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Abstract-This paper deals with a new proof of convergence of Adomian’s method applied to dif- 
ferential equations. We also give new formulae and properties, and we suggest a simple computational 
form for Adomian’s polynomials. 

1. INTRODUCTION 

In many papers [l-5], Adomian has presented a technique using special polynomials for solving 

nonlinear equations of various kind (algebraic, differential, partial differential, integral, etc.). 

The solution is found as an infinite series in which each term can be easily determined and that 

converges quickly towards an accurate solution. However, only few works have been done on the 

convergence of the method (for instance, [S-S]). 

In this paper, we propose new formulae for calculating Adomian’s polynomials, and we give a 

proof of convergence using the classical Taylor’s method. 

2. THE DECOMPOSITION METHOD 
APPLIED TO DIFFERENTIAL EQUATIONS 

Let us consider a differential equation in the form: 

du 
z = f(u) + 97 P-1) 

u(t)lt=o = co, 

where f is the nonlinear term and g is given. 

Adomian’s method consists in calculating the solution, in the series form: 

5%. 
n=O 

(2.2) 

(2.3) 

The nonlinear term f(u) becomes 

f(u) = FAn, (2.4) 
n=O 

where the An’s are polynomials depending on ‘1~0, ~1, . . . , u,, called Adomian’s polynomials. They 

are obtained from the relationship 

v = -&i, 
i=o 

f (xAiui) = TX’Ai, 
i i=o 

(2.5) 
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where X is a parameter 
formulae (see [l]): 
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introduced for convenience. The An’s are calculated from (2.5) by the 

Inserting (2.3) and (2.4) into equation (2.1) leads to 

g u, = co + L-’ g(t) + L-l e A,. 
71 n 

Each term of the series CT=, u, can be identified by the formulae 

W-J = co + L-l g, 

u1 = L-l Ao, 

(2-Q 

(2.7) 

(2.8) 

u,+l = L-l A,. 

The exact solution of equation (2.1) is now entirely determined. However, in practice, all terms 

of the series c,“==, un cannot be determined; so we use an approximation of the solution from 
the truncated series: 

n-1 

& = & with lim$, = U. (2.9) 
i=o 

3. CONVERGENCE OF THE TECHNIQUE 

For every sequence u,(X) = Cy=“=, Xi ui , we define f (u, (X)) by [6] : 

f(un(X)) = f: Xi Aj. (3.1) 
i=o 

Then, we have the following result. 

THEOREM 3.1. For a composed function A(X) = f(un(X)), w h ere we suppose that f(u) is differ- 

entiable up to the nth order, A,, are given by 

Ao = f(uo); 

A, = c ( 
d(kl+kz+-.+k,)f 

> 

kl 
u1 

ka k3 
U2 U3 Uk, 

&(kl+kz+-.+kn) 
.n 

’ m ’ a ’ g ’ “. k,! ’ 
n # 0. (3.2) 

kl+‘Zkz U=UO 
+3ks+...+nk,=n 

PROOF. Applying the classical formula [9] giving the n th derivative of the function A(X) = 

f(u,(X)), we obtain 

&(uo,U1rU2,...,U,J 

1 
=--- 

c 

n! (T_Q)~~ (2!u~)~~ (3!~3)~~ . . . (n!u,)kn d(kl+kz+-+kn) f 

. I 
k1+2kz+3k3+.-+nk,=n 

=n’ kgk 

(l!)kl (2!)“2 . . . (n!)kn /cl! IQ!. . . k,! du(klfk2+...fkn) > 21=~o 

d(kl+kz+-+k,) f kl 
Ul 

kz ks 
UP U3 U$ 

&(kl+kz+-.+kn) 
.-.-.-. 

/cl! Ic2! /c3! .... Ic,!’ 

+3k&+n?k,=n 

( > 21=lL0 
I 
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COROLLARY 3.2. 

Ao = f(‘l~o); 

A,(‘1~0,~,~2r~~~,~n) 
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(2) 
(Q1-Y2) (aa-aa) 

= c u=uo (1; - CQ)! . (2 - as)! . . . . . 

Qyy4 Ua, 

.n 
(a,_1 - cL!J! a,! ’ n # 0, 

fY1+@2 

where (~i)i=1,2,...,~ is a decreasing sequence. 

PROOF. It is sufficient to choose 

ICI = o!1- (112, 

Ic.2 = o!q - a3, 

which leads to 

kl+2k2+3k3+...+nk,=al+cr2+cr3+...+a,=n, and 

kl+k2+k3+...+k,=a1. 

THEOREM 3.3. If ui = ai ti, then 

I 

(3.4) 

PROOF. An(uO, UI, . . . , u,) = A,(ao, alt,. . . , %Jn) 

&+kz+-+k+ (Ul qkl ((32 t2)k2 (a, P)k= 
= c 

k,+2kz+...+nk,=n 
&(h+kz+-fkn) ~ > 11=7&l ICI! .Icz!‘“” k,! 

c .++2kz+-+nkn 
&+kz+-.+kn)f 

> 

(m)“’ (a2)Icz 

q--. r .-.. 
. hdkn 

kl+2kz+.-+nk,=n 
&(kl+kz+-+kn) 

IL=210 k,! 

d(kl+kz+...+kn)f Wkl (a2)lcz = tn c > ‘lL=llo Tiyr . Tg- . . . . 

. hJkn 

kl+2kz+-.+nk,=n 
&(h+h+.-+kn) k,! 

= tn A,(uo, al,. . . , a,). I 

THEOREM 3.4. In the differential system (2.1), (2.2), we suppose that f(u) is infinitely differ- 

entiable and that g is expandable in entire series in the neighborhood of to = 0; then the series 

solution of (2.1), (2.2) is given by the scheme 

uo = U(0); 

tin+1 = L-l A, + L-l Q, P, (Y, = STO) 
I ’ n. 

which is a Taylor series. 

PROOF. Using Theorems 3.1 and 3.3, with ui = q, leads to 

210 = u(0); 
p+l 

un+l =L-‘A,+L-‘cu,tn=L-‘tnA,(uo,al,...,u,)+a,- 
(n + 1) 

= & (n!A,( ~~,u~,...,a,)+n!a,)=u(~+~~(~)~, 

(3.5) 

where u(~+‘)(O) is the (n + l)th derivative of u(t) evaluated at t = to = 0. 



106 K. ABBAOVI AND Y. CHERRVAVLT 

COROLLARY 3.5. For g = 0, 

(1) A, = &+l)(O) P/n!; 

(2) +3),=,,~ < M for any nonnegative integer k, then the series solution of (2.1), (2.2) 

obtained by the scheme (3.5) is absolutely convergent within the interval (-l/M, l/M) 

and, furthermore, 
M” t” 

bnl 5 --y’ 

PROOF. (1) Theorem 3.4 implies 

tn+l 
u,+~ = L-l A, + L-’ an t” = &+l)(o) -, 

(n + l)! 

so that, if g = 0, un+l = L-’ A, = u(~+~)(O) t”+‘/(n + l)! and 

A, = &+‘)(O) f. 

(2) s ince un = U(~)(O) P/n! and 5 M, it is easy to see that 

(u,J = lu(.)(O) s/ 2 (n - I)! M” f = Mn ;. I 

4. A SIMPLE COMPUTATIONAL FORM 
FOR ADOMIAN’S POLYNOMIALS 

Using the decreasing sequence (cQ)~=I,z,..+, Adomian’s polynomials can be easily calculated. 

All possible nonnegative integer solutions of the equations 

a1+aa+ .+.+a, =n, with (~1 2 a2 2 . . . 2 a, (4-l) 

can be searched without any difficulties by using a simple software. For example, for n = 10 we 
have: 

1111111111 

2111111110 

2211111100 

2221111000 

2222110000 

2222200000 

3111111100 

3211111000 

3221110000 

3222100000 

3311110000 

3321100000 

3322000000 

3331000000 

4111111000 

4211110000 

4221100000 

4222000000 

4311100000 

4321000000 



Adomian's Method 107 

4330000000 

4411000000 

4420000000 

5111110000 

5211100000 

5221000000 

5311000000 

5320000000 

5410000000 

5500000000 

6111100000 

6211000000 

6220000000 

6310000000 

6400000000 

7111000000 

7210000000 

7300000000 

8110000000 

8200000000 

9100000000 

10 0 0 0 0 0 0 0 0 0 

And we can list the expression of the An’s for n = 0, 1,2,. . . 10: 

Ao = f(uo), 

Al = f(‘)(uo)w, 

A2 = f%0)~2 + - f 
l (2) 

2 (~0) & 

A3 = f(l)(uo)us + fc2)(uo)u~ u2 + 1 fc3’(uo) u;, 
6 

A4 = fc1)(uo)u4 + f'2'(~o) { UI ‘113 + f U;} + ; f’3’(~o) u; u2 + ; f4’(uo) u;, 

As = f(l)(~o)us + f’2’(~o) (~1 U4 + U2 U3) + - f 1 (3) l (4) 

2 
(Uo) (UT U3 + UI U;) + - f 

6 
(Uo) u:: U2 

+ L fC5)(Uo) u:, 
120 

A6 = fur + f’2’(Uo) { UI U5 + U2 U4 + ; U;} 

+ f(3) (Ug) L2 u4 + Ul u2 u3 + L3 
2 

6 2) +fC4’(%,) {@‘Q + +“} 

+ L f’5’(uo) ?A;‘212 + L p’(U0) uy, 
24 720 

A7 = f+o)U7 + fc2)(Uo) (UI U6 + U2 u5 + u3 u4) 
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As = f(')(Ug)Wj + f'2'(Ug){U1u7 fu2U6 fu3u5 + ;u:} 

& = f (1) (uo)us + fC2’(uo) ( ulus+u2U7+UsUs+~4U5) 

+ &f’%O) u:u2 + &f(g%o)u~> 

AIO = f(l)(U&o +f'2'(U~) 
1 

UlUg fU2U3 +U3U7 +U4U6 + 2"; 

1 
;U$, fUlU2U7 +UlU3U6 +Ul U4U5 + ;U;U, fU2U3U5 + zU2U: 

12 12 12 2 1 
+ -U1U2U6 + -UlU3U5 + -UlU4 + zUlU;U5 

2 2 4 

1 3 12 2 
+UlU2U3U4+ -U,U4+4U2U3 

6 

&11s + $,, U5 + $U3U4 + ;U;U;U4 + ;U;U2U; + ;U&3 

REMARKS. 

(1) The results given in Theorem 3.3 are also valid for functions of several variables 

f( U,W,W )... ). 
(2) Our previous results can also be applied to systems of differential equations. 
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5. CONCLUSION 

Our original formula (3.3) allows us to calculate quickly Adomian’s polynomials. The number 
of all possible nonnegative solutions of equation (3.6) is easily obtained. The formula is very 
simple to use; by means of our TURBO-C software, for example, we have been able to list the A, 
from 1 to 100. The computation becomes more troublesome in [8,10]; e.g., Yang [8] uses the 
coefficients of fck) (uo). 

Furthermore, we have proved that Adomian’s method is more general than a Taylor’s technique, 
and that the two schemes (2.8) and (3.5) give series with different terms. 

But the two methods are identical if g = 0. With these improvements Adomian’s technique 
becomes a very powerful tool for solving nonlinear equations of functions of one or several un- 
knowns. 
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