallidum fibronectin-binding protein Tp0155

to identify seven additional fibronectin-binding orthologues in

T. denticola [69]. Of these, five were further analysed, and

found to bind both matrix and plasma fibronectin. All mem-

bers of this family contain M23 peptidase domains, and four

members also contain LysM domains. M23 peptidases are

able to degrade peptidoglycan, whereas LysM domains bind

to carbohydrate polymers such as peptidoglycan. These fea-

tures suggest that, in addition to fibronectin binding, these

proteins may be involved in bacterial cell adhesion and pepti-

doglycan-modifying functions. Importantly, these multifunc-

tional proteins may play a role in the lysis of other bacteria

in the periodontal pocket, allowing for nutrient acquisition

and furthering the survival of Treponema [69].

Msp is part of an outer sheath complex in T. denticola; it

has both adhesin and porin properties [67,70,71]. Msp is also

found in T. vincentii, but not in other oral spirochaetes

[72,73]. ‘Msp-like’ homologues have been described in

T. maltophilum and T. socranskii (MspA) [73], T. lecithinolyticum

(MspTL) [74] and T. pectinovorum (MompA) [60]. Although

‘Msp-like’ loci and proteins are heterogeneous among phylo-

types and T. denticola, they share many structural

characteristics. They are all heat-modifiable, detergent-resis-

tant, and protease-resistant. Like Msp [67,75], MspA, MspTL

and MompA localize to the outer sheath [60,74,76].

Whereas the impact of Msp on host cells has been studied

extensively, the role of ‘Msp-like’ proteins is unclear.

Proteases are crucial for tissue invasion as well as evasion

of host defences. Dentilisin (PrtP) is distributed among

T. denticola, T. vincentii, T. putidum, T. socranskii and T. lecithino-

lyticum, but is absent in T. maltophilum and T. parvum stains

[77,78]. Sequence analysis of prtP and upstream prcA indi-

cated two paralogous families on the basis of substrate speci-

ficity and bacterial phylogeny [77]. Dentilisin degrades

diverse substrates, including ECM proteins, immunoglobulins,

a1-antitrypsin, complement C3, bioactive peptides and cyto-

kines [79–83], suggesting involvement in bacterial adhesion,

tissue penetration and immune evasion.

As T. denticola, T. vincentii and T. putidum are asaccharolytic

[11,84], peptidases are vital for their nutrient acquisition.

Various peptidases and peptidase activities have been charac-

terized in vitro [85–90], but their pathogenic roles are not

yet known. Recently, Ishihara et al. [91] have reported a cys-

teine protease, dentipain, in the T. denticola genome, a homo-

logue of Streptococcus pyogenes IdeS. Its characterization

revealed an enzyme with narrow specific oligopeptidase

activity, cleaving only the b-chain of insulin. Notably, a denti-

pain-deficient mutant showed reduced skin abscess formation

in a murine model.

Oral Spirochaetes Impact on Host Cells

Periodontal tissue cells

T. denticola cells and individual virulence factors are cytotoxic

to epithelial cells [75,92]; they perturb cytoskeletal dynamics

[93–98] and cell–cell junctions [99,100]. T. denticola can pen-

etrate epithelium [96,101], whereas T. medium also invades

epithelial cells [102]. Penetration of tissues by oral trepo-

nemes involves direct motility and proteolysis. Chemotaxis

and flagellar mutants have impaired penetration [101],

whereas a dentilisin mutant was unable to disrupt cell junc-

tions or penetrate tissue layers [99,100].

Like all spirochaetes, oral treponemes have a unique

structure and motility that affect their pathogenicity.

Between their cytoplasmic membrane and outer sheath is

a periplasmic space containing peptidoglycan and periplas-

mic flagella that extend from basal bodies at one pole

towards the other pole. Beneath the cytoplasmic mem-

brane, parallel to the flagella, are cytoplasmic filaments

[103–106] (Fig. 1), providing treponemes with their distinc-

tive ‘wavelike’ shape and movement. In addition to struc-

tural functions, cytoplasmic filaments are also involved in

T. denticola biofilm formation as well as colonization of pre-

formed P. gingivalis biofilms [107]. With the use of cryo-

electron tomography, the natural cellular architecture of

T. denticola has recently been refined by Izard et al. [108].

They identified novel periplasmic ‘linkage’ structures of

dividing cells and cell-tip ‘cone’ structures (Fig. 1). Similar

cone structures are present in other spirochaetes [108–

110], but their structures vary, reflecting differing ecologies

and pathogenic potentials.

Immune cells

Oral spirochaetes induce innate and adaptive immune

responses. Systemic antibody responses towards trepo-

nemes, Msp and dentilisin are observed in sera of patients

with periodontitis [31,111]. Periodontal diseases also involve

innate immune responses of neutrophils and macrophages,

cells that are affected by spirochaetes. Msp, MspA and
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MspTL induce the production of interleukin (IL)-6, IL-8,

tumour necrosis factor-a, interferon-b and IL-1b by mono-

cytes or macrophage-like cell lines [112–115]. Also, peptido-

glycan, glycolipids and lipoproteins of T. denticola or

T. maltophilum [115–118], along with the surface protein

Td92, which is conserved among many oral phylotypes [119],

induce monocytic cytokine production. Oral treponemes and

membrane components also induce IL-6, IL-8, MCP-1, inter-

feron-b and tumour necrosis factor-a production by epithe-

lial cells and fibroblasts [113,120–124].

Toll-like receptors (TLRs) are key pathogen recognition

molecules that lead to the transcription of inflammatory

mediators. T. denticola, T. vincentii and T. medium and their

outer membrane extracts activate TLR2 signalling in gingival

epithelial cells [120]. Macrophage activation also occurs

through TLR2 for Msp and through TLR4 for lipooligosac-

charide [115]. Recognition of trepomemal glycolipids occurs

through TLR2 [116], whereas MspTL stimulation of host

cells appears to be TLR-independent [113]. Although trepo-

nemes activate TLR pathways, there is evidence that they

may also mediate immune tolerance. Glycolipids from

T. medium or T. socranskii and phospholipids of T. denticola

or T. medium can inhibit host cell activation by other peri-

odontal bacteria or Escherichia coli lipopolysaccharide

[120,121,125,126], owing to inhibition of CD14 and lipo-

polysaccharide-binding protein interactions with TLR

[121,125]. Moreover, Msp and lipooligosaccharide can

induce macrophage tolerance through TLR4 [115]. The abil-

ity of oral treponemes to dampen immunity to other bacte-

ria is intriguing, considering the polymicrobial nature of

periodontitis.

T. denticola can impair some neutrophil functions in vitro. It

was reported to inhibit superoxide production in human

neutrophils [127]. Recent studies have focused on T. denticola

Msp inhibition of neutrophil polarization and chemotaxis in

chemoattractant gradients, through selective inhibition of the

small GTPase Rac1 [128]. Msp also perturbs actin assembly

[93,129], calcium transients and phagocytosis [129].

Endothelium

The impact of oral treponemes on the endothelium is less

well understood. Leukocyte infiltration occurs during chronic

FIG. 1. Structure of Treponema denticola. (a) Surface-rendered model of T. denticola. Periplasmic flagella emerge from basal bodies (blue) and

extend towards the cell centre. Cytoplasmic filaments (yellow) run parallel to the flagella, initiating from an attachment plate structure (grey). A

periplasmic patella-shaped cone structure (light blue) is present at the cell tip. The outer membrane is dark blue and the cytoplasmic cylinder is

purple. Scale bar: 100 nm. (b) Cytoplasmic filaments (thin arrows) and flagellar filaments (thick arrow) are depicted in a tomographic z-slice. The

slice is 1.8 nm thick. Scale bar: 100 nm. (c) Lower rings of the flagellar basal bodies (radial lines) are depicted, along with the patella-shaped cone

structure (arrow) at the cell tip in a tomographic z-slice. The slice is 1.8 nm thick. Scale bar: 100 nm. Images reprinted from Journal of Structural

Biology, 163, Izard, J. et al., Native cellular architecture of Treponema denticola revealed by cryo-electron tomography, p. 10–17. Copyright (2008),

with permission from Elsevier.
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periodontitis [130], as does systemic dissemination of oral

spirochaetes [131]. Oral treponemes can attach to endothe-

lial cells [63]. T. denticola and outer membrane preparations

perturb porcine endothelial cell homeostasis by inducing

apoptosis and expression of heat shock proteins [132]. Also,

MspTL is able to increase adhesion of monocytes to endo-

thelial cells and transendothelial migration [122]. Surface

components of treponemes probably contribute to leukocyte

infiltration into periodontal tissues, and subsequent tissue

injury.

In vivo models

Early models used to study oral treponeme pathogenicity

in vivo involved murine subcutaneous abscess formation as a

measure of tissue damage [133]. However, more recently,

murine and rat models of oral infection have been developed

that accurately reflect the site of colonization, alveolar bone

loss and immune response characteristics of periodontal dis-

ease [134,135]. These models have been used to study alve-

olar bone loss in both monomicrobial and polymicrobial

infections [134], as well as to characterize the systemic

immune response and identify potential bacterial antigens

responsible, such as Msp and dentilisin [135].

Host transcriptional profiles during T. denticola infection in a

murine calvarial model of inflammation and bone resorption

have also recently been examined [136]. Numerous biological

pathways were affected, including inflammatory mediators, cell

adhesion, ECM interactions and cell cycle components. This

study corroborated the results of many in vitro studies, as well as

identifying additional host pathways perturbed by T. denticola.

Concluding Remarks

Oral spirochaetes occupy a unique niche in terms of environ-

ment and their polymicrobial nature. Treponemes possess a

wide range of virulence factors that promote survival and

pathogenicity in the gingival pocket. Recent examples of

mobile DNA elements, genetic exchange and bacteriophages

highlight the complexity of interactions between organisms in

the oral cavity. Recent research has also focused on how

oral treponemes sense and respond to the dynamic environ-

ments. They have multiple TCSs and chemotaxis-sensing

receptors, and may respond by locomotion and virulence ex-

presssion. They also express multiple uptake and regulatory

systems for nutrient acquisition. Oral spirochaetes affect

multiple host cell types. Notably, they can activate immune

responses, leading to tissue injury, but impair some crucial

innate responses, including neutrophil function and TLR acti-

vation, preventing their own eradication. Finally, oral trepo-

nemes have many conserved as well as some unique

virulence properties. Progress in molecular tools, cultivation

and genome analysis will undoubtedly encourage further

advances in understanding their role in periodontal diseases.
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