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SUMMARY

To better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteo-
mics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in
hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found
that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which
consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required
for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA
or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-
positive myeloma cells. Our findings suggest that FGFR3 mediates hematopoietic transformation
by activating RSK2 in a two-step fashion, promoting both the ERK-RSK2 interaction and subsequent
phosphorylation of RSK2 by ERK.
INTRODUCTION

FGFR3 is one of four receptor-tyrosine kinases that re-

spond to fibroblast growth factor (FGF), and negatively

regulates bone formation in mammals (Colvin et al.,

1996; Deng et al., 1996). FGFR3 is composed of an extra-

cellular ligand-binding domain, a transmembrane domain,

and a split cytoplasmic tyrosine kinase domain. FGFR3 is

activated by oligomerization induced by ligand binding,

and the consequent transautophosphorylation at tyrosine

residues in the cytoplasmic domain is required for stimu-
Cance
lation of the intrinsic catalytic activity and activation of

downstream signaling pathways (Hart et al., 2001; Web-

ster and Donoghue, 1996).

Recent studies have suggested that FGFR3 may play

a significant role in the pathogenesis and disease progres-

sion of some hematopoietic malignancies including multi-

ple myeloma. Multiple myeloma (MM) is a clonal prolifera-

tion of terminally differentiated plasma cells and is among

the most common hematologic malignancies in patients

over the age of 65. Recurrent translocations involving

14q32 into the immunoglobulin heavy (IgH)-chain switch
SIGNIFICANCE

Dysregulated tyrosine kinases play a pathogenic role in diverse forms of hematopoietic malignancies and thus rep-
resent potential therapeutic targets. Identification of critical downstream signaling effectors will provide not only
the signaling basis of tyrosine kinase-induced hematopoietic transformation but also potential alternative targets
in treatment of relevant diseases. Here we report a two-step model that leukemogenic FGFR3 activates RSK2 by
both assisting inactive ERK binding via tyrosine phosphorylation of RSK2 at Y529 and activating the MEK/ERK
pathway. Targeting RSK2 effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma
cells, suggesting RSK2 is a critical signaling effector in FGFR3-mediated hematopoietic transformation. RSK2
may represent an alternative therapeutic target in the treatment of diverse human malignancies associated with
dysregulated FGFR3.
r Cell 12, 201–214, September 2007 ª2007 Elsevier Inc. 201

https://core.ac.uk/display/82790443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jchen@emory.edu


Cancer Cell

FGFR3 Phosphorylates RSK2
region are frequent in human multiple myeloma cells (Berg-

sagel et al., 1996; Bergsagel and Kuehl, 2001). The translo-

cations usually result in dysregulated expression of several

heterogeneous partners including c-myc, cyclin D1 (Chesi

et al., 1996), c-maf (Chesi et al., 1998a), and FGFR3 (Chesi

et al., 1997). The t(4;14) translocation involving FGFR3 has

been identified in approximately 15% of multiple myeloma

patients and cell lines (Chesi et al., 1997; Chesi et al.,

1998b). In some cases, the translocated FGFR3 gene con-

tains an activating mutation K650E that, when present in

the germ line, causes thanatophoric dysplasia type II

(TDII) (Tavormina et al., 1995). FGFR3 is also involved in

the t(4;12)(p16;p13)-associatedperipheral Tcell lymphoma

(PTCL) that progresses into acute myeloid leukemia (AML),

which generates the TEL-FGFR3 fusionprotein with consti-

tutive tyrosine kinase activity (Yagasaki et al., 2001).

Ectopic expression of FGFR3 has been demonstrated

to mediate transformation in hematopoietic cells. In a mu-

rine bone marrow transplantation (BMT) model, mice

transplanted with bone marrow cells transduced by retro-

viral vectors carrying wild-type FGFR3 or FGFR3 TDII

mutant exclusively develop lethal pro-B or pre-B cell lym-

phomas, respectively (Li et al., 2001). Moreover, we and

others have demonstrated the therapeutic efficacy of

small molecule tyrosine kinase inhibitors including

PKC412, PD173074, and SU5402, which effectively inhibit

FGFR3, in murine hematopoietic Ba/F3 cells; FGFR3-

expressing t(4;14)-positive primary MM cell lines including

KMS11, KMS18, and OPM-2; as well as in BMT and xeno-

graft murine models (Chen et al., 2005a; Grand et al.,

2004; Paterson et al., 2004; Trudel et al., 2004).

In humans, activating mutations of FGFR3 do not occur

concurrently in the same myeloma cells with activating

mutations of K-ras and N-ras, which are present in

�40% of multiple myeloma patients. Thus, FGFR3 may

share the signaling pathways with ras-activating muta-

tions such as the Ras/Raf/MEK/MAPK pathway and play

a similar role in multiple myeloma progression (Chesi

et al., 2001). We have reported that both leukemogenic

FGFR3 TDII and TEL-FGFR3 activate the MEK/ERK path-

way (Chen et al., 2005b). The Ser/Thr kinase RSK2 is

a substrate of ERK and belongs to a family containing

four members, RSK1–RSK4. RSK family members share

structural and functional similarities, and contain two dis-

tinct kinase domains, both of which are catalytically func-

tional (reviewed in Blenis, 1993; Frodin and Gammeltoft,

1999). The C-terminal kinase domain (CTD) is responsible

for autophosphorylation at Ser386 (numbering based on

the murine RSK2 amino acid sequence) that is critical in

RSK activation, whereas the N-terminal kinase domain

(NTD) is believed to phosphorylate exogenous substrates

of RSK (Fisher and Blenis, 1996) (Figure 1A). RSK plays an

active role in antiapoptosis signaling by phosphorylating

BAD (Shimamura et al., 2000), C/EBPb (Buck et al.,

2001), and death-associated protein (DAP) kinase (Anjum

et al., 2005) to protect cells from apoptosis. RSK has also

been implicated in cell cycle regulation and has been

found to phosphorylate and inhibit Myt1, a p34cdc2 inhibi-

tory kinase in Xenopus extracts (Palmer et al., 1998).
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The precise mechanism of RSK activation remains elu-

sive. The current model suggests that ERK-dependent

activation of RSK contains a series of sequential events.

First, inactive ERK binds to the C terminus of RSK in qui-

escent cells, and that this interaction is an absolute re-

quirement for activation of RSK (Gavin and Nebreda,

1999; Roux et al., 2003; Smith et al., 1999). Second,

when a stimulating signal such as mitogen comes, ERK

is activated and phosphorylates RSK at Thr577 (murine

RSK2 numbering) in the activation loop of the CTD domain

and Ser369 and Thr365 in the linker region between the

two kinase domains, leading to activation of the RSK

CTD domain. Third, activation of CTD domain results

in autophosphorylation of Ser386 in the linker region,

which provides a docking site for 3-phosphoinositide-

dependent protein kinase 1 (PDK1) (Frodin et al., 2000).

PDK1 in turn phosphorylates Ser227 in the activation

loop of the NTD domain, allowing RSK to phosphorylate

its downstream targets (Jensen et al., 1999). Last, acti-

vated NTD autophosphorylates Ser749 at the C-terminal

domain of RSK, which results in dissociation of active

ERK from RSK (Roux et al., 2003).

Here we present a two-step model that, in addition to

FGFR3-mediated activation of the MEK/ERK pathway,

FGFR3 tyrosine phosphorylates RSK2 at Y529, which reg-

ulates the activation of the serine/threonine kinase RSK2

by allowing inactive ERK to bind RSK2 in the initial step.

Moreover, inhibition of RSK2 by specific siRNA or a highly

specific small molecule RSK inhibitor fmk (Cohen et al.,

2005) induced significant apoptosis in human t(4;14)-pos-

itive, FGFR3-expressing myeloma cells, suggesting RSK2

is a critical effector in FGFR3 mediated transformation.

RESULTS

RSK2 Is Specifically Tyrosine Phosphorylated
in FGFR3-Expressing Hematopoietic Ba/F3 Cells
To better understand the signaling properties of leukemo-

genic FGFR3, we performed a mass spectrometry-based

proteomics study to identify the profile of tyrosine phos-

phorylated proteins in murine Ba/F3 cells stably express-

ing the TEL-FGFR3 fusion. Ba/F3 cells require IL-3 for cell

survival and proliferation, and constitutively activated

TEL-FGFR3 confers IL-3-independent proliferation to

Ba/F3 cells (Chen et al., 2005b). We identified a large

spectrum of proteins that are tyrosine phosphorylated in

Ba/F3 cells stably expressing TEL-FGFR3 compared to

control cells in the absence of IL-3, many of which are im-

portant for cell growth control and tumorigenesis including

previously reported STAT5 and PLCg (data not shown).

Among these proteins, we identified p90 ribosomal S6 ki-

nase 2 (RSK2) as a potential FGFR3 downstream effector

due to its critical role in cell proliferation and survival. The

upper panel of Figure 1A shows a schematic illustration of

p90RSK2 and the serine/threonine residues that are phos-

phorylated by ERK and PDK1 for activation. RSK2 was

identified to be specifically tyrosine-phosphorylated at

Y488 and Y529 due to expression of the constitutively ac-

tivated TEL-FGFR3 in the proteomics studies (Figure 1A,
Inc.
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Figure 1. p90RSK2 Is Tyrosine Phosphorylated in FGFR3-Expressing Hematopoietic Ba/F3 Cells

(A) Schematic diagram of p90RSK2 shows domain structure and residues phosphorylated during RSK2 activation by ERK and PDK1 (upper panel).

N/CTD, N/C-terminal kinase domain. S386 is autophosphorylated by activated CTD. The two phosphorylated tyrosine residues (Y488 and Y529) iden-

tified in the proteomics studies are indicated. Lower panel shows MS spectra of phospho-Tyr peptide fragments of RSK2 with xCorr = 4.1592 for

peptide containing Y488 and xCorr = 4.8611 for peptide containing Y529.

(B) TEL-FGFR3 requires its tyrosine kinase activity to induce tyrosine phosphorylation of RSK2 in Ba/F3 cells. Ba/F3 cells stably expressing TEL-

FGFR3 were cultured in media with serum and IL-3 withdrawal in the presence or absence of PKC412 for 4 hr prior to harvest. Ba/F3 cells treated

with IL-3 withdrawal were included as controls.

(C) RSK2 is tyrosine phosphorylated in Ba/F3 cells expressing TEL-FGFR3 or FGFR3 TDII but not in cells expressing the kinase-defective mutants

TEL-FGFR3 K508R or FGFR3 TDII FF4F.
lower panel). Both Y488 and Y529 are located outside of

the activation loop in the CTD domain of RSK2.

We next confirmed the tyrosine-phosphorylation of

RSK2 in hematopoietic cells expressing FGFR3. Control

Ba/F3 cells and cells stably expressing TEL-FGFR3 were

cultured in the presence or absence of the FGFR3 inhibitor

PKC412 (Chen et al., 2005a). Immunoblotting results

showed that RSK2 was tyrosine phosphorylated in Ba/F3

cells expressing TEL-FGFR3, whereas PKC412 treatment

abolished tyrosine phosphorylation of RSK2 by inhibiting

TEL-FGFR3 (Figure 1B). Moreover, tyrosine-phosphoryla-

tion of RSK2 was abolished in cells stably expressing

a kinase-dead K508R mutant form of TEL-FGFR3 (Chen

et al., 2005b) (Figure 1C, left).

Tyrosine-phosphorylated RSK2 was also detected in

Ba/F3 cells stably expressing leukemogenic full-length

FGFR3 TDII mutant with the activating mutation K650E,

which was further activated in the presence of ligand

acidic FGF (aFGF) (Chen et al., 2005b) (Figure 1C, right).

In contrast, cells stably expressing the kinase defective

mutant FGFR3 TDII FF4F (Y647/Y648) (Chen et al.,
Cance
2005b) were unable to induce tyrosine phosphorylation

of RSK2. Together, these data suggest that expression

of leukemogenic, constitutively activated FGFR3 variants

results in tyrosine phosphorylation of RSK2, which

requires FGFR3 kinase activity.

RSK2 Is Activated in Hematopoietic Cells
Expressing Leukemogenic FGFR3 Variants
We next tested whether expression of constitutively acti-

vated FGFR3 variants results in activation of RSK2. As

shown in Figure 2A, endogenous RSK2 was highly acti-

vated as assessed by phosphorylation at Ser386 in control

Ba/F3 cells in the presence of IL-3 compared to cells sub-

jected to IL-3 withdrawal. RSK2 was also activated in Ba/

F3 cells expressing ligand-independent TEL-FGFR3, as

well as in cells expressing FGFR3 TDII where Ser386

phosphorylation was enhanced in the presence of ligand

aFGF (Figure 2A). In addition, PKC412 treatment or

kinase-defective mutation K508R significantly attenuated

the TEL-FGFR3-induced phosphorylation of RSK2 at

Ser386 (Figure 2B).
r Cell 12, 201–214, September 2007 ª2007 Elsevier Inc. 203
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Figure 2. Constitutively Activated FGFR3 Variants Activate RSK2 in Hematopoietic Cells

(A) Left panel shows activation of endogenous RSK2 as assessed by phosphorylation at Ser386 in cells expressing TEL-FGFR3. Ba/F3 cells in the

presence or absence of IL-3 were included as controls. Right panel shows that RSK2 is further activated in Ba/F3 cells stably expressing FGFR3

TDII in the presence of aFGF ligand.

(B) Tyrosine kinase activity is required for TEL-FGFR3-dependent activation of RSK2. Left: Ba/F3 cells stably expressing TEL-FGFR3 were cultured in

the presence of increasing concentrations of PKC412. Right: Cells expressing the kinase-defective mutant TEL-FGFR3 (T/F) K508R were included as

a negative control.

(C) Expression of myc-RSK2 enhanced FGFR3 TDII-dependent activation of RSK2. Myc-tagged RSK2 was stably transduced into Ba/F3 cells

expressing FGFR3 TDII. Phosphorylation level of myc-RSK2 at Ser386 was assessed by western blotting.

(D) Expression of myc-RSK2 enhanced FGFR3 TDII conferred IL-3-independent proliferation of Ba/F3 cells. Cells were cultured in absence of IL-3 and

counted daily; control Ba/F3 cells were included. The data are presented as means ± SD (n = 3).

(E) FGFR3 activates RSK2 through the MEK/ERK pathway. Control RSK2 DC20 mutant harbors a deletion of 20 amino acids at the C terminus that are

required for ERK binding.

(F) Treatment of MEK inhibitor U0126 abolishes FGFR3-dependent RSK2 activation. Ba/F3 cells stably expressing FGFR3 TDII were treated with se-

rum and IL-3 withdrawal and aFGF stimulation for 4 hr followed by 90 min treatment of increasing concentrations of U0126 (left) or 10 mM U0126 with

PI3K inhibitors wortmannin and LY294002 as negative controls (right). Western blotting was performed to detect phosphorylation and expression

levels of RSK2 and ERK.
Moreover, in cells stably expressing both FGFR3 TDII

and myc-tagged RSK2, the exogenous myc-RSK2 was

highly phosphorylated and activated. TDII-dependent ac-

tivation of myc-RSK2 was further enhanced in the pres-

ence of aFGF (Figure 2C). In addition, stable expression

of myc-tagged RSK2 enhanced FGFR3 TDII-induced

IL-3 independent proliferation of Ba/F3 cells. As shown

in Figure 2D, in the absence of IL-3, control Ba/F3 cells

or cells stably expressing myc-RSK2 alone underwent
204 Cancer Cell 12, 201–214, September 2007 ª2007 Elsevier I
apoptotic cell death, suggesting that overexpression of

myc-RSK2 is not oncogenic in the absence of active

FGFR3 signaling. In contrast, stable expression of TDII

conferred IL-3-independence to Ba/F3 cell lines, which

was enhanced by coexpression of myc-RSK2 as as-

sessed by proliferative rate (Figure 2D). Together, these

data indicate that RSK2 may function as a downstream

signaling effector and contribute to FGFR3-mediated

hematopoietic transformation.
nc.
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FGFR3 Activates RSK2 through
the MEK/ERK Pathway
We next tested whether ERK is required for RSK2 activa-

tion by FGFR3. Compared with myc-RSK2, a myc-RSK2

mutant, DC20, which has a deletion of the 20 amino acids

at the C-terminus required for ERK binding (Gavin and

Nebreda, 1999), was not phosphorylated at Ser386 in

the presence of FGFR3 TDII even following aFGF stimula-

tion (Figure 2E). This observation suggests that FGFR3-

dependent activation of RSK2 requires ERK binding.

This is in consonance with the data that in Ba/F3 cells sta-

bly expressing FGFR3 TDII, treatment of MEK1 inhibitor

U0126, but not the PI3K inhibitors wortmannin and

LY294002, effectively inhibited phosphorylation at RSK2

Ser386 (Figure 2F) as well as RSK2 kinase activity in an

in vitro kinase assay (see Figure S1 in the Supplemental

Data available with this article online).

FGFR3-Dependent Tyrosine Phosphorylation
at Y529 Is Required for Phosphorylation
and Activation of RSK2 by ERK
To further elucidate the role of tyrosine phosphorylation in-

duced by FGFR3 in RSK2 activation, we characterized

a group of RSK2 mutants with single or double Y/F sub-

stitutions at Y488 and Y529. Retroviral vectors encoding

distinct myc-tagged RSK2 mutants with a puromycin re-

sistance gene were stably transduced into Ba/F3 cells

that already stably expressed FGFR3 TDII. Myc-RSK2

proteins were immunoprecipitated and assayed for spe-

cific phosphorylation at the three ERK-dependent phos-

phorylation sites including Thr365, Ser369, and Thr577

as well as at Ser386 as the index of RSK2 activation. As

shown in Figure 3A, myc-RSK2 and Y488F mutant were

highly phosphorylated at all of the aforementioned resi-

dues induced by FGFR3 TDII in the presence of ligand

aFGF, whereas phosphorylation at these residues was

completely abolished in the control myc-RSK2 DC20 mu-

tant that does not bind ERK. In contrast, myc-RSK2 Y529F

and double mutant Y488/529F (2F) demonstrated de-

creased phosphorylation levels of Thr365, Ser369,

Thr577, and Ser386, suggesting substitution of Y529 at-

tenuates ERK-dependent phosphorylation and activation

of RSK2 induced by FGFR3 TDII (Figure 3A).

We also tested the kinase activity of these RSK2 mu-

tants in in vitro kinase assays. The myc-RSK2 variants

were immunoprecipitated from cell lysates of the respec-

tive Ba/F3 cell lines stably coexpressing FGFR3 TDII. The

immunocomplexes were incubated with a specific exoge-

nous substrate S6 peptide in the presence of [g-32P] ATP.

Both myc-RSK2 Y529F and 2F mutants incorporated sig-

nificantly less 32P into S6 peptide than did the myc-RSK2

wild-type, whereas the negative control myc-RSK2 DC20

mutant completely lost the ability to phosphorylate S6

peptide (Figure 3B, top), correlating with the data for

ERK-dependent phosphorylation. In contrast, mutation

at Y488 did not significantly affect the RSK2 kinase activ-

ity. Similar results were obtained by using MBP (myelin

basic protein) as a nonspecific exogenous substrate

(Vaidyanathan and Ramos, 2003) (Figure 3B, middle).
Can
Figure 3. FGFR3-Dependent Tyrosine Phosphorylation at

Y529 Is Required for Phosphorylation and Activation of

RSK2 by ERK

(A) Substitution of Y529 on RSK2 attenuates ERK-dependent phos-

phorylation and activation of RSK2.

(B) Y529F decreases RSK2 kinase activity in the presence of FGFR3

TDII. Ba/F3 cells stably expressing FGFR3 TDII and distinct myc-

tagged RSK2 variants were cultured in the presence of aFGF with with-

drawal of IL-3 and serum for 4 hr. Immunocomplexes of RSK2 variants

were isolated and incubated with equal amount of S6-peptide (top) or

MBP (middle) as exogenous substrates, as well as [g-32P] ATP. The

phosphorylation of S6 peptide was normalized to readings from reac-

tions using RSK2 immunocomplexes from cells stably expressing

FGFR3 TDII alone (0.0) and cells coexpressing TDII and myc-RSK2

wild-type (1.0). The data were presented as mean ± SD; the p values

were determined by Student’s t test; ns = not significant; 2F = Y488/

529F. Bottom: Parallel immunoprecipitation and western blotting re-

sults confirmed equal amounts of myc-RSK2 proteins in each kinase

reaction.
cer Cell 12, 201–214, September 2007 ª2007 Elsevier Inc. 205
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Immunoblotting showed that equal amounts of myc-RSK2

immunoprecipitates were applied in each sample (Fig-

ure 3B, bottom).

Substitution of Y529 Attenuates Inactive ERK
Binding to RSK2
Inactive ERK interacts with RSK2 in quiescent cells, which

is prior to and required for ERK-dependent phosphoryla-

tion and activation of RSK2 (Roux et al., 2003). We next

tested whether FGFR3-induced phosphorylation at Y529

may regulate RSK2/ERK interaction. The Ba/F3 cell lines

stably expressing FGFR3 TDII and the respective Myc-

RSK2 variants were treated with the MEK1 inhibitor

U0126, since active ERK readily dissociates from RSK2

(Roux et al., 2003). As shown in Figure 4A, the immunopre-

cipitation results showed that substitution of Y529 in myc-

RSK2 decreased ERK association compared to the myc-

RSK2 wild-type and Y488F mutant, whereas the negative

control myc-RSK2 DC20 mutant completely lost the ability

to interact with inactive ERK. No phospho-ERK was de-

tected in the immunocomplexes of each RSK2 variant

by western blot (data not shown) suggesting that the

coimmunoprecipitated ERK was inactive upon U0126

treatment. These data suggest that tyrosine phosphoryla-

tion by FGFR3 regulates RSK2 activation by facilitating

inactive ERK binding.

We also evaluated the structural properties of the mu-

tant proteins compared to RSK2 wild-type by analysis of

the relative stability of proteins to limited proteolytic diges-

tion with chymotrypsin (Zhang et al., 1997). Purified re-

combinant His-tagged RSK2 WT and mutants including

Y488F, Y529F, and Y488/529F were incubated with chy-

motrypsin, and the resultant digestion patterns of the

mutant proteins were similar compared to RSK2 WT

(Figure 4B) suggesting that the global structure of each

mutant protein was not altered and decreased kinase ac-

tivation or inactive ERK-binding of RSK2 Y529F mutant is

not due to structural alterations.

FGFR3 Directly Phosphorylates RSK2 at Y529 and
Consequently Facilitates Inactive ERK Binding
To determine whether FGFR3-dependent RSK2 Y529

phosphorylation physiologically occurs in cells, we gener-

ated an antibody that specifically recognizes phospho-

Y529 of RSK2. By using this antibody, we observed that

RSK2 WT and Y488F mutant, but not Y529F mutant,

were specifically tyrosine phosphorylated at Y529 in

FGFR3 TDII-expressing 293T cells (Figure 4C, left) and

Ba/F3 cells (Figure 4C, middle). Phosphorylation at Y529

was also abolished in TDII or TEL-FGFR3 stable cells

treated with PKC412 that inhibits FGFR3 (Figure 4C, right).

We then determined whether FGFR3 phosphorylates

RSK2 at Y529 directly or indirectly by activating other ty-

rosine kinases. In an in vitro kinase assay, purified re-

combinant RSK2 C-terminal kinase domain (CTD) proteins

were incubated with recombinant FGFR3 kinase domain

that is constitutively activated (Invitrogen). As shown in

Figure 4D, wild-type RSK2 CTD domain was highly tyro-

sine phosphorylated at Y529 by FGFR3, whereas Y529
206 Cancer Cell 12, 201–214, September 2007 ª2007 Elsevier I
phosphorylation was abolished in the RSK2 CTD Y529F

mutant. Using a pantyrosine phosphorylation antibody

pY99, we observed comparable tyrosine phosphorylation

levels in both RSK2 CTD WT and Y529F mutant

(Figure 4D), suggesting that FGFR3 directly phosphory-

lates RSK2 at multiple sites, including Y529.

Next we tested whether the tyrosine phosphorylation of

RSK2 at Y529 by FGFR3 precedes the inactive ERK bind-

ing to RSK2. We performed a GST pull-down assay in

which the bead-bound, GST-tagged RSK2 WT or Y529F

mutant proteins were dephosphorylated by protein tyro-

sine phosphatase (PTP) first to remove tyrosine phosphor-

ylation, then treated with recombinant active FGFR3 fol-

lowed by incubation with U0126-treated 293T cell lysates.

As shown in Figure 4E, Y529 phosphorylation was recon-

stituted in GST-RSK2 WT along with increased inactive

ERK binding, upon FGFR3 treatment. In contrast, no

ERK binding to Y529F mutant was enhanced despite

a minimal phosphorylation of RSK2 Y529 mutant detected

by the specific phospho-Y529 antibody, which may be due

to the residual nonspecific background of the antibody.

Although the Y529F mutation does not seem to alter the

RSK2 global structure (Figure 4B), this mutation may in-

trinsically affect the kinase properties of RSK2. To test

this possibility, we performed an in vitro kinase assay. Re-

combinant RSK2 CTD variants were incubated with or

without activated recombinant ERK in the presence of

a specific RSK2 CTD peptide substrate (Cohen et al.,

2005). Previous studies have shown that in a similar in vitro

kinase assay, purified active ERK is able to phosphorylate

and activate an immunoprecipitated RSK2 (1–729) trunca-

tion mutant that cannot bind to ERK (Smith et al., 1999),

which suggests that probably under this condition, the

docking site mediated interaction is less critical for ERK

to phosphorylate RSK2. As shown in Figure 4F, all of

RSK2 CTD variants demonstrated comparable kinase

activity in the presence of active ERK. These data sug-

gest that Y529F mutation does not intrinsically alter the

kinase activation of RSK2, and the mutant proteins fold

properly.

Targeting RSK2 by a Specific Small Molecule RSK
Inhibitor fmk Attenuates FGFR3-Induced
Cytokine-Independent Growth in Ba/F3 Cells
Next we tested whether RSK2 is a critical signaling effec-

tor in FGFR3-mediated transformation signaling. We eval-

uated a specific RSK inhibitor, fmk, which is a fluorome-

thylketone molecule that was designed to specifically

exploit two selectivity filters of RSK. Fmk potently inacti-

vates the CTD auto-kinase activity of RSK1 and RSK2

with high specificity in mammalian cells (Figure 5A; Cohen

et al., 2005). As shown in Figure 5B, fmk effectively inhibits

FGFR3 TDII and TEL-FGFR3-induced IL-3-independent

growth of Ba/F3 cells in a dose-responsive manner

through attenuation of RSK2 activation as assessed by

Ser386 phosphorylation (Figure 5C) but not inhibition of

phosphorylation and activation of FGFR3 TDII or ERK

(data not shown). Cells expressing FGFR3 TDII in the

absence of ligand aFGF were more sensitive to fmk
nc.
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Figure 4. FGFR3 Directly Phosphorylates RSK2 at Y529 to Facilitate Inactive ERK Binding to RSK2

(A) Y529F mutation attenuates inactive ERK binding to RSK2. Ba/F3 cells stably expressing FGFR3 TDII and distinct myc-tagged RSK2 variants were

cultured in the absence of serum for 4 hr in the presence of U0126 (10 mM) prior to coimmunoprecipitation.

(B) Global structure of RSK2 proteins is not altered by point mutations, which was determined by similar partial protease digestion patterns of

(His)6-RSK2 WT and variants. Recombinant proteins (2.5 mg) were incubated with 0.5 unit of chymotrypsin for 30 min at 37�C.

(C) RSK2 Y529 is specifically phosphorylated in cells expressing FGFR3, detected by an antibody specifically recognizes phospho-Y529 of RSK2.

(D) FGFR3 directly phosphorylates RSK2 at Y529. Purified recombinant RSK2 (rRSK2) C-terminal kinase domain (CTD) and CTD-Y529F proteins were

incubated with recombinant FGFR3 kinase domain (rFGFR3) that is constitutively activated. Phosphorylation at Y529 in rRSK2 CTD was detected by

specific antibody pRSK2 (Y529).

(E) RSK2 Y529 is specifically phosphorylated by FGFR3, which consequently facilitates inactive ERK binding. GST-tagged RSK2 wild-type or Y529F

mutant were pulled down by beads from transfected 293T cell lysates and treated with protein tyrosine phosphatase (PTP), followed by treatment of

activated rFGFR3. The beads were then incubated with U0126-treated 293T cell lysates. Reconstituted Y529 phosphorylation and inactive ERK in the

complex of bead-bound GST-RSK2 were detected by immunoblotting.

(F) Y529F mutation does not intrinsically affect the kinase activation of RSK2. Purified rRSK2 CTD variants were incubated with or without activated

recombinant ERK in an in vitro kinase assay. The phosphorylation of the specific CTD-tide peptide substrate in each reaction was normalized to read-

ings from reaction of rRSK2 CTD WT with activated ERK (1.0) (mean ± SD).
Cancer Cell 12, 201–214, September 2007 ª2007 Elsevier Inc. 207
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Figure 5. RSK Inhibitor fmk Inhibits

Cytokine-Independent Proliferation of

Ba/F3 Cells Conferred by FGFR3

(A) Schematic representation of the specific

RSK inhibitor, fmk (Cohen et al., 2005).

(B) Dose response analysis of Ba/F3 cells sta-

bly expressing FGFR3 TDII or TEL-FGFR3 to

fmk. The relative cell viability was normalized

to the viability of cells in the absence of fmk

(mean ± SD). Right panel shows the cellular

IC50 (mM) of distinct cell lines.

(C) Inhibitory effects of fmk on phosphorylation

of RSK2 in Ba/F3 cells stably expressing TEL-

FGFR3 or FGFR3 TDII.
treatment compared to TDII stable cells cultured in the

presence of aFGF (Figure 5B). This difference may be

due to the possibility that constitutively activated FGFR3

TDII could be further activated by ligand, which con-

sequently results in enhanced RSK2 activation (Figure

2A). The inhibition of RSK2 by fmk is not attributable

to nonspecific cytotoxicity due to the lack of inhibition

of control Ba/F3 cells by fmk in the presence of IL-3

(Figure 5B).

RSK2 Is Specifically Phosphorylated at Y529
in FGFR3-Expressing, t(4;14)-Positive Human
Myeloma Cell Lines
We also evaluated the role of RSK2 in human t(4;14)-

positive, FGFR3-expressing multiple myeloma. RSK2

was highly phosphorylated at Y529 and activated as as-

sessed by phosphorylation levels of Ser386 in four differ-

ent t(4;14)-positive human myeloma cell lines (HMCLs).

KMS11 cells express FGFR3 harboring a single activating

mutation Y373C in the transmembrane domain. OPM1

cells overexpress the FGFR3 TDII mutant. H929 express

FGFR3 wild-type, whereas LP1 cells express FGFR3

with a polymorphism of F384L in the transmembrane do-

main (Chesi et al., 2001; Golla et al., 1997; Ronchetti et al.,

2001). In contrast, RSK2 was not phosphorylated at Y529

in three t(4;14)-negative HMCLs that do not express

FGFR3 (Figure 6A). Moreover, RSK2 was phosphorylated

at Ser386 and activated in RPMI8226 cells but not in

ANBL6 and U266 cells (Figure 6A). This difference may

be due to the active ras K12 mutation harbored by

RPMI8226 cells (Chesi et al., 2001). Although U266 cells

harbor a BRAF V599E mutation (Ng et al., 2003), RSK2

was not detected as Ser386 phosphorylated and acti-

vated (Figure 6A).

In consonance with these data, treatment of PKC412

that inhibits FGFR3 significantly attenuated FGFR3-

dependent Y529 phosphorylation as well as activation of

RSK2 in both t(4;14)-positive KMS11 and OPM1 cells

(Figure 6B).
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Targeted Downregulation of RSK2 but Not RSK1
Induces Apoptosis in FGFR3-Expressing Human
Myeloma Cells
We next utilized pools of siRNA specifically targeting

RSK1 or RSK2 and a nonspecific siRNA as a negative con-

trol to test whether targeted downregulation of RSK2

could induce apoptosis in FGFR3-expressing HMCLs.

Both RSK1 and RSK2 siRNAs were highly specific in de-

creasing their respective target protein expression in

KMS11 cells (Figure 6C, left). Transfection of RSK2 spe-

cific siRNA induced significant apoptosis in KMS11 cells

as assessed by increased annexin V positivity (Figure 6C,

middle) as well as decreased cell viability (Figure 6C, right)

compared to cells transfected with nonspecific siRNA. In

contrast, RSK1 siRNA failed to induce apoptotic cell death

in KMS11 cells (Figure 6C). Similar results were obtained

in another t(4;14)-positive HMCL, OPM1 (data not shown).

In order to examine potential off-target effects of indi-

vidual siRNAs in the RSK2 siRNA pool, we tested the ef-

fects of four siRNAs targeting RSK2 with separate target-

ing sequences (Figure 6D). All of the four tested siRNAs

effectively downregulated the protein expression of

RSK2 and induced comparable apoptosis in KMS11 cells

as observed using the pool of siRNA targeting RSK2

(Figure 6C). These data together suggest that RSK2 but

not RSK1 may play a critical role in FGFR3-mediated

transformation signaling.

fmk Induces Apoptosis in FGFR3-Expressing,
t(4;14)-Positive HMCLs as Well as Primary
Myeloma Cells
We observed that the specific RSK inhibitor fmk inhibited

RSK2 activation as assessed by decreased phosphoryla-

tion levels of Ser386 in human t(4;14)-positive, FGFR3-

expressing myeloma cell lines KMS11 and OPM1

(Figure 7A). Fmk treatment induced significant apoptosis

in KMS11 cells in a dose-dependent manner, as assessed

by increasing annexin V positivity and emergence of

cleaved PARP (Figure 7B). KMS11 cells treated with the
nc.
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Figure 6. Targeting RSK2 by Specific siRNA Induces Apoptosis in FGFR3-Expressing, t(4;14)-Positive Human Myeloma Cell Lines

(A) RSK2 is specifically tyrosine-phosphorylated at Y529 and activated in FGFR3-expressing, t(4;14)-positive human myeloma cell lines.

(B) Inhibition of FGFR3 by PKC412 abolishes Y529 phosphorylation as well as activation of RSK2 in t(4;14)-positive KMS11 and OPM1 cells.

(C) Targeted downregulation of RSK2 but not RSK1 induces apoptotic cell death in KMS11 cells. Left: Transfection of siRNA targeting RSK1 or RSK2

specifically decreases RSK1 or RSK2 protein expression in KMS11 cells, respectively. b-actin was detected as a loading control. Middle: Induction of

apoptosis by siRNA targeting RSK2 but not RSK1 in KMS11 cells. Cells were transfected with distinct siRNA for 48 hr and 72 hr prior to annexin V

staining and flow cytometry analysis. The apoptotic population was characterized as annexin V positive cells. Right: KMS11 cells were transfected

with distinct siRNAs for indicated periods. The relative cell viability was normalized to the viability of cells transfected by a nonspecific siRNA. The data

were presented as mean ± SD (n = 3).

(D) All of the 4 individual siRNA in the RSK2 siRNA pool in Figure 6C significantly downregulated RSK2 protein expression and induced apoptosis in

KMS11 cells (mean ± SD).
FGFR3 inhibitor PKC412 (Chen et al., 2005a) were in-

cluded as a positive control. Fmk also induced significant

apoptosis in other t(4;14)-positive, FGFR3-expressing

HMCLs including OPM1, LP1, and KMS18 cells express-

ing FGFR3 with a single activating mutation G384D in the

transmembrane domain (Ronchetti et al., 2001) (Fig-

ure 7C). KMS18 cells were less sensitive to fmk treatment

compared to the other t(4;14)-positive HMCLs, which may

be due to the relatively low RSK2 Ser386 phosphorylation

and activation levels (data not shown) resulting from the

combinatorial effects of multiple oncogenic mutations in

different cell lines (discussed below). RPMI8226 cells

that harbor an activating ras K12 mutation that leads to

RSK2 activation (Figure 6A) also responded to fmk

(Figure 7C). In contrast, HMCLs that do not express

FGFR3 or harbor ras mutations including ANBL-6 (IL-6

dependent) and U266 (harboring BRAF V599E mutation)

were resistant to fmk treatment (Figure 7C), presumably
Canc
due to the lack of RSK2 activation in both cell lines

(Figure 6A).

Moreover, we observed that fmk induced significant ap-

optosis in primary CD138-positive, FGFR3-expressing

myeloma cells from a t(4;14)-positive multiple myeloma

patient, but not in the control CD138-negative cells from

the same patient, nor primary samples from a t(4;14)-

negative patient as a control (Figure 7D). These data

provide ‘‘proof of principle’’ that not only suggest the ther-

apeutic potential of targeting RSK2 by fmk in t(4;14)-

positive, FGFR3-expressing multiple myeloma, but also

demonstrate that fmk has minimal nonspecific cytotoxi-

city in human myeloma cells.

DISCUSSION

Our data support a two-step model by which FGFR3

activates RSK2 and mediates transformation signals in
er Cell 12, 201–214, September 2007 ª2007 Elsevier Inc. 209
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Figure 7. Targeting RSK2 by fmk Induces Significant Apoptosis in FGFR3-Expressing, t(4;14)-Positive Human Myeloma Cell Lines

and Primary Human Myeloma Cells

(A) fmk treatment inhibits RSK2 activation in t(4;14)-positive KMS11 and OPM1 cells in a dose-dependent manner.

(B) fmk effectively induces apoptosis in t(4;14)-positive KMS11 cells in a dose-dependent manner. Cells were treated with increasing concentrations

of FGFR3 inhibitor PKC412 or fmk for 6 hr prior to FACS analysis. The apoptotic population was characterized as the fraction of annexin V positive

cells of total treated cells (left; mean ± SD). Cleaved PARP was detected by western blotting (right).

(C) fmk induces significant apoptosis in human t(4;14)-positive OPM1, LP1, and KMS18 myeloma cells (mean ± SD).

(D) fmk induces significant apoptotic cell death in primary t(4;14)-positive multiple myeloma cells. Freshly isolated bone marrow mononuclear cells

(BMNCs) from t(4;14)-positive and negative patients were incubated in the absence or presence of fmk for 16 and 24 hr. Cells were stained with

annexin V-FITC and analyzed by flow cytometry. Myeloma cells were identified by CD138 labeling. The apoptotic population was characterized as

the fraction of annexin V positive cells of total CD138 positive or negative cells (mean ± SD).
hematopoietic cells. The first step involves tyrosine phos-

phorylation at Y529 of RSK2 by FGFR3, which facilitates

binding of the inactive form of ERK to RSK2 in the initial

step of ERK-dependent RSK2 activation (Figure 8, Step

1). This binding, which is required for phosphorylation

and activation of RSK2 by ERK, in turn promotes the

second step where ERK is activated via the Ras/Raf/

MEK/MAPK pathway downstream of FGFR3, leading to

ERK-mediated phosphorylation and activation of RSK2

(Figure 8, Step 2). Thus, FGFR3 plays a dual role in the ac-

tivation of RSK2 by both assisting inactive ERK binding to

RSK2 and activating ERK to phosphorylate and activate

RSK2. Moreover, inhibition of RSK2 by specific siRNA or

small molecule inhibitor fmk effectively induces apoptosis

in human t(4;14)-positive myeloma cells that express

FGFR3, which demonstrates the importance of the

RSK2 pathway in FGFR3-related myeloma. These studies

therefore demonstrate that RSK2 is a critical signaling ef-

fector of FGFR3 and may represent a potential therapeutic

target in hematologic malignancies associated with dys-

regulated FGFR3.

Tyrosine phosphorylation at Y529 may provide an addi-

tional docking site to promote the binding of inactive ERK

to the C terminus of RSK2. Future detailed structural stud-
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ies would illuminate this process. FGFR3 might not be the

only upstream tyrosine kinase that phosphorylates RSK2

at Y529 as we have observed that upon treatment of

EGF, RSK2 is tyrosine phosphorylated at Y529 and acti-

vated in 293T cells that do not express FGFR3 (S.K.,

S.D., T.-L.G., A.G., S.L., H.J.K., R.D.P., and J.C., unpub-

lished data). This suggests that phosphorylation at Y529

might be a general requirement for RSK2 activation

through the ERK/MAPK pathway. Further studies to iden-

tify the alternative upstream tyrosine kinase(s) of RSK2 as

well as the role of phospho-tyrosine residues besides

Y529 in the activation and function of RSK2 are warranted.

Although Y529 is highly homologous in both RSK1 and

RSK2, RSK1 was not detected to be tyrosine phosphory-

lated in our proteomics studies (data not shown). This is in

consonance with our observations that FGFR3 specifically

activates RSK2 but fails to significantly activate RSK1 in

Ba/F3 cells (data not shown) as well as the lack of apopto-

sis induced following siRNA knockdown of RSK1 in

FGFR3-expressing human myeloma cells (Figure 6C).

Thus, FGFR3 may specifically signal through RSK2 to me-

diate transformation signaling.

Fmk as a highly specific RSK inhibitor induces signifi-

cant apoptosis in primary CD138-positive myeloma cells
c.
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from FGFR3-expressing, t(4;14)-positive multiple mye-

loma patient with minimal nonspecific cytotoxicity

(Figure 7D). Interestingly, the sensitivity to fmk is different

among t(4;14)-positive HMCLs. Fmk induces significant

apoptosis in KMS11, OPM1, and LP1 cells, whereas

KMS18 cells are relatively resistant (Figures 7B and 7C).

This difference suggests that there may be other onco-

genic abnormalities that are not responsive to fmk treat-

ment in KMS18 myeloma cells in addition to FGFR3.

For example, in addition to activation of FGFR3, the

t(4;14)(p16;q32) also results in creation of a chimeric fu-

sion transcript between IGH and MMSET (Multiple Mye-

loma SET domain) (Chesi et al., 1998b). Larger numbers

of cell lines will need to be evaluated to determine efficacy

of fmk in HMCLs that overexpress FGFR3.

Figure 8. Proposed Two-Step Model that FGFR3 Activates
RSK2 to Mediate Hematopoietic Transformation Involving

Tyrosine Phosphorylation at Y529 in RSK2

FGFR3 phosphorylates RSK2 at Y529 to facilitate recruitment of the in-

active form of ERK to RSK2 (Step 1), which subsequently promotes the

phosphorylation and activation of RSK2 by ERK when activated by

FGFR3 (Step 2).
Canc
Fmk as a first generation RSK inhibitor shows promising

but so far limited effectiveness in treatment of FGFR3-

expressing myeloma cells, compared to the FGFR3 inhib-

itor PKC412 (Figure 7B). Fmk was designed to specifically

target the CTD auto-kinase domain of RSK1, 2, and 4;

however, it cannot completely abrogate the phosphoryla-

tion of Ser386 of RSK2 (Figure 5C;Cohen et al., 2007;Co-

hen et al., 2005). Cohen et al. recently reported that a fmk

derivative, fmk-pa, inhibits RSK Ser386 phosphorylation

at saturating concentrations following stimulation of phor-

bol ester, but has no effect on RSK activation by lipopoly-

saccharide (Cohen et al., 2007). These findings together

suggest that RSK CTD-dependent autophosphorylation

at Ser386 is context dependent, and alternative kinases

may exist and bypass the CTD requirement and phosphor-

ylate Ser386 in the RSK2 hydrophobic motif, which there-

fore limits the therapeutic effects of fmk. Indeed, PDK1

can phosphorylate RSK at Ser386 in vitro, and Ser386 is

also within the identified consensus phosphorylation motif

of RSK NTD domain (Richards et al., 2001). On the other

hand, the RSK2 NTD transkinase domain is responsible

for phosphorylation of RSK2 substrates such as histone

H3 and BAD. Thus, targeting RSK CTD and NTD should

have different physiological effects, which warrants future

studies to test other potent RSK inhibitors that inhibit RSK

NTD, such as BI-D1870 (Sapkota et al., 2007), or com-

pounds target both kinase domains of RSK2. Such inhib-

itors may have enhanced therapeutic efficacy to inhibit

FGFR3-mediated transformation signaling.

Fmk is also able to induce significant apoptotic cell

death in the t(4;14)-negative human myeloma cell line

RPMI8226 that harbors an active RAS K12 mutation

(Figure 7C), suggesting a wider therapeutic implication

of targeting RSK in treatment of both FGFR3-positive

and -negative multiple myeloma. Activating mutations of

FGFR3 have been identified in human bladder and cervi-

cal carcinomas (Cappellen et al., 1999). Thus, our findings

may also have therapeutic implications with regard to

solid tumors associated with dysregulation of FGFR3.

EXPERIMENTAL PROCEDURES

Proteomics Studies

Phosphopeptides were prepared using PhosphoScan Kit (Cell Signal-

ing Technology, Inc.). In brief, 2 to 3 3 108 Ba/F3 cells (�20–40 mg total

protein) and cells that stably express TEL-FGFR3 fusion were treated

with IL-3- and serum-withdrawal for 4 hr prior to preparation of cell ly-

sates as described (Rush et al., 2005). Protein extracts from whole cell

lysates were trypsin digested. Tyrosine-phosphorylated peptides were

enriched by Immunoaffinity Purification (IAP) using phosphotyrosine

antibody P-Tyr-100 and analyzed by liquid chromatography coupled

with mass spectrometry. Tandem mass spectra were collected in

a data-dependent manner with an LTQ ion trap mass spectrometer

(ThermoFinnigan).

Reagents

RSK specific inhibitor fmk was described previously (Cohen et al.,

2005). SiRNA was ordered from Dharmacon, Chicago, IL. CTD-tide

(RRQLFRGFSFVAK) was synthesized by American Peptide Company,

Sunnyvale, CA. Murine RSK2 in pKH3-RSK2 (generously provided by

Dr. Morten Frodin at Glostrup Hospital, Denmark) was myc-tagged by
er Cell 12, 201–214, September 2007 ª2007 Elsevier Inc. 211
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PCR and subcloned into pMSCV-puro derived Gateway destination

vectors as described (Chen et al., 2005b). Mutations Y488F and/or

Y529F were introduced into RSK2 by using QuikChange-XL site-

directed mutagenesis kit (Stratagene, La Jolla, CA). The pET28b-

His6-RSK2 CTD (aa 415–740) was described previously (Cohen

et al., 2005). pET28b-(His)6-RSK2 variants were generated for bacterial

protein purification. RSK2 variants were subcloned into pDEST27

(Invitrogen, Carlsbad, CA) for GST-tagged RSK2 expression in mam-

malian cells.

Cell Culture

Ba/F3 cells were cultured in RPMI 1640 medium in presence of 10%

fetal bovine serum (FBS) and 1.0 ng/ml interleukin-3 (IL-3) (R & D Sys-

tems, Minneapolis, MN). HMCLs were cultured in RPMI 1640 medium

with 10% FBS. 293T cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) with 10% FBS.

Retroviral Infections, Ba/F3 Cells IL-3 Independent

Proliferation Assay, and Apoptosis Assay

RSK2 expressing Ba/F3 cell lines were generated by retroviral trans-

duction as described (Chen et al., 2005b) by using Ba/F3 cells stably

expressing FGFR3 TDII (Chen et al., 2005b) with pMSCV-puro plas-

mids encoding myc-tagged RSK2 variants, followed by antibiotic se-

lection. For cell viability assays, 1 3 105 Ba/F3 cells stably expressing

FGFR3 were cultured in 24-well plates with media containing increas-

ing concentrations of fmk, acidic FGF (10nM; R&D system, Minneapo-

lis, MN), and heparin (30 mg/ml; Sigma, St. Louis, MO) in the absence of

IL-3. The relative cell viability at each experimental time point was de-

termined by using the Celltiter96AQueous One solution proliferation kit

(Promega, Madison, WI). For apoptosis assays, 1 3 106 human mye-

loma cells were treated with fmk or PKC412 for 6 hr prior to being

stained with annexin V-FITC (BD PharMingen, San Diego, CA) and

analysis by FACS for apoptotic populations. The primary patient sam-

ples were analyzed as previously described (David et al., 2005). Briefly,

bone marrow mononuclear cells (BMNCs) were ficolled from bone

marrow samples from multiple myeloma patients. 1 3 106 /ml cells

were cultured in 12-well plate and incubated with 0 or 3 mM of fmk

for 16 and 24 hr. The cells were stained with annexin V-FITC and

CD138-PE as the recommendations of the manufacturers, followed

by FACS analysis. All clinical samples were obtained with informed

consent with approval by the Emory University Institutional Review

Board.

Antibodies

Phospho-Tyr antibody pY99 and antibodies against RSK1, RSK2, and

FGFR3 were from Santa Cruz Biotechnology, Santa Cruz, CA; anti-

bodies against myc, p44/42 ERK, phospho-p44/42 ERK (Thr202/

Tyr204), phospho-RSK (Ser380), phospho-RSK (Thr359/Ser363),

phospho-RSK (Thr573), and PARP were from Cell Signaling Technol-

ogy (CST), Danvers, MA; phospho-Tyr antibody clone 4G10 was

from Upstate, Lake Placid, NY; and antibodies against GST and b-

actin were from Sigma, St. Louis, MO. Specific antibody against phos-

pho-RSK2 (Tyr529) was generated by CST.

Purification of Recombinant RSK2 Proteins and Limited

Proteolytic Digestion

(His)6-tagged RSK2 proteins were purified by sonication of high ex-

pressing BL21(DE3)pLysS cells obtained from 250 ml of culture with

IPTG-induction for 4 hr. Cellular lysates were resolved by centrifuga-

tion and loaded onto a Ni-NTA column in 20 mM imidazole. After

a step of 23 washing, the protein was eluted with 250 mM imidazole.

Proteins were desalted on a PD-10 column and the purification effi-

ciency was examined by silver staining and western blotting. The lim-

ited proteolytic digestion was performed using chymotrypsin (Zhang

et al., 1997).
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In Vitro Kinase Assays

The S6 peptide kinase assay was carried out according to the manu-

facturer’s protocol (Upstate Biotechnology) using RSK2 immuno-

precipitates. To determine the ability of FGFR3 to phosphorylate

RSK2, 500 ng of purified recombinant RSK2 variants were incubated

with 500 ng of recombinant active FGFR3 (Invitrogen, Carlsbad, CA)

in 10 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM DTT, 0.01% Trixton-

X-100, 10 mM MnCl2, and 200 mM ATP for 30 min at 30�C. Phosphor-

ylation of Y529 RSK2 was detected by specific phospho-antibody. To

determine kinase activity of RSK2 CTD variants, purified recombinant

RSK2 CTD proteins (500 nM) were incubated with 500 nM of active

ERK (Invitrogen, Carlsbad, CA) in 20 mM HEPES [pH 8.0], 10 mM

MgCl2, 2 mM tris-(2-carboxyethyl)-phosphine (TCEP), and 200 mM

ATP for 1 hr at 30�C. Kinase reactions were initiated by the addition

of 5 mCi of [g-32P] ATP and 100 mM peptide substrate (CTD-tide), fol-

lowed by incubation for 20 min at room temperature. Kinase activity

was determined using the standard disk phospho-cellulose assay.

Reconstitution of RSK2 Tyrosine Phosphorylation by FGFR3

GST-tagged RSK2 constructs were transfected into 293T cells using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Twenty-four hours

posttransfection, cells were lysed, and GST-RSK2 variants were pulled

down by Glutathione Sepharose 4B beads (Amersham Bioscience,

Piscataway, NJ), followed by treatment of 50U of YOP phosphatase

(New England Biolab, Beverly, MA) at 30�C for 1 hr in 1 mg/ml BSA

and 1 3 YOP reaction buffer [50 mM Tris (pH7.0), 100 mM NaCl,

2 mM Na2EDTA, 5 mM DTT]. The beads were then washed with

PBS, followed by FGFR3 kinase reaction at 30�C for 30 min as de-

scribed above. The treated beads were washed with PBS, followed

by incubation with 293T cell lysates pretreated with 10 mM U0126 for

90 min, prior to SDS-PAGE and western blotting to detect association

of inactive ERK.

Supplemental Data

The Supplemental Data include one supplemental figure and can be

found with this article online at http://www.cancercell.org/cgi/

content/full/12/3/201/DC1/.
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