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Abstract

We study topologically stable non-Abelian global vortices in the U(N) linear sigma model. The profile
functions of the solutions are numerically obtained. We investigate the behavior of vortices in two limits in
which masses of traceless or trace parts of massive bosons are much larger than the others. In the limit that
the traceless parts are much heavier, we find a somewhat bizarre vortex solution which can be identified
with Abelian vortex with a non-integer U(1) winding number 1/

√
N which is irrational in general.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Superfluid vortices appear in various condensed matter systems such as helium superfluid.
They are global vortices in relativistic field theories [1]. When a global U(1) symmetry is spon-
taneously broken, for instance, by the order parameter 〈φ〉 = v with φ a complex scalar field in
the Goldstone model, a U(1) Nambu–Goldstone boson appears. Then in general there appears
a global string asymptotically φ ∼ veiθ winding around the vacuum manifold (or the order pa-
rameter space) U(1). The energy of global strings is logarithmically divergent in the infinitely
large space, unlike local vortices with gauged U(1). So less attention have been paid to global
vortices as a candidate of cosmic strings compared with local counter part. When the net number
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of strings is zero, for instance, a pair of string and anti-string or string loops, their energy is finite
and can be considered as cosmic strings [2,3]. Axion strings are such objects.

Natural non-Abelian extension of U(1) vortices is U(N) vortices in the U(N) linear sigma
model for which the order parameter is extended to an N by N complex matrix 〈Φ〉 = v1N .1

Such non-Abelian vortices are expected to form during the chiral phase transition in QCD,
in which case the field Φ of a 3 by 3 matrix (N = 3) is a condensate of quark–anti-quark
〈Φ〉 ∼ 〈q̄q〉. At the chiral phase transition [4], the chiral symmetry SU(N)L × SU(N)R is spon-
taneously broken down to its diagonal symmetry SU(N)V. According to this breaking, massless
Nambu–Goldstone bosons appear as pions (or more generally mesons). At the same time, the
axial symmetry U(1)A is also spontaneously broken and the η′ meson appears. However, U(1)A
is explicitly broken by the axial anomaly at zero temperature, giving a mass to the η′ meson. It
has been argued that the axial anomaly might disappear and U(1)A is approximately recovered
at high temperature [5]. Although there is still an ambiguity if it occurs below the tempera-
ture of the chiral phase transition, let us consider such a situation. Then the breaking pattern
is U(1)A × SU(N)L × SU(N)R → SU(N)V apart from the discrete symmetry, and the vacuum
manifold is

(1.1)
SU(N)A × U(1)A

ZN

	 U(N)A.

The first homotopy group π1[U(N)A] 	 Z is non-trivial and so there exist topologically stable
vortex-strings in this breaking. The simplest vortex appearing is a U(1) vortex-string called the
η′ string asymptotically given by Φ ∼ veiθ1N , which winds around U(1)A once (2π ) [6,7].2

However, this is not the minimum vortex-string because there exists a smaller loop in the
vacuum manifold (1.1), the minimum string is a non-Abelian string asymptotically given by

Φ ∼ v diag(eiθ ,1, . . . ,1) = vei θ
N diag(ei N−1

N
θ , e−i θ

N , . . . , e−i θ
N ), which winds U(1)A as well as

the SU(N)A [9]. The important is that this string winds 2π/N of U(1)A and therefore its tension
is 1/N of that of the U(1) η′-string. Such vortices with fractional U(1) winding number often
appear in various condensed matter systems such as Bose–Einstein condensates and certain types
of superconductors, and are called “fractional vortices”.3

At low temperature the axial anomaly induces the periodic potential in U(1)A. The U(1)A is
broken to ZN and there appear N disconnected vacua, in each of which the η′ meson gets mass.
A U(1) η′-string is accompanied with N domain walls and the total configuration becomes N

domain wall junction with a string at the junction line [10]. Balachandran et al. have discussed a
possible role of such an object in the early universe [10].

The presence of a non-Abelian vortex breaks the SU(N)V symmetry of vacua to its sub-
group SU(N − 1)V × U(1)V and consequently there appear further Nambu–Goldstone modes

1 Other non-Abelian global vortices appear in the B-phase of 3He in which symmetry is broken as SO(3)S × SO(3)L ×
U(1) → SO(3)S+L. In this case the corresponding vacuum manifold is U(1) × SO(3) and the first homotopy group is
π1[U(1) × SO(3)] 	 Z ⊕ Z2.

2 Brandenberger et al. have discussed non-topological strings, called the pion strings, using massless Nambu–
Goldstone (pions) SU(2)A [6–8]. They are topologically unstable because of π1[SU(N)] = 0. In this sense non-Abelian
strings below are made of both η′ mesons and pions.

3 For instance in the polar phase of a spin 1 spinor Bose–Einstein condensate, U(1)Φ × SO(3)S is spontaneously
broken down to U(1)Φ+S � (Z2)Φ+S with � denoting a semi-direct product. Then the vacuum manifold is M 	
[U(1)Φ × SO(3)S]/[U(1)Φ+S � (Z2)Φ+S ] 	 [U(1) × S2]/Z2 [15] and the first homotopy group π1(M) 	 Z supports
half quantized vortices [16]. Similarly to this, 1/3 quantized vortices exist in the cyclic phase of a spin 2 spinor Bose–
Einstein condensate [17].
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CP N−1 	 SU(N)/[SU(N − 1) × U(1)] which are orientations in the internal space [11]. This
idea was brought from the local U(N) vortices [12] for which U(1)A and SU(N)L are gauged.
However, there exists a crucial difference between global and local U(N) vortices. The Nambu–
Goldstone modes CP N−1 of local U(N) vortices are localized around the vortex and become
the moduli (or collective coordinates) of the vortex [12] while those of global U(N) vortices
are not localized but spread to infinity (or the boundary of a finite space). Having this in
mind, an inter-string force between two parallel global U(N) vortex-strings with different ori-
entations in the internal space has been calculated recently [13,14]. The force depends on the
relative orientation: it reaches the maximum when two strings wind around the same compo-
nent of the vacuum expectation value [for instance, diag(eiθ ,1, . . . ,1) and diag(eiθ ,1, . . . ,1)],
and it vanishes when the two strings wind around different components of the vacuum ex-
pectation value [for instance, diag(eiθ ,1,1, . . . ,1) and diag(1, eiθ ,1, . . . ,1)]. This result im-
plies that a U(1) η′-string is marginally decomposed into N pieces of non-Abelian strings:
eiθ 1N → diag(eiθ ,1,1, . . . ,1) + diag(1, eiθ ,1, . . . ,1) + · · ·. Such decomposition necessary oc-
curs at finite temperature where the free energy is minimized instead of the energy. Therefore at
low temperature with the axial anomaly, a domain wall junction [10] is unstable, because a U(1)

string is pulled by each of N domain walls and is decomposed into N non-Abelian strings to
each of which one domain wall is attached. In the end each piece is pulled to infinity in each of
N directions.4

In this paper we study the purely string solution without domain walls in the linear sigma
model without the axial anomaly. Numerical solutions themselves were previously obtained
in [11]. Here we study profile functions of solutions in much more detail with more accuracy. By
using the relaxation method, we numerically determine the shooting parameters of the solutions
up to fifth order. We investigate the dependence of the profiles of the vortex to the parameters in
the linear sigma model. We also study the two limits in which the masses of traceless or trace
parts of the massive bosons in the linear sigma model are much larger than the others. In these
limits, the model reduces some non-linear sigma models. In the limit that the trace parts are much
heavier, the equations for the profiles of the U(N) vortex become sine-Gordon-like. The solution
remains to be regular. On the other hand, in the limit that the traceless parts are much heavier, we
find somewhat surprising solution; the U(N) vortex solution reduces to a singular U(1) vortex
with the U(1) winding number 1/

√
N which is irrational specifically for N = 2,3,5,6, . . . . In

general, profiles of U(1) vortices with a non-integer U(1) winding number (� 1) are of course
singular. Interesting is that such an “irrational vortex” naturally appears in a particular limit of a
regular non-Abelian vortex solution. As far as we know such a vortex has not been reported yet
in the literature.

This paper is organized as follows. In Section 2 we review the U(1) global vortex solution
in the Goldstone model. We give numerical solutions and study their asymptotic behaviors. In
Section 3 we study the non-Abelian vortex solution in the U(N) linear sigma model. We derive
profile functions of the minimum U(N) vortex with the U(1) winding number 1/N for N =
2,3, . . . ,10 and determine the shooting parameters up to fifth order. We also discuss various
limits by sending some of masses to infinity. We find that in a particular limit the non-Abelian
U(N) vortex reduces to an Abelian vortex with the irrational U(1) winding number 1/

√
N .

Section 4 is devoted to conclusion and discussion. Behaviors of vortex solutions in the large N

limit is discussed in Appendix A.

4 Stable domain wall junctions or networks exist in gauged U(N) linear sigma models with appropriate masses [18].
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2. Global U(1) vortices

2.1. The Goldstone model and vortex solutions

Let us begin with giving a review on a global vortex-string solution in the Goldstone model
with a complex scalar field φ(x)

(2.1)L = |∂μφ|2 − λ
(|φ|2 − v2)2

.

We choose λ > 0 and v2 > 0 for stable vacua with broken U(1) symmetry. The scalar potential
is like a wine bottle, so we have an S1 vacuum space with radius |φ| = v. When we choose a
vacuum φ = v and consider small fluctuations as φ = v + ϕ1+iϕ2√

2
(ϕ1,2 ∈ R), the Lagrangian in

terms of the small fluctuations up to quadratic terms is of the form

(2.2)L(2) = 1

2
(∂μϕ1)

2 + 1

2
(∂μϕ2)

2 − 2λv2ϕ2
1 .

This shows that ϕ1 is massive and ϕ2 is a massless Nambu–Goldstone mode:

(2.3)m2
1 ≡ 4λv2, m2

2 = 0.

The equation of motion of φ reads

(2.4)∂μ∂μφ + 2λφ
(|φ|2 − v2) = 0.

A global vortex-string extending linearly to the x3-axis is obtained by solving (2.4) with an
axisymmetric vortex ansatz in the cylindrical coordinates x1 + ix2 = reiθ , given by

(2.5)φ(r, θ) = veikθf (r), k ∈ Z,

with the boundary conditions

(2.6)lim
r→∞f (r) = 1, lim

r→0
f (r) = 0.

Plugging the ansatz (2.5) into Eq. (2.4), we get a second order differential equation

(2.7)f ′′ + f ′

r
− k2f

r2
− m2

1

2
f

(
f 2 − 1

) = 0.

Numerical solutions for k = 1,2, . . . ,10 with the boundary conditions (2.6) are plotted in the left
panel of Fig. 1.

The energy of the vortex solution can be expressed as

(2.8)E = 2π

∞∫
0

dr rE = 2πv2

∞∫
0

dr r

[
f ′2 + k2f 2

r2
+ m2

1

4

(
f 2 − 1

)2
]
,

where the first two terms come from the derivative of the field φ and the last term is from the
scalar potential. Since f → 1 as r → ∞, the kinetic energy logarithmically diverges. So the
energy of the vortex-string consists of a finite part and a logarithmically divergent part as

(2.9)E(k) = Eder(k) + Ediv(k) + Epot(k),
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Fig. 1. Left panel shows the profile functions and the corresponding energy densities E (k) (solid lines) and Epot(k)

(broken lines) are plotted in the right panel for k = 1,2, . . . ,10 and m1 = 1.

where we have defined

(2.10)Eder(k) ≡ 2πv2

∞∫
0

dr rf ′2,

(2.11)Epot(k) = 2π

∞∫
0

dr rEpot ≡ πv2m2
1

2

∞∫
0

dr r
(
f 2 − 1

)2
,

(2.12)Ediv(k) ≡ 2πv2k2

∞∫
0

dr
f 2

r
= const + 2πv2k2 lim

L→∞ log
L

r0
.

Here we have introduced an IR cut-off L which is the size of the system and r0 	 m−1
1 is a typical

size of the U(1) global vortex such as |f − 1| � 1 as r � r0. We can analytically calculate Epot
as follows. Let us first introduce a dimensionless coordinate ρ ≡ m1r . The equation becomes
independent of the coupling constants

(2.13)F
[
f (ρ); k] ≡ f ′′ + f ′

ρ
− k2f

ρ2
− 1

2
f

(
f 2 − 1

) = 0.

Then we see that Epot is independent of the scalar mass m1:

(2.14)Epot(k) = πv2m2
1

2

∞∫
0

dr r
(
f 2 − 1

)2 = 2πv2

∞∫
0

dρ ρ
(f 2 − 1)2

4
.

To calculate this, let us make a trick

(2.15)0 = 2ρ2f ′F [f ; k] = d

dρ

[
ρ2f ′2 − k2f 2 − ρ2

4

(
f 2 − 1

)2
]

+ ρ

2

(
f 2 − 1

)2
.

By using this equation, we can bring Epot in the following form

(2.16)Epot(k) = πv2
[
ρ2

(
−f ′2 + 1

4

(
f 2 − 1

)2
)

+ k2f 2
]∞

0
= πv2k2.
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This formula is called the Derrick–Pohozaev identity in the literature [19]. To derive the right-
most equality, we have used the asymptotic behaviors f ∝ ρk at ρ � 1 and f = 1 − a2/ρ

2 +
O(ρ−4) for ρ � 1, which will be obtained in the next subsection. We plot the total and potential
energy densities E and Epot, respectively of our numerical solutions in the right panel of Fig. 1.
We also have numerically checked Epot/(πv2k2) = 0.999 + O(10−4). We can show that Eder is
also finite.

Note that higher winding solutions (k � 2), especially co-axial vortices as we assumed above,
are not stable. Since the energy of the co-axial vortices is almost proportional to k2, distant
vortices are energetically preferred (k2 > k for k � 2). Therefore, the above static solutions with
k > 1 are artifacts of our co-axial ansatz and boundary conditions.

2.2. Asymptotic behaviors at r → 0 and r → ∞
Let us investigate asymptotic behavior at m1r = ρ � 1 where the profile function is very

small |f | � 1. We expand the profile function as

(2.17)f (ρ) =
∞∑

n=1

anρ
n.

By substituting this in Eq. (2.13), we find that the first non-zero coefficient is that of ρk

(2.18)ak = lim
ρ→0

f (ρ)

ρk
,

which is sometimes called the shooting parameter and which may be determined by making use
of numerical solutions. Such parameters are important since we can uniquely determine solutions
with the parameters. In the minimal winding (k = 1) vortex, we got a1 = 0.4123772 and

(2.19)fk=1(ρ) = a1ρ − a1

16
ρ3 + a1 + 16a3

1

768
ρ5 − a1 + 160a3

1

73728
ρ7 + O

(
ρ9).

In principle, one can infinitely increase accuracy of the approximation with the unique parame-
ter a1. Although we assumed ρ � 1 in the beginning, we can reach at ρ0 � 1 with a good
accuracy by increasing the order of expansion.

Let us next discuss asymptotics at r → ∞. We expand solution in the following way

(2.20)f (ρ) = 1 −
∞∑
i=1

bi

ρi
, for ρ � 1,

bi being constant. Unlike the expansion parameters {ai} in Eq. (2.17), the expansion parameters
{bi} can be precisely determined. To this end, we insert (2.20) into F [f ; k] given in Eq. (2.13)
and determine bi by comparing terms order by order. Then we get bodd = 0 and

(2.21)b2 = k2, b4 = 1

2
k2(8 + k2), b6 = 1

2
k2(128 + 32k2 + k4), . . . .

We can go on up to order which we desire.

3. Global U(N) vortices

Let us study non-Abelian global vortices. Basic analysis on them have been done in [11].
Here we are going to push forward the analysis of [11] on vortex solutions by investigating the
equations of motion in much detail.
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3.1. The U(N) linear sigma model and vortex solutions

The model that we consider here is a natural extension of the Goldstone model given in
Eq. (2.1). It is the SU(N)L × SU(N)R × U(1)A linear sigma model for an N × N complex
matrix of scalar fields Φ(x), given by

(3.1)L = Tr
[
∂μΦ†∂μΦ − λ2(Φ

†Φ)2 + μ2Φ†Φ
] − λ1

(
Tr[Φ†Φ])2 − μ4N

4(Nλ1 + λ2)
,

where the last constant term is introduced for the vacuum energy to vanish. For a stability of
vacua, we consider the parameter region μ2 > 0, λ2 > 0 and Nλ1 +λ2 > 0. The chiral symmetry
SU(N)L × SU(N)R and the axial symmetry U(1)A act on Φ as

(3.2)Φ → eiθgLΦgR,
(
eiθ , gL, gR

) ∈ U(1)A × SU(N)L × SU(N)R.

However, unlike the usual case in the absence of U(1)A broken by the axial anomaly, the struc-
ture of discrete symmetries becomes somewhat complicated in the presence of U(1)A. Here we
explain it in detail. First, the group action G on Φ is not Eq. (3.2) itself but is given by

(3.3)G = U(1)A × SU(N)L × SU(N)R

ZN × ZN

,

where the following ZN × ZN action does not act on Φ and therefore is removed from G:(
ω−k−l ,ωk1N,ωl1N

) ∈ U(1)A × SU(N)L × SU(N)R,

(3.4)ω ≡ e2πi/N (k, l = 0,1,2, . . . ,N − 1).

For later use let us redefine these discrete groups as ZN × ZN 	 (ZN)V × (ZN)A with

(3.5)(ZN)V:
(
1,ωk1N,ω−k1N

) ∈ U(1)A × SU(N)L × SU(N)R,

(3.6)(ZN)A:
(
ω−2k,ωk1N,ωk1N

) ∈ U(1)A × SU(N)L × SU(N)R.

By using the symmetry G, any vacuum can be transformed into the form

(3.7)〈Φ〉 = v1N, v2 = μ2

2(Nλ1 + λ2)
.

We can consider this vacuum without loss of generality. All other degenerate vacua are ob-
tained from this by the G transformations. The symmetry G is spontaneously broken down to
the isotropy group

(3.8)H = SU(N)V × (ZN)A

ZN × ZN

= SU(N)V

(ZN)V
,

where ZN × ZN is the one of Eq. (3.4) which can be rewritten by Eqs. (3.5) and (3.6), and
SU(N)V is given by

(3.9)SU(N)V: (1, g, g†) ∈ U(1)A × SU(N)L × SU(N)R.

When the vacuum 〈Φ〉 is transformed by G, the isotropy group H is also transformed by a
similarity transformation, but all of them are isomorphic to the original isotropy group (3.8).
Therefore the vacuum manifold (the order parameter space) can be written as a coset space:
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G

H
= (U(1)A × SU(N)L × SU(N)R)/(ZN × ZN)

SU(N)V/(ZN)V

(3.10)	 U(1)A × SU(N)A

(ZN)A
	 U(N)A,

which is eventually a group manifold (because H is a normal subgroup of G). Since the first
homotopy group of the vacuum manifold

(3.11)π1
[
U(N)A

] 	 Z

is non-trivial, it admits topological vortex-string solutions.
In order to find the mass spectrum, let us perturb Φ with small fluctuations as

(3.12)Φ(x) = v1N + φ(x)1N + χa(x)T a
(
a = 1,2, . . . ,N2 − 1

)
,

with the generators T a of SU(N) (Tr[T aT b] = δab). Then it is turned out that imaginary parts of
φ and χa are massless Nambu–Goldstone modes parametrizing the vacuum manifold U(N)A in
Eq. (3.10), while their real parts are massive:

(3.13)m2
φ = 2μ2, m2

χ = 2λ2

Nλ1 + λ2
μ2 = 4λ2v

2.

The original coupling constants are expressed by these masses as

(3.14)μ2 = m2
φ

2
, λ1 = m2

φ − m2
χ

4Nv2
, λ2 = m2

χ

4v2
.

The scalar potential can be rewritten by the dimensionful parameters v,mφ and mχ as

(3.15)V = m2
φ

4Nv2

(
Tr

[
Φ†Φ − v21N

])2 + m2
χ

4v2
Tr

[〈Φ†Φ〉2],
where we have introduced a notation 〈X〉 ≡ X − Tr[X]

N
1N for N × N matrix X (note 〈1N 〉 = 0).

Let us introduce a ratio of the two masses5

(3.16)τ ≡ mχ

mφ

=
√

λ2

Nλ1 + λ2
.

We will see that τ determines all properties of non-Abelian global vortices.
Let us construct vortex-string solutions in this model. Firstly, one may consider the following

simple boundary condition

(3.17)lim
r→∞Φ(r, θ) = veiθ1N.

A natural ansatz with this boundary condition is

(3.18)Φ(r, θ) = veiθf (r)1N,

with boundary conditions f (0) = 0 and f (∞) = 1. The equation of motion for the profile func-
tion f (r) is identical to that of the global U(1) vortex with k = 1

(3.19)f ′′ + f ′

r
− f

r2
− m2

φ

2
f

(
f 2 − 1

) = 0.

5 Instead of this, κ = λ1/λ2 was used to parametrize solutions in [11].
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So the solution is just embedding of the global U(1)-vortex of Eq. (2.13). It is important to
observe that neither N nor mχ appears. Furthermore, only the overall U(1) phase winds once
when we go around the vortex solution. This Abelian vortex solution is called the η′ string [7].
However, as we will see, this solution is not minimal [11] and is broken into N minimal solu-
tions [13].

A minimal winding vortex configuration can be obtained by taking the following boundary
condition

(3.20)lim
r→∞Φ(r, θ) = v diag

(
eiθ ,1, . . . ,1

) = vei θ
N diag

(
ei N−1

N
θ , e−i θ

N , . . . , e−i θ
N

)
.

The key point here is that the overall U(1)-phase winds only 2π/N around the vortex and the
rests 2π(N − 1)/N or −2π/N are inside the non-Abelian group SU(N)A. As a consequence,
the tension of the vortex is 1/N of the above Abelian solution (3.18). Because the vacuum space
is U(N)A, the above vortex is called a non-Abelian global vortex or more specifically a global
U(N) vortex. Corresponding vortex ansatz is of the form

(3.21)Φ(r, θ) = v diag
(
eiθf (r), g(r), . . . , g(r)

)
,

with the boundary conditions

(3.22)lim
r→∞f = lim

r→∞g = 1, lim
r→0

f = 0, lim
r→0

g′ = 0.

Since f is the profile function of a winding scalar field, it must go to zero at the origin. On the
other hand, g does not have to vanish.

For a fixed θ = θ0, the field Φ behaves at the boundary as Φ(θ = θ0, r → ∞) =
v diag(eiθ0,1, . . . ,1), where the isotropy group is not the same with the one in Eq. (3.8). In-

stead, it is obtained from H in Eq. (3.8) by a G transformation (ei
θ0
N , g0, g0) ∈ U(1)A ×

SU(N)L ×SU(N)R with g0 = diag(ei N−1
2N

θ0, e−i
θ0
2N , . . . , e−i

θ0
2N ), and therefore it is isomorphic to

H = SU(N)V/(ZN)V in Eq. (3.8). Around the vortex where g(r) differs from f (r) (especially at
the center Φ(0) = v diag(0, g(0), . . . , g(0))), the isotropy group Hθ=θ0 = SU(N)V,θ0/(ZN)V,θ0

is further broken to its subgroup [SU(N − 1)V × U(1)V]/(ZN)V,θ0 . This gives rises to further
Nambu–Goldstone modes [11]

(3.23)CP N−1 	 SU(N)V

SU(N − 1)V × U(1)V
.

In the case of the local U(N) vortices for which U(1) and SU(N)L are gauged [12], the
corresponding modes are called the orientational zero modes of a vortex. However, these are
non-normalizable for a global U(N) vortex (in the infinite space), unlike the local U(N) vortex,
because the isotropy groups Hθ depends on θ = θ0 and differ from each other, and consequently
the wave functions of the Nambu–Goldstone modes CP N−1 spread to infinity.

Let us investigate concrete profile functions of vortex solutions. The Hamiltonian density and
the energy densities in terms of the profile functions f (r) and g(r) is given by

(3.24)H = 2πv2rE ,

(3.25)E = f ′2 + f 2

r2
+ (N − 1)g′2 + V ,

(3.26)V = m2
φ

4N

(
f 2 + (N − 1)g2 − N

)2 + (N − 1)m2
χ

4N

(
f 2 − g2)2

.
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Fig. 2. Configurations (solid lines for f (r) and broken lines for g(r)) in the left panel and energy densities in the right
panel for log τ = 0,1/2,1,3/2, . . . ,9/2,5 for N = 2.

Fig. 3. Configurations (solid lines for f (r) and broken lines for g(r)) in the left panel and energy densities in the right
panel for − log τ = 0,1/10,1/5, . . . ,9/10,1 with N = 2.

By minimizing the Hamiltonian H, we get the equations of motion for f and g

(3.27)f ′′ + f ′

r
− f

r2
− m2

φ

2N
f

(
f 2 + (N − 1)g2 − N

) − (N − 1)m2
χ

2N
f

(
f 2 − g2) = 0,

(3.28)g′′ + g′

r
− m2

φ

2N
g
(
f 2 + (N − 1)g2 − N

) + m2
χ

2N
g
(
f 2 − g2) = 0.

The third term in the left-hand side of Eq. (3.27) is typical for global vortices. This leads to
logarithmic energy divergence. With respect to a dimensionless coordinate ρ = mφr , the above
equations can be written in the following forms

(3.29)

FN [f,g; τ ] ≡ f ′′ + f ′

ρ
− f

ρ2
− f (f 2 + (N − 1)g2 − N)

2N
− (N − 1)τ 2f (f 2 − g2)

2N
= 0,

(3.30)GN [f,g; τ ] ≡ g′′ + g′

ρ
− g

2N

(
f 2 + (N − 1)g2 − N

) + τ 2g

2N

(
f 2 − g2) = 0.

It is clear in this form that solutions depend on τ only. We should solve these ordinary differential
equations with boundary conditions (3.22) with replacing r by ρ.

Let us see the non-Abelian vortex in a special case τ = 1. In this case, GN [f,g;1] = 0 can
be solved by g = 1 while the other equation FN [f,g = 1; τ = 1] = 0 is the same as (2.13).
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Fig. 4. Configurations (solid lines for f (r) and broken lines for g(r)) in the left two panels and energy densities in the
right two panels, with N = 2,3, . . . ,10. The upper (lower) two figures are for τ = 1/2 (τ = 2).

Therefore in the case of τ = 1 the Abelian vortex is embedded into Φ as a non-Abelian vortex
solution. Qualitative behaviors of vortex profiles change at τ = 1. As we take τ to larger than
1, the value g(0) gradually goes down toward zero and the energy density becomes sharp (but
remains regular for finite τ ), see Fig. 2. On the other hand, g(0) grows and the vortex remains
regular and finite when we take τ smaller than 1, see Fig. 3. As we will see below, g(0) is an
important value.

In order to see N dependence of the non-Abelian global vortex, we plot two figures in Fig. 4
by changing N form 2 to 10 with τ being fixed to 1/2 and 2.

3.2. Asymptotic behaviors

Let us investigate asymptotics of the non-Abelian global vortex. This has been studied in [11]
and here we want to extend it with a better accuracy and determine some fundamental parameters
(shooting parameters) accompanied by the differential equations (3.29) and (3.30).

We start with study on asymptotics at r � max{m−1
φ ,m−1

χ }. As usual, we expand the fields
f,g in the following

(3.31)f = 1 −
∞∑
i=1

air
−i , g = 1 −

∞∑
i=1

bir
−i .

By plugging these into Eqs. (3.29) and (3.30) and equating them with 0 order by order, we can
analytically determine the coefficients. It is immediately turned out that a2i+1 and b2i+1 vanish.
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The leading order terms are of the form

(3.32)f = 1 − 1

Nr2

(
1

m2
φ

+ N − 1

m2
χ

)
, g = 1 − 1

Nr2

(
1

m2
φ

− 1

m2
χ

)
.

Note that f is always less than 1 while g � 1 for 1 � τ . As observed in [11], the behavior of
g(r) depends on the coupling constants λ1, λ2. With respect to the physical masses mχ and mφ ,
we now understand that the behavior depends on the ratio τ of the two masses. The higher order
terms are determined as

(3.33)a4 = (−1 + N)(−1 + 9N)m4
φ + 2(−1 + N)m2

φm2
χ + (1 + 8N)m4

χ

2N2m4
φm4

χ

,

(3.34)b4 = (1 − 8N)m4
φ − 2m2

φm2
χ + (1 + 8N)m4

χ

2N2m4
φm4

χ

,

a6 = 1

2N3m6
φm6

χ

(
(N − 1)

(
1 + N(−58 + 161N)

)
m6

φ + (
3 − (86 − 83N)N

)
m4

φm2
χ

(3.35)− (
3 + (5 − 8N)N

)
m2

φm4
χ + (

1 + 32N(1 + 4N)
)
m6

χ

)
,

b6 = m2
χ − m2

φ

2N3m6
φm6

χ

((
1 − 56N + 152N2)m4

φ + 2
(−1 + 12N + 64N2)m2

φm2
χ

(3.36)+ (
1 + 32N + 128N2)m4

χ

)
,

...

Let us next consider asymptotics at r � min{m−1
φ ,m−1

χ }. We expand the fields by

(3.37)f =
∞∑
i=0

cir
i , g =

∞∑
i=0

dir
i .

By plugging this into Eqs. (3.29) and (3.30), one can determine c2m = d2m+1 = 0. The leading
order of the approximation gives us

(3.38)f = c1r + O
(
r3), g = d0 + O

(
r2).

The two parameters c1 = f ′(0) and d0 = g(0) cannot be obtained analytically, but we can do it
numerically. Note that they depend on τ and N , see Table 1.

Higher order terms are determined by c1 and d0:

(3.39)d2 = −N(1 − d2
0 )m2

φ + (m2
φ − m2

χ )d2
0

8N
d0,

(3.40)c3 = −Nm2
φ + (N − 1)(m2

φ − m2
χ )d2

0

16N
c1,

d4 = d0

256N2

[
8Nc2

1

(
m2

φ − m2
χ

)
(3.41)+ (

N
(
3d2

0 − 1
)
m2

φ − 3d2
0

(
m2

φ − m2
χ

))(
N

(
d2

0 − 1
)
m2

φ − d2
0

(
m2

φ − m2
χ

))]
,
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Table 1
Numerical data for the shooting parameters. The parameter d0 at log τ → −∞ (τ → 0) has analytic values, given in
Eq. (3.52).

N = 2 N = 3 N = 4 N = 5

log τ c1 d0 c1 d0 c1 d0 c1 d0

+∞ – 0 – 0 – 0 – 0
3 0.89928 0.28858 1.35826 0.36708 1.77660 0.42829 2.15432 0.47785
5/2 0.82145 0.35595 1.17489 0.44008 1.47803 0.5032 1.73919 0.55277
2 0.74680 0.43959 1.00794 0.52694 1.21660 0.58945 1.38688 0.63682
3/2 0.67273 0.54356 0.85220 0.62924 0.98383 0.68702 1.08462 0.72889
1 0.59541 0.67207 0.70243 0.74686 0.77302 0.79353 0.82316 0.82555
1/2 0.50986 0.82689 0.55511 0.87497 0.58130 0.90209 0.59840 0.91953
0 0.41238 1 0.41238 1 0.41238 1 0.41238 1
−1/2 0.50651 1.16517 0.46970 1.10162 0.45361 1.07342 0.44457 1.05748
−1 0.57045 1.28860 0.50278 1.16697 0.47578 1.11765 0.46121 1.09086
−3/2 0.60330 1.35937 0.51809 1.20061 0.48563 1.13948 0.46845 1.10697
−2 0.61733 1.39235 0.52430 1.21534 0.48955 1.14881 0.47131 1.11377
−5/2 0.62280 1.40589 0.52667 1.22120 0.49104 1.15249 0.47239 1.11644
−3 0.62486 1.41111 0.52755 1.22343 0.49160 1.15388 0.47279 1.11744
−∞ 0.62607

√
2 0.52807

√
3/2 0.49192

√
4/3 0.47302

√
5/4

c5 = c1

768N2

[(
N2 − 6(N − 1)Nd2

0 + 5(N − 1)2d4
0

)
m4

φ

− 2(N − 1)d2
0

(−3N + (−5 + 3N)d2
0

)
m2

φm2
χ + (

5 + (N − 6+)N
)
d4

0m4
χ

(3.42)+ 16Nc2
1

(
m2

φ + (N − 1)m2
χ

)]
.

3.3. Heavy particle limits

In this subsection, we are going to study how the vortices behave in two regions (i) mφ � mχ

and (ii) mχ � mφ . Before doing it, remember that the linear sigma model (3.1) becomes the
chiral Lagrangian in the limit mχ,mφ → ∞. This is because, after the heavy fields are inte-
grated out, only massless NG modes (Φ ∈ U(N)) survive in a low energy theory. Our purpose
of this subsection is to clarify effects of lightest massive fields to the chiral Lagrangian. For later
convenience, let us rewrite the equations of motion (3.27) and (3.28) as follows

(3.43)
f ′′

f
+ f ′

rf
− 1

r2
+ (N − 1)

(
g′′

g
+ g′

rg

)
− m2

φ

2

(
f 2 + (N − 1)g2 − N

) = 0,

(3.44)
f ′′

f
+ f ′

rf
− 1

r2
− g′′

g
− g′

rg
− m2

χ

2

(
f 2 − g2) = 0.

A point is that mφ appears only in the first equation while mχ is in the second equation.
Similar limits (with some particles being infinitely heavy) have been studied recently for a

local U(N) vortex, for which U(1) and SU(N)L are gauged, at the critical coupling (with a
certain relation between gauge and scalar couplings) [20].

3.3.1. mφ → ∞ limit (τ → 0)

Let us first consider the mass of the trace part of Φ is much greater than that of traceless part,

(3.45)mφ � mχ.
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In other words, we consider a limit τ → 0 by sending mφ → ∞ with mχ being fixed.6 Then we
integrated out the heavy modes with mass mφ . The first term in the scalar potential in Eq. (3.15)
becomes very high and sharp, so that the scalar fields are squeezed into the following manifold

(3.46)Tr
[
Φ†Φ − v21N

] = 0.

To solve this condition, let us expand Φ by

(3.47)Φ = �ϕ · �T , �T = (
1N/

√
N,T 1, T 2, . . . , T N2−1),

with N2 complex vector �ϕ = (ϕ0, ϕ1, . . . , ϕN2−1). Then the condition becomes

(3.48)| �ϕ|2 = Nv2.

Therefore the linear sigma model (3.1) reduces to S2N2−1 non-linear sigma model. The scalar
potential takes the form

(3.49)V0 = m2
χ

4v2
Tr

[〈Φ†Φ〉2] = m2
χ

4v2
Tr

[(
Φ†Φ − v21N

)2]
.

The vacuum remains as U(N)A. By using the chiral symmetry, we can choose

(3.50)ϕ0 = √
Nv, ϕa�1 = 0 ⇐⇒ Φ = v1N.

Let us next consider a vortex-string solution in this model by taking the same diagonal
ansatz (3.21) as before. However, f and g are no longer independent because of the condi-
tion (3.48). They should satisfy

(3.51)f (r)2 + (N − 1)g(r)2 = N.

With this at hand, we are aware of an interesting phenomenon that the shooting parameter g(0) =
d0 approaches to an analytic value as

(3.52)lim
τ→0

d0 = lim
τ→0

g(0) =
√

N

N − 1
.

Here we have used f (0) = 0. Our numerical result matches with this result, see Table 1. The
same thing can be found from the view point of equations of motion (3.43). By dividing its both
hands by m2

φ and taking the limit mφ → ∞, we get Eq. (3.51) again.
To simplify the other equation (3.44), we may rewrite the fields by

(3.53)f = √
N cosΘ, g =

√
N

N − 1
sinΘ.

The reduced model is like the sine-Gordon model: the potential is

(3.54)τ = 0: V = m2
χ

(N cos2 Θ − 1)2

4(N − 1)
.

The corresponding equation of motion is of the form

(3.55)τ = 0: Θ ′′ + Θ ′

r
+ 1

4
sin 2Θ

(
2

r2
+ m2

χ

N(N cos2 Θ − 1)

N − 1

)
= 0.

6 The same limit can be realized by taking mχ → 0 with mφ being fixed. However, the massless limit is tricky because
the vortex infinitely spreads out and dilutes.
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Fig. 5. Profiles of Θ and corresponding f,g for N = 2 case (mχ = 1).

We solve this with the boundary conditions

(3.56)lim
r→0

Θ = π

2
, lim

r→∞Θ = arccos

(
1√
N

)
.

We numerically solved this and the solution is shown in Fig. 5.

3.3.2. mχ → ∞ limit (τ → ∞)

Next let us investigate the other limit

(3.57)mχ � mφ (τ → ∞).

We send mχ infinity with mφ being kept finite. Then N2 − 1 real scalar fields in Φ become
infinitely heavy and we integrated them out from the theory. The scalar potential (3.15) gives us
the following condition

(3.58)Tr
[〈Φ†Φ〉2] = 0 ⇐⇒ 〈Φ†Φ〉 = 0 ⇐⇒ Φ†Φ ∝ 1N.

We can solve this by

(3.59)Φ(x) = s(x)U(x) with s ∈ C, U ∈ SU(N)A.

This decomposition is up to the Zk identification (s,U) ∼ (ωks,ω−kU) with ω = e2πi/N (k =
0,1,2, . . . ,N − 1). Thus the theory in this limit is the SU(N) chiral Lagrangian coupled with a
complex scalar field s. The kinetic term is given by

Kτ→∞ = N |∂μs|2 + |s|2 Tr
(
∂μU∂μU†)

(3.60)= N(∂μσ)2 + σ 2 Tr
(
∂μÛ∂μÛ†)

with s ≡ σeiα and Û ≡ eiαU ∈ U(N) 	 [SU(N) × U(1)]/ZN . From the second expression, we
see that the metric of the target space is a cone over U(N). The scalar potential becomes in this
limit as

(3.61)Vτ→∞ = m2
φ

4v2

(
Tr

[
Φ†Φ − v21N

])2 = N2m2
φ

4v2

(|s|2 − v2)2
.

Thus the vacuum manifold remains to be U(N)A. The vacuum expectation value v of |s| gives
the pion decay constant F 2

π = 16|s|2 of the U(N) chiral Lagrangian.
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Fig. 6. The left panel shows the profile functions and the corresponding energy densities E in Eq. (2.8) are plotted in
the right panel for k = 1/

√
N with N = 1,2, . . . ,10. The Abelian solution of N = 1 is only regular but the others are

singular.

We are ready to consider vortex-string solutions in the limit. With respect to the profile func-
tions f,g, the condition (3.58) forces us the following condition

(3.62)f (r) = g(r).

In terms of s and U , the non-Abelian vortex solution (3.21) can be expressed as

(3.63)s = ei θ
N f (r), U = diag

(
e

i(N−1)θ
N , e−i θ

N , . . . , e−i θ
N

)
.

Note that the overall U(1) winding of the non-Abelian vortex is 1/N as before. The condition
(3.62) explains the behavior of g(0) which tends to go down toward zero as τ is sent to ∞, see
Fig. 2 and Table 1. Because of this behavior, the scalar fields Φ vanish at the origin entirely so
that the full chiral symmetry is recovered at the center of vortex. Furthermore with recalling the
discussion around Eq. (3.23), we find that no second symmetry breaking occurs in the presence
of the vortex solution (3.63), because the isotropy group is Hθ even for finite r(�= 0) which is
isomorphic to H = SU(N)V/(ZN)V in Eq. (3.8). Therefore, we find that the solution loses the
internal orientations of CP N−1. Eq. (3.44) is automatically satisfied while Eq. (3.43) reduces to

(3.64)τ = ∞: f ′′ + f ′

r
− 1

Nr2
− m2

φ

2
f

(
f 2 − 1

) = 0.

Let us compare this with Eq. (2.7) for the Abelian vortex string. Interestingly, the non-Abelian
global vortex in the mχ → ∞ limit can be identified with the Abelian global vortex with a non-
integer U(1) winding number

(3.65)k = 1√
N

,

which is smaller than unity, and can be an irrational numbers for N ’s which are not able to be
expressed by squared integers. Of course, U(1) vortices with a non-integer U(1) winding number
are generically singular because φ ∼ veiθ/

√
N (at r ∼ 0) is not single valued. Such singular

solutions for F [f (ρ), 1√
N

] = 0 in Eq. (2.13) with the boundary conditions (2.6) are shown in
Fig. 6.

There is no smooth interpolation in the solutions between mχ < ∞ and mχ = ∞ in the fol-
lowing sense: Eqs. (3.43) and (3.44) with finite mχ always provide f ∼ r to leading order in
r ∼ 0 (see Table 1), and keep the energy density finite, while in the limit where mχ = ∞ the
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resultant Eq. (3.64) gives f ∼ r
1√
N for r ∼ 0 and energy density gets divergent as r

2( 1√
N

−1)
at

the center of vortex. Furthermore, the profile function g (in this limit g = f ) does not satisfy the
original boundary condition g′(0) = 0. Instead, it is replaced by g(0) = 0.

Although this singular solution is an artifact appearing only in the limit where we have dis-
carded the heavy modes completely, it reasonably accounts for the fact that the energy profile
of the non-Abelian vortex becomes very sharp and finally looks singular when mχ � mφ , see
Fig. 2. Taking into account such heavy modes, the singularity is smeared.

4. Conclusion and discussion

In this article, we have investigated non-Abelian global vortices in SU(N)L × SU(N)R ×
U(1)A linear sigma model in detail. We push forward the analysis in [11] and determined im-
portant numerical parameters c1 and d0 which determines all the properties of the solutions.
Furthermore, we have obtained expansion formulae for asymptotics at large distance. We have
found that interesting two limits (i) mφ � mχ , (ii) mχ � mφ . The original linear sigma model

reduces S2N2−1 non-linear sigma model in the (i) limit and we have found a sort of non-Abelian
global string solution there. In the second limit (ii), we have obtained the SU(N) chiral La-
grangian coupled with a complex scalar field. We have also found a sort of Abelian global vortex
solution. It is a singular solution and can be identified with Abelian global vortex with an irra-
tional U(1) winding number k = 1/

√
N .7

Here we give several discussions. The coupling between a global U(1) string and the U(1)

Nambu–Goldstone boson can be constructed by using a duality between a boson φ and a two-
form field Bμν [21]. In the same way the coupling of a global U(N) string and the U(N) Nambu–
Goldstone bosons will be possible by using non-Abelian two-form [22].

In the presence of the U(1)A axial anomaly a term V1(Φ,Φ†) = c(detΦ +detΦ†) is induced,
which gives a sine-Gordon potential to the phase. Then a U(N) vortex becomes a boundary of
a domain wall [9,10]. In the presence of quark masses, a term V2(Φ,Φ†) = Tr[H(Φ + Φ†)]
exists with H a mass matrix. It remains as a future problem to study detailed structure of vortex
solutions in the presence of these terms because the authors in [9,10] assumed constant profiles.

In Section 3.3.2 we have simply sent the mass mχ to infinity to obtain the SU(N) chiral
Lagrangian coupled with a complex scalar field s. However quantum mechanically we should
integrate out the massive fields. This procedure generally induces higher derivative terms for
remaining massless fields. The Skyrme term is such a term of the fourth order [23]. In our case
with massless field s we will obtain the effective Lagrangian of the form

Leff. = N |∂μs|2 + |s|2 Tr
(
∂μU∂μU†) + |s|4

e2
Tr

([
U†∂μU,U†∂νU

]2) − V
(|s|2)

(4.1)= N(∂μσ)2 + σ 2 Tr
(
∂μÛ∂μÛ†) + σ 4

e2
Tr

([
Û†∂μÛ, Û†∂νÛ

]2) − V
(
σ 2)

where e is a parameter determined by an explicit calculation and V is the potential in Eq. (3.61).
Note that there is no fourth order term for s. Because of the relation Φ†∂μΦ = s∗∂μs1N +
|s|2U†∂μU , the possible fourth order term [Φ†∂μΦ,Φ†∂νΦ]2 reduces to the Skyrme-like term

7 We have also investigated the large N limit, and found that there exists a regular vortex string solution which has
the same form with the usual U(1) vortex Eq. (3.19) with winding number k = 1 but with replacement mφ → mχ . See
Appendix A for details.
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in the Lagrangian (4.1). When s is fixed to the vacuum expectation value, the Lagrangian
(4.1) reduces to the U(N) Skyrme model and admits the usual Skyrmion solution for U(x) =
exp{i[F(r)σ · r/|r|]}.8 It is interesting to note that the Abelian vortex s ∼ veiθ does not inter-
act with the Skyrmion while a non-Abelian vortex does. It remains as a future problem to study
interaction, scattering or absorption of baryons (Skyrmions) by non-Abelian strings.

In this paper we have studied U(N) vortices. Local and semi-local vortices with different
groups [U(1) × G]/Zn0 , where G is arbitrary group with the center n0 [25], have been studied
recently. In this framework the U(N) vortex corresponds to the case of G = SU(N) with n0 = N .
Global version of these vortices are also possible, especially the case of G = SO is related to
vortices in the B-phase of 3He superfluids.

Before closing this paper let us compare our global U(N) vortices with other types of U(N)

vortices in the related models: (1) semi-superfluid U(N) vortices in high density QCD and (2)
local U(N) vortices. In these models, the group structure is completely the same with the global
case in this paper. However, the energetics/interactions of vortices and the (non-)normalizability
of the zero modes are significantly different.

(1) In high density QCD it is expected that color superconductivity is realized. There, the
color symmetry SU(N)C and the flavor symmetry SU(N)F (with N = 3) as well as the baryon
U(1)B symmetry are spontaneously broken down to the color-flavor locked symmetry SU(N)C+F
apart from the discrete symmetries. The corresponding vacuum manifold [SU(N)×U(1)]/ZN 	
U(N) is the same with that of the global U(N) vortices. In this case the SU(N) subgroup
of the vacuum manifold U(N) is gauged and therefore only one massless Nambu–Goldstone
boson for the U(1)B exists. The U(N) vortices here are called semi-superfluid vortices [26].
In the asymptotic behavior of the scalar field of a U(N) vortex, Φ ∼ v diag(eiθ ,1, . . . ,1) =
vei θ

N diag(ei N−1
N

θ , e−i θ
N , . . . , e−i θ

N ), the latter non-Abelian part can be eliminated by a gauge

transformation U(r, θ) = diag(e−i N−1
N

θF(r), ei θ
N

F (r), . . . , ei θ
N

F (r)) with an arbitrary function
F(r) satisfying the boundary conditions F(r = 0) = 0 and F(r → ∞) = 1.9

(2) Next, let us to compare the global U(N) vortices studied in this paper with the local
U(N) vortices [12]. In this case too the symmetry breaking pattern is the same but a crucial
difference is that the U(1) symmetry is also gauged in addition to the color SU(N), and therefore
there remain no Nambu–Goldstone bosons. Namely the vacuum is the unique at the infinity
even in the presence of a U(N) vortex because the U(1) symmetry is gauged. Nevertheless, we

cannot gauge transform the asymptotic behavior of the scalar fields from Φ ∼ vei θ
N 1N to 1N

because we can define no regular gauge transformation well-defined in the entire space because
of non-triviality of the first homotopy group: π1[U(1)] �= 0. Unlike the global U(N) vortices
or semi-superfluid U(N) vortices, these local U(N) vortices have finite energy because of the
gauged U(1). The CP N−1 zero modes are normalizable. At the critical (BPS) coupling with a

8 The Skyrme model admits a topologically unstable string solution [24] which may be related to the pion string [6].
9 This transformation is well-defined because of the triviality of the first homotopy group: π1[SU(N)] = 0. This trans-

formation brings Φ to Φ ∼ ve
i θ
N 1N . This property makes the orientational zero modes of CPN−1 to be normalizable

and to become the moduli (collective coordinates) of the vortex [27]. In other words, the isotropy groups Hθ at the infini-
ties in the presence of a global U(N) vortex were physically different and depend on θ (although they are isomorphic),
whereas, in the SU(N) gauged case, the isotropy group at the infinities in the presence of a semi-superfluid U(N) vortex
is physically equivalent for any θ . The U(1)B is global and so the energy of a vortex remains logarithmically divergent.
The asymptotic interaction between two semi-superfluid U(N) vortices is also essentially the same with the one between
U(1) global vortices because of the above property [14,27]. Therefore it gives the universal repulsion between separated
vortices.
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particular relation between gauge and scalar couplings, there is no static force among multiple
vortices, with allowing the multi-vortex moduli space [28,29] (see [30] for the moduli spaces
of local U(N) vortices on a cylinder and a torus). Static interactions exist between vortices at
non-critical (non-BPS) couplings. The force between two U(N) vortices was shown to depend
on both CP N−1 orientations and positions [31].

If we gauge all the symmetry, the vortices are those in quiver gauge theories [32]. In this case,
the diagonal gauge symmetry remains unbroken, and the vortices do not have orientations in the
internal space. The final possibility which was not studied so far is the case that only U(1) is
gauged.
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Appendix A. Large N limit

In this appendix we will derive an asymptotic form of the vortex solution in the large N

limit. Before implementing the large N limit, we have to know how the parameters in the La-
grangian scale in N . From the observation of loop corrections (perturbation series in λ1 and
λ2) to two-body meson scattering amplitude in a single channel, one can set λ1 ∼ O(N−2) and
λ2 ∼ O(N−1) in order to have a tenable perturbative expansion [33]. μ2 ∼ O(1) because of no
flavor degeneracy in a single channel. As consequences, one finds m2

φ,χ ∼ O(1) thus τ ∼ O(1).
Now we are ready to see what happens in large N limit. After taking N → ∞ as keeping mφ

and mχ finite, Eq. (3.28) can be solved by

(A.1)g(r) = 1,

and the other equation (3.27) becomes

(A.2)f ′′ + f ′

r
− f

r2
− m2

χ

2
f

(
f 2 − 1

) = 0.

This is the equation for k = 1 Abelian global vortex. Note that mχ is shown up in the equation
and solutions are independent of mφ unlike the case of Abelian global vortex given in Eq. (3.19).
The solutions themselves happen to be identical to those for mφ = mχ (τ = 1) with any finite N .
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