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Abstract

A non-simply connected co-H-space X is, up to homotopy, the total space of a "brewise-simply connected
pointed "brewise co-Hopf "brant j :XPBn

1
(X), which is a space with a co-action of Bn

1
(X) along j. We

construct its homology decomposition, which yields a simple construction of its "brewise localisation. Our
main result is the construction of a series of co-H-spaces, each of which cannot be split into a one-point-sum
of a simply connected space and a bunch of circles, thus disproving the Ganea conjecture. ( 2000 Elsevier
Science Ltd. All rights reserved.
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Problem 10 posed by Tudor Ganea [8], known as the Ganea conjecture (e.g. Section 6 in
Arkowitz [1]), states : Does a co-H-space have the homotopy type of a one-point-sum of a bunch of
circles (one-point-sum of S1's or a point) and a simply connected space?

If a CW complex X is a co-H-space, the co-H-structure gives a co-action (see [3] or [16]) of the
classifying space Bn

1
(X) of n

1
(X) along j : XPBn

1
(X), the classifying map of the universal cover-

ing p(X) : XI PX. It is known by Eilenberg}Ganea [6] or [11], that n
1
(X) is free and Bn

1
(X) has the

homotopy type of a bunch of circles, say B. Let i :BPX be a map representing a collection of
generators of the free group n

1
(X) and c : XPC"X/B be the collapsing map from X to its

co"bre. Clearly, we may choose the map i so that j " i&1
X
. It is also known by Corollary 3.4 and

0040-9383/01/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 4 0 - 9 3 8 3 ( 9 9 ) 0 0 0 5 2 - X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82790321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Theorem 3.3 in [11] that, for a given k, a co-H-structure for X, there is a &natural' map
s"s(k) : C"X/BPX which is a right homotopy inverse of c. More precisely, if f : (X,k)P(X@,k@)
is a co-H-map, then f " s(k)"s(k@) " f@, where f@ : X/BPX@/B@ is the unique map induced from f.
Hence one obtains two &natural' homology equivalences XPBsC and BsCPX, both of which
induce isomorphisms of fundamental groups. As is well known, these properties, however, do not
guarantee that the two spaces have the same homotopy type.

De5nition. A co-H-space is standard if it splits into a one-point-sum of a simply connected
co-H-space and a bunch of circles.

Berstein and Dror [3] showed that a co-H-space is standard if the associated co-action is
co-associative. Hilton et al. [10] showed that a co-H-space is standard if e"i " j is &loop-like' in
[X,X]. We summarise here the relevant results of [3,10].

Theorem 0.1. For a co-H-space complex X, the condition (1) below is equivalent with the conditions
(2)}(5) below by several authors.

(1) (Ganea [8]). A co-H-space is standard.
(2) (Berstein}Dror [3]). The co-action of B along j : XPB associated with the co-H-structure of X can

be chosen as co-associative.
(3) (Hilton}Mislin}Roitberg [10]). The co-H-structure of X can be chosen to make the co-shear map

a homotopy equivalence.
(4) (Hilton}Mislin}Roitberg [10]). The co-H-structure of X can be chosen to be a co-loop, i.e. there is

a natural algebraic-loop structure on the homotopy set functor [X,!].
(5) (Hilton}Mislin}Roitberg [10]). The co-H-structure of X can be chosen to make e"i " j loop-like

from the left (or right).

However, we do not know any algorithm to get a nice co-H-structure from a given one.
On the other hand, there are some results on the conjecture which are shown without making

any assumption on the co-H-structure itself: In [9], Henn veri"ed the almost rational version of the
conjecture:

Theorem 0.2 (Henn [9]). An almost rational co-H-space is standard. Moreover, it can be split into
a one-point-sum of a rational spheres with dimensions *2 and a bunch of circles.

In [14], Komatsu veri"ed the conjecture for co-H-spaces with reduced homology groups free
abelian and concentrated in one dimension other than 1. In [11], the Ganea conjecture is veri"ed
for co-H-spaces up to dimension 3:

Theorem 0.3 ([11]). A co-H-space X is standard if the reduced homology group HM
q
(X) is trivial unless

q"1, n#1 or n#2, with H
n`2

(X) torsion free, for some n*1.
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1. Results

From now on, we work in the category of spaces having the homotopy type of a path-connected
CW complex of "nite type. The triple ( j : XPB,F, i : BPX) stands for a pointed xbrant (see James
[13,12], while the notion goes back to Quillen [17]), i.e. j is a "bration with "bre F and i is a closed
cross-section of j. In the category of a pointed "brants, there are (categorical) coproducts and
products: For pointed "brants ( j

1
, F

1
, i
1
) and ( j

2
, F

2
, i
2
), the former, denoted by X

1
s

B
X

2
, is the

push-out of the folding map +
B
: BPBsB and the section map i

1
si

2
, and the latter, denoted by

X
1
]

B
X

2
, is the pull-back of the diagonal map D

B
: BPB]B and the "bration j

1
]j

2
.

We assume that a pointed "brant ( j,F, i) is "brewise-simply connected, i.e. F is simply connected.
Then j and i induce maps jI : XI PBI and iI : BI PXI of universal coverings, and we have another
pointed "brant ( jI ,F, iI ). We consider the following property:

(1.1)

where n"n
1
(X). By [11] and [7], we have the following result.

Theorem 1.1. A co-H-space is, up to homotopy, a xbrewise co-H-space over Bn satisfying the above
property (1.1).

Proof. We may assume that a co-H-space X is, up to homotopy, the total space of a "bration
j : XPB"Bn the classifying map of p(X) :XI PX. Then by [11], j satis"es (1.1) and the natural
map p( (X) : BsXI PX (given by p( (X)D

B
"i and p( (X)D

XI
"p(X)) has a homotopy section s. Let us

recall that the universal covering of a co-H-space is also a co-H-space, since the Lusternik}
Schnirelmann category of XI cannot exceed that of X by [7]. Hence there is a co-H-structure k8
on XI . By the de"nition of limits and colimits in the category of pointed "brants, we know that
p( (X

1
)s

B
p( (X

2
) : (BsXI

1
)s

B
(BsXI

2
)"BsXI

1
sXI

2
PX

1
s

B
X

2
is given by p( (X

1
)s

B
p( (X

2
)D
B[XI t

"

p( (X
t
), for t"1, 2. By putting k

B
"(p( (X)s

B
p( (X)) " (1

B
sk8 ) " s, we get a "brewise co-H-structure

on j :XPB. h

It is known that a simply connected CW complex has a Cartan}Serre}Whitehead decomposi-
tion, or a homology decomposition (see [5]). Property (1.1) yields the following result.

Theorem 1.2. If j satisxes (1.1), then there exists a sequence of xbrewise-simply connected pointed
xbrants ( j

n
: X

n
PB,F

n
,i
n
: BPX

n
) satisfying (1.1) with X

1
"B,F

1
"M*N and j

1
"1

B
"i

1
, which

satisxes the following conditions for each n*1 :

(1) l
n
: X

n
6X

n`1
and X

n
66

m
X

m
KX are maps of pointed xbrants.

(2) There is a map h
n
: S

n
h{nP F

n
LX

n
, where S

n
denotes the Moore space of type (H

n`1
(X,B),n) such

that S
n

hnP X
n
ln6 X

n`1
is a coxbre sequence up to homotopy.

(3) The inclusion m
n
: X

n
LX induces an isomorphism of fundamental groups.
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(4) The inclusion m
n
: X

n
LX induces an isomorphism of homology groups of the universal coverings

in dimensions )n and H
q
(XI

n
, BI )"0 for q'n.

Remark. The properties imply h
1
&0,X

2
KBsRS

1
and X

n`1
KC(h

n
), the co"bre of h

n
.

We call this an almost homology decomposition for a "brewise-simply connected and pointed
"brant satisfying (1.1). For the k@-invariants of a co-H-space, we can show the following results.

Theorem 1.3. If ( j, F, i) admits a xbrewise co-H-structure satisfying (1.1), then there are induced
xbrewise co-H-structures on ( j

n
,F

n
, i
n
) such that the inclusions l

n
:X

n
6X

n`1
and m

n`1
:X

n`1
6X are

xbrewise co-H-maps and the k@-invariants h
n

are of xnite order, n*1.

Corollary 1.3.1. If X is a co-H-space, then each k@-invariant h
n

is of xnite order, n*1.

A "brewise localisation and a "brewise completion of a pointed "brant is constructed by May
[15]. If we make the additional assumption (1.1), there is a much simpler construction of "brewise
localisation using Theorem 1.2:

Theorem 1.4. Let P be a set of primes. If j is a xbrewise-simply connected pointed xbrant satisfying
(1.1), there is a xbrewise P-localisation lBP : XPXBP which induces an isomorphism of fundamental
groups and a homomorphism between reduced homology groups of the xbres which is given by
tensoring with ZP, the ring of P-local integers.

When BKBn
1
(X), a "brewise P-localisation was constructed by Bendersky [2]. In that case, we

will refer to a "brewise localisation as an almost localisation.

Remark. By Theorem 1.4 and Corollary 1.3.1, we obtain another proof of Theorem 0.2.

By using the arguments given in [11], we obtain the following result (see Sections 5}8):

Theorem 1.5. There is a series of co-H-spaces R
n
, n*4, with reduced homology groups free abelian

and concentrated in dimensions 1, n#1 and n#5, such that each R
n

is not standard.

We say that a co-H-space X is of stable dimension k if its reduced homology HM
q
(X) is trivial unless

q"1 or n#1)q)n#k, with HM
n`k

(X) torsion free, for some n*1. We still don't know about
the Ganea conjecture for a co-H-space of stable dimensions 3 and 4.

In the localised homotopy category, we have been unable to construct any counter examples to
the conjecture. So we may state here the following local version of the Ganea conjecture:

Conjecture 1.6. The almost p-localisation of a co-H-space is standard, for any prime p.
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Using the arguments given in Section 8, one can show that the non-trivial k@-invariants of the
spaces in Theorem 1.5 are co-H-maps with respect to some non-standard co-H-structures.

2. Homology decomposition

In this section, we prove Theorem 1.2. Let S
n
be the Moore space of type (H

n`1
(X,B), n), n*1.

For the "rst step, since H
2
(XI , BI )+Zn?H

2
(X,B) by [11], we have

n
2
(F)+n

2
(X,B)+n

2
(XI ,BI )+H

2
(XI , BI )+Zn?H

2
(X,B)MH

2
(X,B). (2.1)

Hence there exists a map f
2
:RS

1
PFLX representing a complete collection of generators of the

Zn-module n
2
(F) corresponding to (2.1). We deform the "rst projection j@

2
: X@

2
"BsRS

1
PB to

a "bration up to homotopy, say j
2
: X

2
PB, with "bre F

2
, which satis"es (1.1) by (2.1). We de"ne

g
2
: X

2
PX by g

2
D
B
"i and g

2
DRS1

"f
2
. We can easily check that g

2
induces an isomorphism of

fundamental groups, an isomorphism g8
2H

: HI
q
(XI

2
)PHI

q
(XI ) for q)2 and HI

q
(XI

2
)"0 for q'2. We

will consider g
2

as an inclusion.
We proceed to the next step: By (1.1), we have

n
3
(F,F

2
)+n

3
(X,X

2
)+H

3
(XI ,XI

2
)+H

3
(XI , BI )+Zn?H

3
(X,B)MH

3
(X,B). (2.2)

Hence there exists a map f
3
: (C(S

2
),S

2
)P(F,F

2
)L(X,X

2
) representing a complete collection of

generators of the Zn-module n
3
(F,F

2
) corresponding to (2.2). We put h

2
"f

3
D
S2

and deform the
projection j@

3
: X@

3
"X

2
X

h2
C(S

2
)PBsRS

2
13BP B to a "bration up to homotopy, say j

3
:X

3
PB

with "bre F
3
, which satis"es (1.1) by (1.2). We de"ne g

3
:X

3
PX by g

3
D
X2
"g

2
and g

3
D
C(S2)

"f
3
. One

can easily check that g
3

induces an isomorphism of fundamental groups, an isomorphism
g8
3H

: HI
q
(XI

3
)PHI

q
(XI ) for q)3 and HI

q
(XI

3
, BI )"0 for q'3. We will consider g

3
as an inclusion.

One can continue this process and get the "brewise homology decomposition satisfying (1.1), for
a "nite complex. By using the telescope construction on the X

i
's, we can also get the "brewise

homology decomposition satisfying (1.1), for an in"nite complex. This completes the proof of
Theorem 1.2.

3. Fibrewise localisation

In this section we prove Theorem 1.4. By Theorem 1.2, we have the homology decomposition
M( j

n
, F

n
, i
n
; h

n
)N

nw1
. We de"ne the "brewise P-localisation lBP : j

n
PjB

nP
by performing a step-by-step

construction: Firstly, we know that X
2
KBsRS

1
. So we de"ne jB

2P :XB
2PPB by deforming the

"rst projection pr
B
: Bs(RS

1
)PPB into a "brant and lBP : X

2
PXB

2P by deforming
1
B
slP :X

2
"BsRS

1
PBs(RS

1
)P into a "brewise map. Let F@

2
be the "bre of jB

2P which is
homotopy equivalent to the "bre of jI B

2P : XI B
2PPBI . Then by the Serre spectral sequence for jI B

2P, we
have that the homology of F@

2
is P-local. Since F@

2
is simply connected, F@

2
itself is P-local and can be

regarded as the P-localisation F
2P of F

2
.
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Secondly, let us recall that X
3
KX@

3
"X

2
X

h2
C(S

2
) and consider the following diagram:

(3.1)

By the universality of P-localisation lP, lP " h@
2

induces the dotted arrow h@
2P such that

lP " h@
2
&h@

2P " lP. Thus we can de"ne hB
2P as the composition map: S

2P
h
@
2P

P F
2PLXB

2P and

XB
2P

l
@
2P

B

6 X@
3PB"XB

2P X
h
B
2P

C(S
2P) as its co"bre. Since the image of hB

2P lies in the "bre of jB
2P, the

composition jB
2P " hB

2P is trivial, and hence we can extend jB
2P to the projection

j@
3PB : X@

3PB"XB
2PXh

B
2P

C(S
2P)PBsRS

2P
13BP B so that j@

3PB " l@
2PB"jB

2P and j@
3PB " l@PB"j@

3
. So we

de"ne jB
3P : XB

3PPB by deforming j@
3PB : X@

3PBPB into a "brant and lB
2P : XB

2P6XB
3P by deforming

l@
2PB into a "brewise map. Then we remark that all the dotted arrows in diagram (3.1) can be
solidi"ed so as to create a commutative diagram.

By continuing this process, we get the "brewise P-localisation lBP : XPXBP for a "nite complex X.
By using the telescope construction, we can also get the "brewise P-localisation lBP : XPXBP for an
in"nite complex X. This completes the proof of Theorem 1.4.

4. Homology decomposition of a co-H-space over B

In this section, we prove Theorem 1.3. Let k :XPXs
B
X be any given "brewise co-H-structure

for j. We show the existence of the desired "brewise co-H-structure k
n`1

for j
n`1

by induction on
n*0. Since X

1
"B, k induces the trivial "brewise co-H-structure k

1
"1

B
on j

1
"1

B
, which is

clearly the restriction of k to X
1
"B.

Let n*1. Firstly we prove that j
n`1

admits a "brewise co-H-structure kA
n`1

: When n"1, since
X

2
KBsRS

1
, there is a standard "brewise co-H-structure kA

2
on j

2
as an extension of the trivial

co-H-structure k
1
, that is (l

1
s

B
l
1
) " k

1
&kA

2
" l

1
. Thus we may assume that n*2. Then by the

induction hypothesis, there is a "brewise co-H-structure k
n

on j
n

which is a compression of kD
Xn

.
Then the map c"(l

n
s

B
l
n
) " k

n
" h

n
: S

n
PX

n`1
s

B
X

n`1
gives the obstruction to extend (l

n
s

B
l
n
) " k

n
on X

n`1
. We regard c3n

n
(X

n`1
s

B
X

n`1
; G),G"H

n`1
(X,B). By the induction hypothesis, we

have (m
n`1

s
B
m

n`1
) " c"(m

n
s

B
m

n
) "k

n
" h

n
&k " m

n
" h

n
"k "m

n`1
" l

n
" h

n
&0. Hence there is an
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element c(3n
n`1

(Xs
B
X,X

n`1
s

B
X

n`1
; G) such that L(c( )"c in the following commutative dia-

gram with exact rows:

(4.1)

here k : Xs
B
6X]

B
X, k@ : (Xs

B
X, X

n`1
s

B
X

n`1
)6 (X]

B
X,X

n`1
]

B
X

n`1
), k

n`1
: X

n`1
s

B
X

n`1
6X

n`1
]

B
X

n`1
, l@ :Xs

B
X6 (Xs

B
X,X

n`1
s

B
X

n`1
) and l : X]

B
X6 (X]

B
X,X

n`1
]

B
X

n`1
)

are the canonical inclusions.
To proceed, we show that k

H
is a split epimorphism and k@

H
is an isomorphism: Let us recall the

Universal Coe$cient Theorem due to Eckmann and Hilton: For any topological pair (;,<) and an
abelian group G, there is the following short exact sequence for q*2.

0PExt(G,n
q`2

(;,<))Pn
q`1

(;,<;G)PHom(G,n
q`1

(;,<))P0.

Applying this to the n#1-connected pair (Xs
B
X, X

n`1
s

B
X

n`1
), using the Hurewicz isomor-

phism theorem and (1.1) for n*2, we obtain

n
n`1

(Xs
B
X, X

n`1
s

B
X

n`1
; G)+Ext(G,H

n`2
(Xs

B
X

'C
, X

n`1
s

B
X

n`1
'C

)

+H
n`2

(Xs
B
X

'C
, X

n`1
s

B
X

n`1
'C

; torG)

+Zn?H
n`2

(Xs
B
X,X

n`1
s

B
X

n`1
; torG).

Similarly for n*2, we obtain

n
n`1

(X]
B
X, X

n`1
]

B
X

n`1
; G)+Zn?H

n`2
(X]

B
X,X

n`1
]

B
X

n`1
; torG)

+Zn?H
n`2

(Xs
B
X,X

n`1
s

B
X

n`1
; torG).

Thus k@
H

: n
n`1

(Xs
B
X,X

n`1
s

B
X

n`1
;G)Pn

n`1
(X]

B
X,X

n`1
]

B
X

n`1
; G) is an isomorphism,

n*2. The pointed "brewise space Xs
B
XPB has the "bre FsF, and hence n

n`1
(Xs

B
X;G) is

isomorphic with n
n`1

(FsF;G)=n
n`1

(B), n*2. The pointed "brewise space X]
B
XPB has the

"bre F]F, and hence n
n`1

(X]
B
X; G) is isomorphic with n

n`1
(F]F;G)=n

n`1
(B), n*2. Since

the homomorphism n
n`1

(FsF;G)Pn
n`1

(F]F;G) has a natural splitting pF
H

: n
n`1

(F]F;G)P
n
n`1

(FsF;G), so does the homomorphism k
H

:n
n`1

(Xs
B
X; G)Pn

n`1
(X]

B
X;G) admit a natural

splitting pj
H
:n

n`1
(X]

B
X;G)Pn

n`1
(Xs

B
X;G) with respect to j, n*2.

On the other hand, since k
n
" k

n
is homotopic to D

n
, the "brewise diagonal map in X

n
]

B
X

n
,

we have k
n`1

" (l
n
s

B
l
n
) "k

n
"(l

n
]

B
l
n
) " k

n
" k

n
&(l

n
]

B
l
n
) "D

n
"D

n`1
" l

n
, and hence k

n`1
" c&

D
n`1

" l
n
" h

n
&0. Thus L " k@

H
(c( )"k

n`1H
" L(c( )"k

n`1H
(c)"0, and hence there is an element

c@3n
n`1

(X]
B
X; G) such that l

H
(c@)"k

H
(c( ). Since the left vertical arrow k

H
is an epimorphism, c@

can be pulled back to an element c
0
3n

n`1
(X]

B
X;G). Hence k@

H
" l@
H
(c

0
)"l

H
" k

H
(c

0
)"

l
H
(c@)"k

H
(c( ). Since k@

H
is an isomorphism, we have that c("l@

H
(c

0
), and hence we get

c"L(c( )"L " l@
H
(c

0
)"0. Thus there is a map k@

n`1
: X

n`1
PX

n`1
s

B
X

n`1
which is an extension of

(l
n
s

B
l
n
) "k

n
.
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Since X
n`1

is, up to homotopy, the co"bre of h
n
: S

n
PF

n
LX

n
, it admits a co-action of RS

n
. Thus

the `di!erencea between k
n`1

"k@
n`1

and D
n`1

, is given by a map d : RS
n
"X

n`1
/X

n
P

X
n`1

]
B
X

n`1
which can be pulled back to a map d

0
: RS

n
PX

n`1
s

B
X

n`1
, since k

n`1H
is an

epimorphism. By `addinga d
0

to k@
n`1

, we get kA
n`1

, a "brewise co-H-structure on j
n`1

as an
extension of k

n
, that is (l

n
s

B
l
n
) "k

n
&kA

n`1
" l

n
.

Secondly, we prove the existence of a "brewise co-H-structure k
n`1

such that (l
n
s

B
l
n
) "k

n
&

k
n`1

" l
n

and (m
n`1

s
B
m

n`1
) " k

n`1
&k "m

n`1
: Since (m

n`1
s

B
m

n`1
) " kA

n`1
and k " m

n`1
coincide

when restricted to X
n
, the `di!erencea between them is given by a map e :RS

n
PXs

B
X. We regard

e3n
n`1

(Xs
B
X;G), G"H

n`1
(X,B). Since kA

n`1
and k are "brewise co-H-structures for j

n`1
and j,

we have k " (m
n`1

s
B
m

n`1
) "kA

n`1
"(m

n`1
]

B
m

n`1
) " k

n`1
" kA

n`1
&(m

n`1
]

B
m

n`1
) " D

n`1
"

D "m
n`1

&k " k " m
n`1

. Hence k
H
(e)"0 and k@

H
" l@
H
(e)"l

H
" k

H
(e)"0. Since k@

H
is an isomorphism,

we have l@
H
(e)"0, and hence e can be pulled back to an element e@

0
3n

n`1
(X

n`1
s

B
X

n`1
; G). Let

e
0
"e@

0
!pjn`1

H
" k

n`1H
(e@
0
)3n

n`1
(X

n`1
s

B
X

n`1
;G), where pjn`1

H
is the splitting for k

n`1H
. Then

k
n`1H

(e
0
)"k

n`1H
(e@
0
)!k

n`1H
"pjn`1

H
" k

n`1H
(e@
0
)"0 and

(m
n`1

s
B
m

n`1
)
H
(e@
0
)"(m

n`1
s

B
m

n`1
)
H
(e
0
)!(m

n`1
s

B
m

n`1
)
H
" pXn`1

H
" k

n`1H
(e@
0
)

"e!pX
H
" (m

n`1
]

B
m

n`1
)
H
" k

n`1H
(e@
0
)"e!pX

H
" k

n`1H
"m

n`1H
(e@
0
)"e.

Thus by adding e
0

to kA
n`1

, we get another "brewise co-H-structure k
n`1

over B of X
n`1

. One can
easily check that k

n`1
has the desired properties.

Finally, we prove that the k@-invariant h
n
is of "nite order: We observe that when X is a "brewise

co-H-space, then the "bre F of j :XPB is a simply connected genuine co-H-space. The k@-invariant
h
n
:S

n
PF

n
LX

n
is the composition of the k@-invariant h@

n
for the simply connected co-H-space

F and the inclusion F
n
6X

n
. Since h@

n
:S

n
PF

n
is of "nite order, by Theorem I in Curjel [4], h

n
is

also of "nite order. This completes the proof of Theorem 1.3.

5. Construction of a complex R
n
for n*4

The remainder of this paper is devoted to proving Theorem 1.5. In this section, we construct the
complex R

n
: Let A

n
"Sn`1 and B"S1. We de"ne C

n
as the following complex:

C
n
"Sn`1 Z

Rn~3a`Rn~3b
en`5"Rn~3C

4
, C

4
"S4Z

l4
e8"HP2, a"9l

4
, b"!8l

4
,

where l
4
: S7PS4 denotes the Hopf map. The complex R

n
is de"ned as follows:

R
n
"(BsA

n
) Z
*/An

" Rn~3a`t(q) " */An
" Rn~3b

en`5,

where in
An

denotes the inclusion A
n
6BsA

n
and t : nPn

0
Map

H
(BsA

n
, BsA

n
) denotes the action

of the fundamental group n"SqT+Z of BsA
n
on itself. We remark that the image of t is in the

group of homotopy classes of self homotopy equivalences Aut(BsA
n
). Let pRn : RI

n
PR

n
be the
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universal covering of R
n
. By the de"nition of R

n
, the homotopy type of RI

n
is as follows:

RI
n
KAS

i|Z
qi )A

nBXAS
j|Z

qj ) en`5B and BsA
n

'C
"S

i|Z
qi )A

n
,

where we denote by t(qi)
'C

: BsA
n

'C
PBsA

n

'C
the map induced from t(qi) on the universal coverings.

Also qi ) (!) stands for t(qi)
'C

(!). Here, the attaching map of the cell 1 ) en`5 is given by the
suspension map

Sn`4
MRn~3a,Rn~3bN
&&&&" A

n
sA

n
1An[t(q)

'C
&&&" A

n
sq )A

n
LS

i|Z
qi )A

n
.

We de"ne a projection p :BsRI
n
PR

n
by putting

pD
B
: B */B6 BsA

n
LR

n
, and pD

RI n
"pRn :RI

n
PR

n
.

Let p
0
"pD

B['i|Zqi >An
: BsS

i|Z
qi )A

n
PBsA

n
. Then we have p

0
Dqj >An

: qj )A
n
!P t(qj)(A

n
)LBsA

n
,

and hence, p
0
DW(qi)(qj >An)

:W(qi)(qj )A
n
)"W(qi)(t(qj)

'C
(A

n
)) !P t(qi`j)(A

n
)LBsA

n
, where W denotes the

action of n on BsS
i|Z

qi )A
n
.

6. Self-maps of A
n
"Sn`1

This section provides an easy but rather crucial property of R
n

for n*4. Let f : A
n
PA

n
and

g : A
n
PA

n
be maps of degrees !8 and 9. We obtain

f#g&1
An

. (6.1)

We know the following equations modulo 24, the order of Rn~3l
4
"l

n`1
:

(!8)2,!8, 92,9, (!8)]9"9](!8),0 mod24.

Since Rn~3a"9l
n`1

and Rn~3b"!8l
n`1

, these equations imply the following properties:

Proposition 6.1. The compositions of f and g with Rn~3a and Rn~3b give the equations:
(1) f "Rn~3a&*, (2) g " Rn~3a&Rn~3a, (3) g " Rn~3b&* and (4) f " Rn~3b&Rn~3b.

7. Homotopy section of BsRI
n
PR

n

By Theorem 3.3 in [11], the existence of a homotopy section of p : BsRI
n
PR

n
is a necessary and

su$cient condition for R
n
to admit a co-action of B along j : R

n
PB. Here the universal covering

RI
n
of R

n
is desuspendable for dimensional reasons. Hence the existence of a homotopy section of

p implies that R
n

is a co-H-space. In summary:
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Lemma 7.1. The following two conditions on R
n

are equivalent:

(1) There is a homotopy section of p :R
n
PBsRI

n
.

(2) R
n

admits a co-H-structure.

Now we show the existence of a homotopy section of p : BsRI
n
PR

n
. We de"ne a map

s
0
: BsA

n
PBsBsA

n

'C
KBsS

i|Z
qi )A

n
as follows:

s
0
D
B
"in

B
:BPBsS

i|Z
qi )A

n
,

s
0
D
An

: A
n

Mf,gN&" A
n
sA

n
t(q)
'C

[1An
&&&" q )A

n
sA

n

W(q~1)[1An
&&&&" Bsq )A

n
sA

n
LBsS

i|Z
qi )A

n
.

By (6.1), we have p
0
" s

0
&1

B
s( f#g)&1

B
s1

An
"1

B[An
. Since n*4, it follows that

n
n`4

(A
n
sA

n
)+n

n`4
(A

n
)=n

n`4
(A

n
) for dimensional reasons. By Proposition 6.1, we have

s
0
"Rn~3a&in

An
"Rn~3a : Sn`4PBsA

n
LBsS

i|Z
qi )A

n
,

s
0
"Rn~3b&W(q~1) " inq >An

"t(q)
'C

" Rn~3b : Sn`4PA
n
Pq )A

n
PBsq )A

n
LBsS

i|Z
qi )A

n
.

Hence we obtain that

s
0
" (Rn~3a#t(q) "Rn~3b)"s

0
"Rn~3a#W(q) " s

0
"Rn~3b,

&in
An

"Rn~3a#inq >An
"t(q)
'C

"Rn~3b"in
An[q >An

" (Rn~3a#t(q)
'C

"Rn~3b).

Thus the map s
0
" (Rn~3a#t(q) " Rn~3b) is homotopic to the attaching map of the cell 1 ) en`5.

Hence it induces a map s : R
n
PBsRI

n
so that p " s is clearly the identity up to homotopy.

By Lemma 7.1, we obtain the following theorem.

Theorem 7.2. R
n

is a co-H-space.

8. Unsplittability of R
n

In this section, we show that R
n
is not standard. We state the following well-known result:

Proposition 8.1. The set of invertible elements in the group ring Zn is $nLZn.

Proof. Since n is the in"nite cyclic group, Zn is isomorphic with Z[x, 1/x] the ring of Laurent
polynomials with coe$cients in Z. We can express each Laurent polynomial in the form
xi(alx

l
#al~1

xl~1#2#a
1
x1#a

0
) with ala0

O0, l*0 and i3Z. If the product of any two
such Laurent polynomials, say xi(alx

l
#2#a

0
) and xj(b

m
xm#2#b

0
), is equal to the unity,

then we have that i#j"l"m"0 and a
0
b
0
"1. Hence every invertible element can be expressed

as $xi for some i3Z. h
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Let us assume that R
n
has the homotopy type of a one-point-sum of a simply connected space C@

and a bunch of circles B@. Since the fundamental group of R
n
is clearly n+Z, B@"S1"B and the

inclusion of B@ in R
n

is given by a generator qB1 of n. Since C@ has the homotopy type of the
mapping cone of the inclusion B@LR

n
, C@KR

n
/B"C

n
.

Thus our assumption implies that R
n
has the homotopy type of BsC

n
, which will lead us to a

contradiction: Let h :R
n
PBsC

n
be a homotopy equivalence, which induces an isomorphism

hI
H
: HI

H
(RI

n
; Z)PHI

H
(BsC

n

'C
; Z). As is easily seen, we have

HI
H
(RI

n
;Z)+ZnMx

n`1
, x

n`5
N and HI

H
(BsC

n

'C
; Z)+ZnMu

n`1
, u

n`5
N,

where x
q
and u

q
are the homology classes corresponding to the q-cells in R

n
and BsC

n
, respective-

ly. By Proposition 8.1, it follows that hI
H
(x

n`1
)"$qiu

n`1
and hI

H
(x

n`5
)"$qju

n`5
, for some

i, j3Z. Using a suitable deck transformation on BsC
n

'C
, we may assume that i"0.

The (non-trivial) right actions of the Steenrod algebra on the homology groups HI
H
(RI

n
;F

p
) and

HI
H
(BsC

n

'C
; F

p
) for p"2 and p"3 are given by the following proposition.

Proposition 8.2. (1) Let x@
q

be the modulo 2 reduction of the element x
q
. Then, in HI

H
(RI

n
;F

2
), the only

non-trivial relation is: x@
n`5

Sq4"x@
n`1

.
(2) Let u@

q
be the modulo 2 reduction of the element u

q
. Then, in HI

H
(BsC

n

'C
; F

2
), the only non-trivial

relation is: u@
n`5

Sq4"u@
n`1

.
(3) Let xA

q
be the modulo 3 reduction of the element x

q
. Then, in HI

H
(RI

n
; F

3
), the only non-trivial

relation is: xA
n`5

P1"q ) xA
n`1

.
(4) Let uA

q
be the modulo 3 reduction of the element u

q
. Then, in HI

H
(BsC

n

'C
; F

3
), the only non-trivial

relation is: uA
n`5

P1"uA
n`1

.

Thus in HI
n`1

(BsC
n

'C
; F

2
) and HI

n`1
(BsC

n

'C
; F

3
), we have the following equations:

u@
n`1

"hI
H
(x@

n`1
)"hI

H
(x@

n`5
Sq4)"hI

H
(x@

n`5
)Sq4"qj ) u@

n`5
Sq4"qj ) u@

n`1
,

uA
n`1

"$hI
H
(xA

n`1
)"$hI

H
(q~1 ) xA

n`5
P1)"$q~1 ) hI

H
(xA

n`5
)P1"$qj~1 ) uA

n`5
P1

"$qj~1 ) uA
n`1

.

The upper line tells us that j"0, while the lower line tells us that j"1. This is a contradiction.
Thus we obtain the following theorem.

Theorem 8.3. R
n

is not standard.

Theorems 7.2 and 8.3 imply Theorem 1.5.

Remark. Although R
n
K. BsC

n
, we know that these spaces have isomorphic homotopy groups in

each dimension, because their almost p-localisations are homotopy equivalent for any prime p. But
we do not know whether the universal coverings of these spaces are homotopy equivalent or not,
while the universal coverings are not n

1
(B)-equivariant homotopy equivalent.
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