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Abstract—This paper deals with a new proof of convergence of Adomian’s method applied to dif-
ferential equations. We also give new formulae and properties, and we suggest a simple computational
form for Adomian’s polynomials.

1. INTRODUCTION

In many papers [1-5}, Adomian has presented a technique using special polynomials for solving
nonlinear equations of various kind (algebraic, differential, partial differential, integral, etc.).
The solution is found as an infinite series in which each term can be easily determined and that
converges quickly towards an accurate solution. However, only few works have been done on the
convergence of the method (for instance, [6-8]).

In this paper, we propose new formulae for calculating Adomian’s polynomials, and we give a
proof of convergence using the classical Taylor’s method.

2. THE DECOMPOSITION METHOD
APPLIED TO DIFFERENTIAL EQUATIONS

Let us consider a differential equation in the form:

Z—IZ = f(u) +g, (2.1)
w(t)|t=0 = co, (2.2)

where f is the nonlinear term and ¢ is given.
Adomian’s method consists in calculating the solution, in the series form:

o0
3 . (23)
n=0
The nonlinear term f(u) becomes
o0
fluy=>" An, (2.4)
n=0
where the A,,’s are polynomials depending on ug, 4y, . . ., u,, called Adomian’s polynomials. They

are obtained from the relationship

v= f:x’ ui, f (Z X u,-> = i,\i Ay, (2.5)

=0 =0
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where A is a parameter introduced for convenience. The A,’s are calculated from (2.5) by the
formulae (see [1]):

dr = i
i A=0
Inserting (2.3) and (2.4) into equation (2.1) leads to
oo o
Z"" =co+L‘lg(t)+L‘1ZAn. (2.7)
n n
Each term of the series 3 ~° ; u, can be identified by the formulae
u=co+L71g,
uy = L1 Ay,
(2.8)

-1
Ung1 = L7 Ay

The exact solution of equation (2.1) is now entirely determined. However, in practice, all terms
of the series Y >, u, cannot be determined; so we use an approximation of the solution from
the truncated series:

n—1
$n = u;,  with limg, =u. (2.9)
i=0

3. CONVERGENCE OF THE TECHNIQUE
For every sequence un(X) = Y i o A* u;, we define f(u,()\)) by [6]:

Flun(N) =D X 4;. (3.1)
Then, we have the following result.

THEOREM 3.1. For a composed function A(X\) = f(un())), where we suppose that f(u) is differ-
entiable up to the n'" order, A,, are given by

Ao = f(uo);
e x (e b L
" R s .

Koy +2k2 dulkrtka+--+kn) u=uo k1! kol k3! k!

+3ks+---+nk.=n

PROOF. Applying the classical formula [9] giving the n'" derivative of the function A()\) =
f(un(N)), we obtain

An(u05ul1u27"'1un)

_1 nl (ug)* (2lug)®2 (Blug)ks ... (nluy)kn [ dkrtkattkn)
Tl (1)kx (20)F2 . (nl)Fn kql kol . . Ky "\ dulkithat—+kn) s
ube

d(k1+k2+'"+kn)f) 'Utlfl u’;z uéfa
u

= Z (ki+kz+-+kn) ! ! U Ryl
ks +2ks (du u= kl kz k3 k‘n
+3k3+ - +nk,=n

!
k1+2ka+3k3+-+nk,=n
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COROLLARY 3.2.
Ao = f(uo);
A‘n(uO) U, U2y .- -y un)
vl du®r ) e (a1 — a)! (az — a3)! (-1 —ax)! an!’ ’
+tan=n
(3.3)
where (0;)i=1,2,...n is a decreasing sequence.
Proor. It is sufficient to choose
ki = a1 — oy,
ko = ag — aa,
kn1=o0p_1— Qp,
kn = O,
which leads to
k1+2k2+3k3+--~+nkn=a1+a2+a3+--~+anzn, and
ki+ko+ks+---+k, =0 [ |
THEOREM 3.3. Ifu, = a;t%, then
An(ug, Uty .., up) =t" An(ao, a1, ... ,an). (3.4)
PROOF. An(uo, Utye- oy Un) = An(ao, ait,..., ant")
-3 (d“‘**’“”"‘*’“")f) (@) (a2t?)  (ant")er
- kitka+-+kn | | e !
k1+2kz+--+nkn=n dukithe ) u=mug ky! ka! !
B a2k bk (d(k1+k2+...+kn)f) (a1)kr . (az)* o (an)*n
o (k1 t+ka+-+kn) 1 R !
P dulkitks weu, K1 ko! k!
_n (d(’“‘+’“’+"’+’°"’f> (@) (o) (on)
= ki+ka++kn ! P !
by 4 kg btk dufkr+k: ) umuy 1! ko! kn!
=t"An(a0,a1,...,an). [ |

THEOREM 3.4. In the differential system (2.1), (2.2), we suppose that f(u) is infinitely differ-
entiable and that g is expandable in entire series in the neighborhood of ty = 0; then the series

solution of (2.1), (2.2) is given by the scheme

uo = U(0);
™o
Unyr =L YA+ L7 a, t7, Qp = g n'( ),
which is a Taylor series.
ProoF. Using Theorems 3.1 and 3.3, with a; = "(1;(0) , leads to
ug = u(0);
1 ) L tn+1
Unp1 = LT An + L7 ant™ = L7 t" Aplao,a1,...,0,) + ap m
g+l | : (nt1) g+l
:m (nAn(ag,al,,an)+nan)=u (O)m,

where u(*+1)(0) is the (n + 1) derivative of u(t) evaluated at t =ty = 0.

CAMWA 28:5-H

(3.5)
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COROLLARY 3.5. For g =0,
(1) Ay = u+D(0) ¢/n;
(2) if ‘ (j—:‘é) i < M for any nonnegative integer k, then the series solution of (2.1), (2.2)

U=UQ
obtained by the scheme (3.5) is absolutely convergent within the interval (—1/M,1/M)

and, furthermore,
Mn™r
lun| < .
n

Proor. (1) Theorem 3.4 implies

tn+1

Un4+1 = L An + L—l On t" = u(n+1) (0) (_';"—:1—)"

so that, if g =0, up41 = L1 A, = D (0) "1 /(n + 1)! and

t‘n
A, = u("+1)(0) by

n!
du
t

t" at
u(">(0)-75|5(n—1)!M =M ]

(2) Since u, = u{™(0)t"/n! and < M, it is easy to see that

[un| =

4. A SIMPLE COMPUTATIONAL FORM
FOR ADOMIAN’S POLYNOMIALS

Using the decreasing sequence (;)i=1,2,....n, Adomian’s polynomials can be easily calculated.
All possible nonnegative integer solutions of the equations

ayt+azt- oy =mn, with oy >ay>-- > a, (4.1)

can be searched without any difficulties by using a simple software. For example, for n = 10 we
have:

W b R R R W W W W W W W W NN NN
W oW R NN R WWWWN NN NN NN
N NN = W N N N R R NN N = =
= N e ke ke = N R N RN N e e e
[ e R = T S O S - I R R R - I e
O O O O = = O QO O e O e =
O 0 O 0 O - OO0 0 O 0O O = M= © O m = = =
O 0 0 OO0 00000000 - OO0 0O = H
O O 0 0O 0 00O 0 OC L0000 OO0 O O O © m
[ T = T oo Y = B o B = B = B = B = i = B = S« B = i « B o B o B o B e =
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[N I e CIEN SN B = I =2 T = N = ) = R, S, B 1 SRS L L S 4 B @ L S -
O H N H W N — W NN R U R W W NN R R W
OO O = O K O~ N H RFP © = NN~ = D = W
SO OO0 O O O 00 KHFEF OO O - H H MO = O
O 0 0O 0O 00 C o o0 o0~ O0 000 - KH+HOOoOOo
O O O 0O O O 000 0000 oo o0 o0 o0
O O 00 0O 0000 00000000000 o oo
O O 0O C 0O 0O 00 0 0O OO0 CcC 0O 0o o0 0O 0o o0 o o o
[en RN e BN e B o B e N e Y o BN o B oo T e T e B o= B = B e B = 2 = B = = Bl o Bl o B o 3 = |
O O 0O 0 0O 0O 0 O 0O O oo oL O OO OO0 O OO O

—
o

,_.
=

And we can list the expression of the A,’s forn =0,1,2,...

AO = f(uo)v
A; = fO(up)uy,

As = FD (ug)us + = 5 £ (uo) ut

As = OV (ug)us + f(z)(uO)ul up + = f(?’)(uO) uf,
.&=fmw@m+f®ww{nw+§@}+§#Wwwhu+§fwwwﬁ,

As = fP(uo)us + £ (uo) {ur ua + up us} + % £ (uo) (uf ug +uy u3) + % FO(uo) ui ug

RO 5
+120f (uo) u1,

1
f(l)(uo)uﬁ + f(2)(uo) {U1 Us + Uz Ug + = 5 () }

1 1
+f(3)(uo){§ufu4+u1u2u3+g }+ (4 { u1“3+4U%u§}

1 1
= £(5) 4 = £(6)
+24f (’LL())UIU2+720f (U())u
A; = f(l)(uo)m + f(2)(u0) (u1 Ug + Ug Us + U3 U4)

1 1 1
+f(3)(u0) {5 uf us + u1 Uug ug + §u1u§ + §u§U3}

1
+ﬂ®mw{ g+

1 1
2uquu3+ G }+f(5)(uo){ utus + — ulug}

12

_— £(8) 5 _t (D 7
+ 120 o (uo)uf ue + 504f (uo)ui,
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1
Ag = M (ug)us + £ (uo) {u1 u7 + ug ug + uz us + §Ui}

1 1
+f(3)(u0){ u1 Ug + U Ug Us + U U3 Ug + 2uzu3 + 2u§ ’U.4}

1 1
+f(4)(u0) {6“1 us + 2“1 Ug Ug + 1

1u1u3+ 1u1u2u:3+ ! 4}
2 24
+f(5)(u0){Lu1u4+ 1u?uQU3+ ! 2u3}+f(6)(u0){ ! ul uz + —u u2}
24 6 12 120 +°° 48 172

1 1
(D 6 L £(8) 8
+ 720f (uo) uj ug + 40320f (uo) uy,

Ag = fW (ug)ug + F P (uo) (uq ug + ug uz + uz ug + uaus)

1 2 1 4 1 4
§u1 ug + Uz Us + U2 Uz Ug + g’u?,

1
+f(3)(uO){§ufu7+u1 Ug U + U Uz Us + 2

—U1 ug Ugq +

1,
—u1U3’LL4+2

1 2
—uj U2 us + 5

1 1 1
+ f(4)(u0) Eu? ug + 2 -2—U1 U2 U:Z; + gug Us}

L
—uj Ug Ug +

6

1 1 1 4
12u1 u3 + 4u1u2 uz + 24u1 Uy

1

+ £® (uo) {—'u‘f us +
1 1 1 1

{ 5g i uzus + gput ug} 10 wo) {7201‘1 us + 355% ug}

O (up) uf,

362880f

1
Ao = f(l)(’u,o)ulo + f(2)('LL0) {ul Ug + Ug ug + U3z uy + Uq Ue + 511%}

1 1 1
+f(3)(uo) {Eufug + uq Ug U7 + Uy Ug U + UL Ug Us + —2-ugu6 + ug us us + §u2u2

1
+§u§U4}
1 1 1 1 1
+ f(4)(u0) {gu:{’ U7 + gul u% + 51@ Ug Ug + 51@ uz us + Zuf ul + S u% Uus
1 1
+ uq ug uz ug + EU§U4+ Zu%uﬁ}
+f(5)(u0) -1—u4u6+lu3uzu5+—u3u U4+lu2u2u +lu2u u2+lu udu
241 61 613 4124 41236123
1 5}
+_'U:2
120

+f(6)(u0) u1u5+ uluzu4+ 3+ 1 u1u2u3+ u1u‘21
120 24 48 12 48

1 1 1 1 1
(7N (8) 7 6,2
+ £ (wo) { 730t Ut Togt w2 s g “2} + £ (wo) {5040 1440 “2}
(9) (10)
* 40320f (uo) ui uz + 3628800f (uo) uy
REMARKS.

(1) The results given in Theorem 3.3 are also valid for functions of several variables

flu,v,w,...).

(2) Our previous results can also be applied to systems of differential equations.
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5. CONCLUSION

Our original formula (3.3) allows us to calculate quickly Adomian’s polynomials. The number
of all possible nonnegative solutions of equation (3.6) is easily obtained. The formula is very
simple to use; by means of our TURBO-C software, for example, we have been able to list the 4,
from 1 to 100. The computation becomes more troublesome in [8,10]; e.g., Yang [8] uses the
coefficients of £ (up).

Furthermore, we have proved that Adomian’s method is more general than a Taylor’s technique,
and that the two schemes (2.8) and (3.5) give series with different terms.

But the two methods are identical if g = 0. With these improvements Adomian’s technique
becomes a very powerful tool for solving nonlinear equations of functions of one or several un-
knowns.
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