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Abstract

A non-simply connected co-H-space X is, up to homotopy, the total space of a fibrewise-simply connected
pointed fibrewise co-Hopf fibrant j: X — Br,(X), which is a space with a co-action of Br,(X) along j. We
construct its homology decomposition, which yields a simple construction of its fibrewise localisation. Our
main result is the construction of a series of co-H-spaces, each of which cannot be split into a one-point-sum
of a simply connected space and a bunch of circles, thus disproving the Ganea conjecture. © 2000 Elsevier
Science Ltd. All rights reserved.
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Problem 10 posed by Tudor Ganea [8], known as the Ganea conjecture (e.g. Section 6 in
Arkowitz [1]), states: Does a co-H-space have the homotopy type of a one-point-sum of a bunch of
circles (one-point-sum of S'’s or a point) and a simply connected space?

If a CW complex X is a co-H-space, the co-H-structure gives a co-action (see [3] or [16]) of the
classifying space Br;(X) of 7;(X) along j: X — Bm,(X), the classifying map of the universal cover-
ing p(X): X - X.Itis known by Eilenberg-Ganea [6] or [11], that 7,(X) is free and Br;(X) has the
homotopy type of a bunch of circles, say B. Let i: B— X be a map representing a collection of
generators of the free group m,(X) and ¢: X — C = X/B be the collapsing map from X to its
cofibre. Clearly, we may choose the map i so that joi ~ 1y. It is also known by Corollary 3.4 and
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Theorem 3.3 in [11] that, for a given u, a co-H-structure for X, there is a ‘natural’ map
s = s(u): C = X/B — X which is a right homotopy inverse of c. More precisely, if f: (X, u) = (X', i)
is a co-H-map, then fos(u) = s(u')-f, where f: X/B — X'/B’ is the unique map induced from f.
Hence one obtains two ‘natural’ homology equivalences X — Bv C and Bv C — X, both of which
induce isomorphisms of fundamental groups. As is well known, these properties, however, do not
guarantee that the two spaces have the same homotopy type.

Definition. A co-H-space is standard if it splits into a one-point-sum of a simply connected
co-H-space and a bunch of circles.

Berstein and Dror [3] showed that a co-H-space is standard if the associated co-action is
co-associative. Hilton et al. [10] showed that a co-H-space is standard if e = icj is ‘loop-like’ in
[X, X]. We summarise here the relevant results of [3,10].

Theorem 0.1. For a co-H-space complex X, the condition (1) below is equivalent with the conditions
(2)-(5) below by several authors.

(1) (Ganea [8]). A co-H-space is standard.

(2) (Berstein—-Dror [3]). The co-action of B along j: X — B associated with the co-H-structure of X can
be chosen as co-associative.

(3) (Hilton-Mislin-Roitberg [10]). The co-H-structure of X can be chosen to make the co-shear map
a homotopy equivalence.

(4) (Hilton-Mislin—Roitberg [10]). The co-H-structure of X can be chosen to be a co-loop, i.e. there is
a natural algebraic-loop structure on the homotopy set functor [ X, — .

(5) (Hilton-Mislin—Roitberg [10]). The co-H-structure of X can be chosen to make e = i-j loop-like
from the left (or right).

However, we do not know any algorithm to get a nice co-H-structure from a given one.

On the other hand, there are some results on the conjecture which are shown without making
any assumption on the co-H-structure itself: In [9], Henn verified the almost rational version of the
conjecture:

Theorem 0.2 (Henn [9]). An almost rational co-H-space is standard. Moreover, it can be split into
a one-point-sum of a rational spheres with dimensions = 2 and a bunch of circles.

In [14], Komatsu verified the conjecture for co-H-spaces with reduced homology groups free
abelian and concentrated in one dimension other than 1. In [11], the Ganea conjecture is verified
for co-H-spaces up to dimension 3:

Theorem 0.3 ([11]). 4 co-H-space X is standard if the reduced homology group H (X)) is trivial unless
qg=1n+1o0orn+ 2, with H,,(X) torsion free, for some n = 1.
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1. Results

From now on, we work in the category of spaces having the homotopy type of a path-connected
CW complex of finite type. The triple (j: X — B, F,i: B — X) stands for a pointed fibrant (see James
[13,12], while the notion goes back to Quillen [17]), i.e. j is a fibration with fibre F and i is a closed
cross-section of j. In the category of a pointed fibrants, there are (categorical) coproducts and
products: For pointed fibrants (j, Fy,i;) and (j,, F»,i,), the former, denoted by X; vp X, is the
push-out of the folding map V: B — B v B and the section map i; v i,, and the latter, denoted by
X1 Xg X5, is the pull-back of the diagonal map 4z: B — B x B and the fibration j; x j,.

We assume that a pointed fibrant (j, F, i) is fibrewise-simply connected, i.e. F is simply connected.
Then j and i 1nduce maps j: X - B and i: B> X of universal coverings, and we have another
pointed fibrant (j, F,1). We consider the following property:

H,(X,B) = Zn®H,(X,B)
X, 1 commutative l 2®.a(-) (L.1)
H*(X7B) - H*(XsB)’

where © = n1(X). By [11] and [7], we have the following result.

Theorem 1.1. 4 co-H-space is, up to homotopy, a fibrewise co-H-space over B satisfying the above
property (1.1).

Proof. We may assume that a co-H-space X is, up to homotopy, the total space of a fibration
j:X - B = Br the classifying map of p(X): X — X. Then by [11], j satisfies (1.1) and the natural
map p(X):Bv X — X (given by p(X)|z =i and p(X)|z = p(X)) has a homotopy section s. Let us
recall that the universal covering of a co-H-space is also a co-H-space, since the Lusternik-
Schnirelmann category of X cannot exceed that of X by [7]. Hence there is a co-H-structure ji
on X. By the deﬁniti~on of limits~ and colinlits irl the category of pointed fibrants, we know that
PX1) vep(X2):(Bv X1) ve(Bv X)) =Bv X vX,—>X;vpX,is given by p(X1) vpp(X,)lp, x, =
p(X), for t = 1,2. By putting up = (p(X) vep(X)) e (lgVv f)os, we get a fibrewise co-H-structure
onj:X—>B. [0

It is known that a simply connected CW complex has a Cartan-Serre-Whitehead decomposi-
tion, or a homology decomposition (see [5]). Property (1.1) yields the following result.

Theorem 1.2. If j satisfies (1.1), then there exists a sequence of fibrewise-simply connected pointed
fibrants (j,: X, — B,F,i,: B— X,) satisfying (1.1) with X, = B,Fy = {*} and j, = 13 =iy, which
satisfies the following conditions for each n > 1:

(N L:X,X,+1and X L»U mXm ~ X are maps of pointed fibrants.
(2) There lsha map h,:S, I F, < X,, where S, denotes the Moore space of type (H, + (X ,B),n) such
that S, - X, ' #+1 I8 a cofibre sequence up to homotopy.

(3) The inclusion m,: X, = X induces an isomorphism of fundamental groups.
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(4) The inclusion m,: X, < X induces an isomorphism of homology groups of the universal coverings
in dimensions < n and H,(X,,B) =0 for ¢ > n.

Remark. The properties imply h; ~0,X, ~ Bv 2S; and X, ~ C(h,), the cofibre of h,.

We call this an almost homology decomposition for a fibrewise-simply connected and pointed
fibrant satisfying (1.1). For the k’-invariants of a co-H-space, we can show the following results.

Theorem 1.3. If (j, F,i) admits a fibrewise co-H-structure satisfying (1.1), then there are induced
fibrewise co-H-structures on (j,, F,,1,) such that the inclusions l,: X, X, 1 and m,+1: X, + 15X are
fibrewise co-H-maps and the k'-invariants h, are of finite order, n = 1.

Corollary 1.3.1. If X is a co-H-space, then each k'-invariant h,, is of finite order, n = 1.

A fibrewise localisation and a fibrewise completion of a pointed fibrant is constructed by May
[15]. If we make the additional assumption (1.1), there is a much simpler construction of fibrewise
localisation using Theorem 1.2:

Theorem 1.4. Let P be a set of primes. If j is a fibrewise-simply connected pointed fibrant satisfying
(1.1), there is a fibrewise P-localisation /&: X — X8 which induces an isomorphism of fundamental
groups and a homomorphism between reduced homology groups of the fibres which is given by
tensoring with Zp, the ring of P-local integers.

When B ~ Br;(X), a fibrewise P-localisation was constructed by Bendersky [2]. In that case, we
will refer to a fibrewise localisation as an almost localisation.

Remark. By Theorem 1.4 and Corollary 1.3.1, we obtain another proof of Theorem 0.2.
By using the arguments given in [11], we obtain the following result (see Sections 5-8):

Theorem 1.5. There is a series of co-H-spaces R,,n = 4, with reduced homology groups free abelian
and concentrated in dimensions 1,n + 1 and n + 5, such that each R, is not standard.

We say that a co-H-space X is of stable dimension k if its reduced homology H,(X) is trivial unless
g=1lorn+1<gq<n+k, with H,,(X) torsion free, for some n > 1. We still don’t know about
the Ganea conjecture for a co-H-space of stable dimensions 3 and 4.

In the localised homotopy category, we have been unable to construct any counter examples to
the conjecture. So we may state here the following local version of the Ganea conjecture:

Conjecture 1.6. The almost p-localisation of a co-H-space is standard, for any prime p.
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Using the arguments given in Section 8, one can show that the non-trivial k’-invariants of the
spaces in Theorem 1.5 are co-H-maps with respect to some non-standard co-H-structures.

2. Homology decomposition

In this section, we prove Theorem 1.2. Let S, be the Moore space of type (H,+ (X, B),n),n > 1.
For the first step, since H,(X, B)=Zn®@ H,(X, B) by [11], we have

m(F)= 75X, B)~n,(X, By~ H,(X, B)~Zn® H,(X, B) o H,(X, B). (2.1)

Hence there exists a map f,:2S; — F < X representing a complete collection of generators of the
Zm-module 7t,(F) corresponding to (2.1). We deform the first projection j,: X', = Bv XS; - B to
a fibration up to homotopy, say j,: X, — B, with fibre F,, which satisfies (1.1) by (2.1). We define
g2: X, — X by g,lp=1i and g,|ss, = f>. We can easily check that g, induces an isomorphism of
fundamental groups, an isomorphism g,,, : qu()?z) - qu()?) forg < 2and qu()fz) = 0forq > 2. We
will consider g, as an inclusion.

We proceed to the next step: By (1.1), we have

n3(F, Fy)=ny(X, X,)=Hy(X, X,)= Hy(X, )= Zn@H;(X, B) > H4(X, B). (2.2)

Hence there exists a map f3:(C(S,),S,) = (F, F,) = (X,X,) representing a complete collection of
generators of the Zn-module n5(F, F,) corresponding to (2.2). We put h, = f3|s, and deform the
projection j3: X'3 = X, Uy, C(S,) > BV XS, 2 B to a fibration up to homotopy, say j3: X5 — B
with fibre F 3, which satisfies (1.1) by (1.2). We define g5 : X3 = X by g3lx, = ¢, and ¢3]¢s,) = f3. One
can easily check that g; induces an isomorphism of fundamental groups, an isomorphism
J3y - ﬁq()?3) - ﬁq()?) for ¢ < 3 and ﬁq()?3,§) = 0 for ¢ > 3. We will consider g5 as an inclusion.

One can continue this process and get the fibrewise homology decomposition satisfying (1.1), for
a finite complex. By using the telescope construction on the X;’s, we can also get the fibrewise
homology decomposition satisfying (1.1), for an infinite complex. This completes the proof of
Theorem 1.2.

3. Fibrewise localisation

In this section we prove Theorem 1.4. By Theorem 1.2, we have the homology decomposition
{(> Fs i B) }n> 1- We define the fibrewise P-localisation /¢ :j, — ji» by performing a step-by-step
construction: Firstly, we know that X, ~ Bv XS;. So we define j5:: X%, — B by deforming the
first projection prg:Bv(ZS) > B into a fibrant and /8:X, > X%, by deforming
lIgv{p:X, =BvXS; —>Bv(XS,)p into a fibrewise map. Let F, be the fibre of j5, which is
homotopy equivalent to the fibre of /5, : X5, — B. Then by the Serre spectral sequence for 55, we
have that the homology of F5 is P-local. Since F5 is simply connected, F itself is P-local and can be
regarded as the P-localisation F,p of F,.
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Secondly, let us recall that X; ~ X5 = X,u,,C(S,) and consider the following diagram:

FZ
hy \
h 14 -
S, 2 X, 2 X; X,
\* 1 & 1 Y
1 1
1 [}
B : B ;
e A7 H % || /! || (3.1)
1 [}
B : B : B
| ,/j | //‘
b vt RS *
SZIP: """ ;-'""X2§’ """ » Xap - - ' Xsp
RN hyp / bp
R >~ /
FZP

By the universality of [P-localisation /p,/poh’, induces the dotted arrow e such that
/poh/28~ hypo/p. Thus we can define h3p as the composition map: S,p - F,p < X5, and

Xlgpldi X55" = X% Upe, C(S2p) as its cofibre. Since the image of h3p lies in the fibre of 55, the
composition jipoh3p is trivial, and hence we can extend j5. to the projection
Jap": XapP = XgPUhipC(SZP) —>BVvZSy = B so that Jap" o lhe® = j5p and jip®o /P = j5. So we
define j5p : X5z — B by deforming j5.%: X5, — B into a fibrant and 55 : X5, < X5, by deforming
Le® into a fibrewise map. Then we remark that all the dotted arrows in diagram (3.1) can be
solidified so as to create a commutative diagram.
By continuing this process, we get the fibrewise P-localisation /£ : X — X for a finite complex X.
By using the telescope construction, we can also get the fibrewise P-localisation /8: X — X for an
infinite complex X. This completes the proof of Theorem 1.4.

4. Homology decomposition of a co-H-space over B

In this section, we prove Theorem 1.3. Let y: X —» X v X be any given fibrewise co-H-structure
for j. We show the existence of the desired fibrewise co-H-structure p, + for j,;; by induction on
n = 0. Since X; = B, u induces the trivial fibrewise co-H-structure u; = 13 on j; = 1p, which is
clearly the restriction of u to X; = B.

Let n = 1. Firstly we prove that j, . ; admits a fibrewise co-H-structure yu, +: When n = 1, since
X, ~ Bv XSy, there is a standard fibrewise co-H-structure u5 on j, as an extension of the trivial
co-H-structure p;, that is (I; vgli)o uy ~ u31ly. Thus we may assume that n > 2. Then by the
induction hypothesis, there is a fibrewise co-H-structure y, on j, which is a compression of puly.
Then the map y = (I, vgl)o o hy: S, = X, 41 Ve X, +1 gives the obstruction to extend (I, vgl,) e i,
on X, We regard yen,(X,+1VeX,+1;G),G = H,; (X, B). By the induction hypothesis, we
have (m,+1 Vgm,+1)ey = (m, vgm,)o p,oh, ~ pom,oh, = uom,,q°1l,oh, ~0. Hence there is an
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element e, (X Ve X, X, +1V e X,+1;G) such that d()) = y in the following commutative dia-
gram with exact rows:

7,1 XV X; G) _’ Tt (XVpX, X011V X015 G) _’ (X1 VX1 ©)

k* [ k; ‘ kn+l* (4 1)
l*

J
Tt (X% X5 G) — T, (X% X, X, X5 X1 G) — T,(X, %X, 15 G):

n+1

here k: X vpo X xp X, k' /(X vp X, X4 1 Ve Xus 1) S (X Xp X, Xyi 1 Xp Xyt 1) K10 Xv 1 VB X1
S X1 Xp X+ X VX S (X vp X, X, 01 Ve X,+1) and X xp X S (X Xp X, X1 Xg Xn+1)
are the canonical inclusions.

To proceed, we show that k,, is a split epimorphism and k, is an isomorphism: Let us recall the
Universal Coefficient Theorem due to Eckmann and Hilton: For any topological pair (U, V) and an
abelian group G, there is the following short exact sequence for g = 2.

0 = Ext(G, 1,4 (U, V)) = 1, (U, V; G) » Hom(G, 7,4 (U, V)) - 0.

Applying this to the n + 1-connected pair (X v X, X, v X, +1), using the Hurewicz isomor-
phism theorem and (1.1) for n > 2, we obtain

T 1(X VB X, X1 Ve X,y 3 )= EX(G, Hy o oA X V5 X, X,y 1 V5 X1 1)
~H, 42X V5 X, X, 11 V5 Xys 13101 G)
=7Zn®@H,+ (X vp X, X, +1 Ve X+ 15tor G).
Similarly for n > 2, we obtain
T+ 1(X Xp X, Xys1 Xp X113, G)=ZnQ@H,, 1 o(X xp X, X4 1 Xg X115 t01 G)
=7n®@H,+2(X vp X, X, +1 Ve X,y 15tor G).

Thus K, :m, (X VX, Xy41 VX1 1:G) = 1y 1(X X X, X, 41 Xp X1 1;G) 1s an isomorphism,
n = 2. The pointed fibrewise space X vy X — B has the fibre F v F, and hence 7, (X vz X;G) is
isomorphic with . (F v F; G)®n,+ ((B), n = 2. The pointed fibrewise space X xz X — B has the
fibre F x F, and hence 7, (X Xz X; G) is isomorphic with 7, (F X F; G)®n, + 1(B), n = 2. Since
the homomorphism =, 1(F v F;G) - m,+ 1(F x F; G) has a natural splitting ¢’ : 7,4 (F x F; G) >
T+ 1(F v F; G), so does the homomorphism k,, : 7, 4 (X vp X; G) = 7,4+ 1(X x5 X; G) admit a natural
splitting o, : 7, + 1(X x5 X; G) - m,+ 1(X vp X; G) with respect to j, n > 2.

On the other hand, since k,° u, is homotopic to 4,, the fibrewise diagonal map in X, x 3 X,,
we have k,iqo(l,vply)opn = (Lixgl)okyopy ~ (L xpl)o A, = A,41°1, and hence k,iq0y ~
Aps1olyoh, ~0. Thus 0okl () = kyt1,°0(0) = ky+1,.(y) =0, and hence there is an element
Y €m,+1(X x5 X; G) such that [,(y") = k(9). Since the left vertical arrow k, is an epimorphism, 7’
can be pulled back to an element yoem,; (X xpX;G). Hence ki, ol (yo) = I, ck.(po) =
L.(y) = ky(9). Since ki, is an isomorphism, we have that § =1I,(yo), and hence we get
y = 8( ) = 0ol (yo) = 0. Thus there is a map up+1:X,+1 = X,+1 Vg X,+1 which is an extension of

VB

(b vel)e
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Since X, +1 1, up to homotopy, the cofibre of h,,: S, —» F,, = X,, it admits a co-action of XS,. Thus
the “difference” between k,.;ou,+; and 4,4, is given by a map 0:2S,=X,+/X,—
X,+1xpX,+1 which can be pulled back to a map 6¢:2S, = X, 1 VpX,+1, since k,4q,, is an
epimorphism. By “adding” d, to u, ., we get u, ., a fibrewise co-H-structure on j,+; as an
extension of u,, that is (I, vgl,) o, ~ 101,

Secondly, we prove the existence of a fibrewise co-H-structure p, . such that (I, v gl,) o, ~
fn+1oly and (my 41 Vpmy 4 1) o 1 ~ oMy 12 Since (my 41 Vi, q)© fiy+1 and pom, ., coincide
when restricted to X, the “difference” between them is given by a map ¢: 2S, — X vz X. We regard
eem,+1(X v X;G), G =H,,(X,B).Since u,; and u are fibrewise co-H-structures for j, . ; and j,
we have ko(my 1 vemyyq)otyrr = My XgMyy 1) oKy 0 1 ~ My XgMyyq)odyyq =
Aomy, i ~kopom,, . Hence k(¢) =0 and ko [[.(¢) = I, o k,(¢) = 0. Since k, is an isomorphism,
we have [)(¢) = 0, and hence ¢ can be pulled back to an element 5 em, 4 (X, 1 vV X,+1;G). Let
€0 =260 — 0% okyi1,(60) €Myt 1(Xns1 Ve Xns1;G), where ol is the splitting for k,+q,. Then
i+ 14(€0) = kit 14(60) — kyy 14005 0 kyy14(e0) = 0 and

(My 41 VEMy 1 1),(60) = Myt 1 VBN, 4 1)4(€0) — My 1 VEMy, 1 1), 0 0':"“ Kyt 14(€0)
=é&— Jio(mn+1 Xan+1)>x<Okn+ 1*(86) =& U:Oknﬂ*omnﬂ*(&,o) =é&

Thus by adding ¢ to u;, + 1, we get another fibrewise co-H-structure p,, +; over B of X, ;. One can
easily check that p,+, has the desired properties.

Finally, we prove that the k’-invariant h, is of finite order: We observe that when X is a fibrewise
co-H-space, then the fibre F of j: X — B is a simply connected genuine co-H-space. The k'-invariant
h,:S,— F, < X, is the composition of the k'-invariant h;, for the simply connected co-H-space
F and the inclusion F, < X,. Since h;,: S, — F, is of finite order, by Theorem I in Curjel [4], h, is
also of finite order. This completes the proof of Theorem 1.3.

5. Construction of a complex R, for n > 4

The remainder of this paper is devoted to proving Theorem 1.5. In this section, we construct the
complex R,: Let A4, = S$""! and B = S'. We define C, as the following complex:

C,=8""" |J e =2"3C, Cyo=85*)eP=HP>, a=9%v,,= —8v,
"+ Va
where v4:S7 — §* denotes the Hopf map. The complex R, is defined as follows:
R,=(Bv A,) U e""3,
ing, o X" a+P(r) o ing, - "B

where in 4, denotes the inclusion A,~B Vv A4, and  : 1 — noMap,(B v 4,, B v A,) denotes the action
of the fundamental group n = () =7 of Bv A, on itself. We remark that the image of i/ is in the
group of homotopy classes of self homotopy equivalences Aut(B v 4,). Let p®: R, — R, be the
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universal covering of R,. By the definition of R,, the homotopy type of R, is as follows:

R, ~ <vTi-An>u<\/rj-e"+5> and BvA, = \/ 1A,

ieZ jez ieZ

where we denote by W‘/) /_B\/:v\?l/,, — BV 4, the map induced from (‘) on the universal coverings.
Also t'-( —) stands for (') — ). Here, the attaching map of the cell 1-e"*5 is given by the
suspension map

} Lo v 9@ .
AnvAn#» A,v1-A, \/r‘-An.

ieZ

Sn+4 {Zn*Sa’Zu*3ﬁ

We define a projection p: Bv R, — R, by putting
plB:Bgz Bv A, R, and plg =p":R,—> R,

Let po = plpy v a4, BV \/iczt'* A, > BV A,. Then we have poli.4,:7/" A, > Y(v))((A4,) = BV A,,
and hence, polyye. 4,1 P)T - 4,) = PT)P(NA,) > Yt )(A,) = BV A,, where ¥ denotes the
action of = on Bv \/;;7'* A,

6. Self-maps of 4, = S""!

This section provides an easy but rather crucial property of R, for n > 4. Let f: A, > A, and
g:A,— A, be maps of degrees — 8 and 9. We obtain

f+g~14. (6.1)
We know the following equations modulo 24, the order of 2" 3v, = v, ;:
(—8)??= —8, 92=9, (—8)x9=9x(—8 =0mod24.

Since X" 3¢ =9v,,, and X" 3B = — 8v,,, these equations imply the following properties:

Proposition 6.1. The compositions of [ and g with X" 3o and X" 3P give the equations:
(1) o230~ %, (2) g 2" S0~ 3" 30, (3) g 3" P~ % and (4) fo "3 ~ I3,

7. Homotopy section of Bv R, — R,

By Theorem 3.3 in [11], the existence of a homotopy section of p: Bv R, — R, is a necessary and
sufficient condition for R, to admit a co-action of B along j: R, — B. Here the universal covering
R, of R, is desuspendable for dimensional reasons. Hence the existence of a homotopy section of
p implies that R, is a co-H-space. In summary:
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Lemma 7.1. The following two conditions on R, are equivalent:

(1) There is a homotopy section of p:R, — BV R,,
(2) R, admits a co-H-structure.

Now we show_the existence of a homotopy section of p:Bv R,— R,. We define a map
So:BvA,>BvBvA,~Bv\/i;; 1" A, as follows:
SO|B = inBiB—>BV\/’L’i'A,,,
ieZ
{f.9) Yo v An vy, .
Sola i ArLS Agv A gy A By Ay Ay < B\ T A,
ieZ
By (6.1), we have pooso~1pv(f+¢g)~1pvl, =1p,4. Since n >4, it follows that
Tyt a(Ap Vv A) =7, 4 4(A,)P T, + 4(A4,) for dimensional reasons. By Proposition 6.1, we have

Soo 2" o ~iny o X" 3u:S"t* > Bv A, < Bv\/ 1 A4,

ieZ

S0° 2" 3B~ W(rein, 4 o P(0)e Z 3PS 5 A, > 1A, > By A, = Bv\/ 1 4,
ieZ
Hence we obtain that

Soo(Z" So + (1) o Z"T3B) = 500 2" 3o+ P(t) o590 2" 3B,
~ inA,,OZn_S,OC + inrA,‘Ol//j?E/)ozn_?)ﬂ = inA,,vr~A,,o(Zn_3<x + %OZH_3ﬁ)'

Thus the map sq° (2" 3o + Y(t)e 2" 3p) is homotopic to the attaching map of the cell 1-¢"*>.
Hence it induces a map s: R, » BV R, so that pos is clearly the identity up to homotopy.
By Lemma 7.1, we obtain the following theorem.

Theorem 7.2. R, is a co-H-space.

8. Unsplittability of R,

In this section, we show that R, is not standard. We state the following well-known result:
Proposition 8.1. The set of invertible elements in the group ring Zmnis + n < /7.

Proof. Since 7 is the infinite cyclic group, Zzn is isomorphic with Z[x, 1/x] the ring of Laurent
polynomials with coefficients in Z. We can express each Laurent polynomial in the form
xa,x" +a,_x""' 4+ o +ax' + ap) with a,aq #0, / >0 and ieZ. If the product of any two
such Laurent polynomials, say x'(a,x” + -+ + ao) and x/(b,x™ + -+ + by), is equal to the unity,
then we have thati + j =/ = m = 0 and ay,b, = 1. Hence every invertible element can be expressed
as + x' for some ieZ. [
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Let us assume that R, has the homotopy type of a one-point-sum of a simply connected space C’
and a bunch of circles B'. Since the fundamental group of R, is clearly n~7, B = S' = B and the
inclusion of B’ in R, is given by a generator t=! of n. Since C’ has the homotopy type of the
mapping cone of the inclusion B < R,, C' ~ R,/B = C,.

Thus our assumption implies that R, has the homotopy type of B v C,, which will lead us to a
contradiction: Let h:R, —» Bv C, be a homotopy equivalence, which induces an isomorphism
ﬁ*:ﬁ *(ﬁn; 7)—»H *(1/3_\/\6’/,,; 7). As is easily seen, we have

H.R;Z)=7n{x,+1,%,+5} and ﬁ*(m; Z)=77{thy+ 1, Up 5},

where x, and u, are the homology classes corresponding to the g-cells in R, and B v C,, respective-
ly. By Proposition 8.1, it follows that f,(x,+ 1) = 47Uy, and hy(Xyss5) = + tu,+s, for some
i,jeZ. Using a suitable deck transformation on Bv C,, we may assume that i = 0.

The (non-trivial) right actions of the Steenrod algebra on the homology groups A *(ﬁn;Fp) and
FI*(B v C,; F,) for p =2 and p = 3 are given by the following proposition.

Proposition 8.2. (1) Let x;; be the modulo 2 reduction of the element x,. Then, in A *(ﬁ,,;[Fz), the only
non-trivial relation is: x,, 1 sSq* = X}, 4 1. o

(2) Let uy be the modulo 2 reduction of the element u,. Then, in A BV Cy; ), the only non-trivial
relation is: . sSq* = u,, ;.

(3) Let x; be the modulo 3 reduction of the element x,. Then, in H*(ﬁn; F3), the only non-trivial
relation is: X+ sP' =1 X 41. o

(4) Let uy be the modulo 3 reduction of the element u,. Then, in FI*(B v C,; F3), the only non-trivial
relation is: u) , s2P' = ul, ;.

Thus in H, . (Bv Cy;F,) and H,. (B v C,;F3), we have the following equations:
Upp1 = E*(XQ+1) = E*(X;;+SSCI4) = E*(X;.+5)Sq4 = Tj‘“;.+58q4 = Tj'”;z+ 1
Uyt = £ E*(XZH) = =+ E*(r_l’x;{+591) = *+ T—l.ﬁ*(x;;+5)gl =+, 2!

= + Tj_l'U;:/+1-
The upper line tells us that j = 0, while the lower line tells us that j = 1. This is a contradiction.
Thus we obtain the following theorem.
Theorem 8.3. R, is not standard.

Theorems 7.2 and 8.3 imply Theorem 1.5.

Remark. Although R, % Bv C,, we know that these spaces have isomorphic homotopy groups in
each dimension, because their almost p-localisations are homotopy equivalent for any prime p. But
we do not know whether the universal coverings of these spaces are homotopy equivalent or not,
while the universal coverings are not 7,(B)-equivariant homotopy equivalent.
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