M atrix-I somorphic M aximal Z-Orders

A. W. Chatters
University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
Communicated by A. W. Goldie

tadata, citation and similar papers at core.ac.uk

Abstract

We construct many pairwise non-isomorphic maximal Z-orders A and B which have isomorphic n by n matrix rings for every positive integer $n \neq 1$. In most cases A also has the property that every one-sided ideal of $M_{2}(A)$ is principal but not every one-sided ideal of A is principal. © 1996 A cademic Press, Inc.

1. INTRODUCTION

M aximal Z-orders are some of the most natural and well behaved of all non-commutative rings. Y et even for these rings the isomorphism type of $M_{2}(A)$ does not determine that of A. Examples are already known of non-isomorphic orders A and B in a finite-dimensional central simple algebra such that $M_{2}(A) \cong M_{2}(B)[2,3,10]$. But the examples in [2] and [3], although numerous, are not maximal orders; those in [10] are maximal orders but they are relatively complicated and the underlying commutative ring is the ring of integers of a four-dimensional algebraic number field.

As in [8] we say that rings A and B are matrix-isomorphic if $M_{n}(A) \cong$ $M_{n}(B)$ for every positive integer $n \neq 1$. We shall show that, given a positive integer r, there are r matrix-isomorphic pairwise non-isomorphic maximal Z-orders (Theorem 4.4). The most difficult part of such constructions is usually that of showing that the rings are not isomorphic, but in this case there is a sufficient condition which is easy to check numerically (Theorem 4.3). The same construction gives an infinite family of maximal Z-orders A such that every one-sided ideal of $M_{2}(A)$ is principal but not every one-sided ideal of A is principal; a slightly different construction gives infinitely many such A with a stably free non-free two-sided ideal (Section 6).

2. CONSTRUCTION OF THE MAXIMAL Z-ORDER S

The ring S which we shall construct is a maximal Z-order in a division algebra of generalised rational quaternions. We shall show that S has the additional property that every two-sided ideal is principal, and this will be useful when we consider in Section 3 the question of determining when the endomorphism rings of two maximal right ideals of S are isomorphic. We shall use Z and Q to denote respectively the ring of rational integers and the field of rational numbers.

Throughout the rest of this paper, w will denote the prime number with $w \equiv 3 \bmod (4)$. Let D be the rational division algebra of generalised quaternions with basis $1, i, j, i j$ where $i^{2}=-1, j^{2}=-w$, and $i j=-j i$. Set $k=i j$. A typical element x of D has the form $x=a+b i+c j+d k$ for unique elements a, b, c, d of Q. The conjugate x^{*}, $\operatorname{trace} \operatorname{Tr}(x)$, and norm $N(x)$ of x are defined by $x^{*}=a-b i-c j-d k, \operatorname{Tr}(x)=x+x^{*}=$ $2 a$, and $N(x)=x x^{*}=x^{*} x=a^{2}+b^{2}+w\left(c^{2}+d^{2}\right)$.

Set $u=(1+j) / 2$. Then $u^{2}=\operatorname{Tr}(u) u-N(u)=u-(1+w) / 4$ where $(1+w) / 4 \in Z$. Set $S=Z[i, u]$, i.e., S is the subring of D generated by i and u. It is easy to check that the additive group of S is free A belian of rank 4 with Z-basis $1, i, u, i u$. It is routine to check that the discriminant $D(S)$ of S has the value $D(S)=-w^{2}$; one way of doing this is to use the formula $D(S)=\operatorname{det}\left(\operatorname{Tr}\left(x_{i} x_{j}\right)\right)$ where $x_{1}, x_{2}, x_{3}, x_{4}$ form a Z-basis for S. It is well known that S is a maximal Z order in D (see for instance Section 105 of [5]), but this is also a consequence of the following more precise result.

Theorem 2.1. Let S be as above and let I be a non-zero ideal of S. Then either $I=z S$ or $I=z j S$ for some non-zero $z \in Z$.

Proof. Let p be a prime number with $p \neq w$. Then p does not divide $D(S)$, so that $S / p S$ is a semi-simple $Z / p Z$-algebra. Also $j \notin p S$, so that $i u-u i=i j \notin p S$. Thus $S / p S$ is a semi-simple four-dimensional $Z / p Z$ algebra which is not commutative. Therefore $S / p S \cong M_{2}(Z / p Z)$. In particular, $p S$ is the unique maximal ideal of S containing p.

Now let P be any maximal ideal of S which contains w; we shall show that $P=j S$. We have $j^{-1} i j=-i$ and $j^{-1} k j=-k$, from which it follows readily that $j^{-1} S j=S$. Thus $j S=S j$ and $(j S)^{2}=w S$. Therefore $j S \subseteq P$. We have $2 u-1=j$. Hence $u-(1+w) / 2 \in j S$. Therefore $S / j S=$ $(Z / w Z)[x]$, where x is the image of i in $S / j S$. But $x^{2}=-1$ and -1 is not a square in $Z / w Z$. Therefore $(Z / w Z)[x]$ is a field. Hence $j S$ is a maximal ideal of S and $P=j S$.

This shows that the maximal ideals of S are $j S$ and $p S$ for all primes $p \neq w$, and for such p we have $S / p S \cong M_{2}(Z / p Z)$. The result now follows by a standard argument.

3. ENDOMORPHISM RINGS OF MAXIMAL RIGHT IDEALS OF S

Throughout this section w and S will be as in Section 2, and p and q will denote prime numbers with $p \neq w \neq q$. Note that we do allow $p=q$, and also that we allow $p=2$ or $q=2$. Let K and L be maximal right ideals of S containing p and q respectively. We shall show that we always have $M_{2}\left(\operatorname{End}_{S}(K)\right) \cong M_{2}(S) \cong M_{2}\left(\operatorname{End}_{S}(L)\right)$, and that it is almost true that $\mathrm{End}_{S}(K) \cong \mathrm{End}_{S}(L)$ as rings if and only if $K \cong L$ as right S-modules (see 3.6 for the precise result).

Theorem 3.1. Let p be a prime number with $p \neq w$ and let K be a maximal right ideal of S which contains p. Set $A=\mathrm{End}_{S}(K)$. Then $M_{2}(A) \cong$ $M_{2}(S)$.

Proof. R ecall from the proof of 2.1 that $S / p S \cong M_{2}(Z / p Z)$. Thus both S / K and $K / p S$ are simple right $S / p S$-modules so that $S / K \cong K / p S$. But S is a maximal Z-order and so is hereditary (see for instance [1, Theorem 2.9] or [9, Theorem 21.4]). Hence K is projective and Schanuel's lemma gives $K \oplus K \cong S \oplus p S \cong S \oplus S$. Therefore $M_{2}(A)=M_{2}(\operatorname{End}(K)) \cong$ $M_{2}(\operatorname{End}(S)) \cong M_{2}(S)$ as rings.

Remark 3.2. By using more sophisticated methods it can be shown that, with the notation of 3.1, we have $M_{n}(A) \cong M_{n}(S)$ for every positive integer $n \neq 1$; thus A and S are matrix-isomorphic as defined in [8]. One way of doing this is to apply Eichler's theorem [9, Theorem 34.9] to the ring $M_{2}(S)$ to show that every maximal right ideal of $M_{2}(S)$ is principal, and hence that $K \oplus S \cong S \oplus S$. Of course 3.1 is trivial if $A \cong S$, but we shall show that this is not always the case.

Corollary 3.3. A is a maximal Z-order.
Proof. Because K is a non-zero right ideal of the integral domain S, we can identify $\operatorname{Hom}_{S}(K, S)$ with $K^{*}=\{d \in D: d K \subseteq S\}$. Also because K is projective, we have $K K^{*}=\{d \in D: d K \subseteq K\}$. We shall identify A with $K K^{*}$. Thus A is a Z-order in D, and its maximality follows readily from the fact that $M_{2}(A) \cong M_{2}(S)$.

From now on we shall identify $\operatorname{Hom}_{S}(K, S)$ with K^{*} and A with $K K^{*}$ as in the proof of 3.3.

Proposition 3.4. With the notation of 3.1 we have $A \cong S$ if and only if the maximal right ideal K is principal.

Proof. If $K=x S$ for some x then $x \neq 0$ and $x^{-1} A x=S$.
Conversely, suppose that $f: S \rightarrow A$ is an isomorphism of rings. Because D is the quotient ring of both S and A, we can extend f to an
automorphism g of D. But g acts as the identity function on the centre Q of D. It follows from the Skolem-Noether theorem that there is a non-zero element x of D such that $g(d)=x^{-1} d x$ for all $d \in D$. Because D can be formed from S by inverting the non-zero elements of Z, we can suppose without loss of generality that $x \in S$. We have $A=g(S)=x^{-1} S x$. Hence $K=A K=x^{-1} S x K$, i.e., $x K=S x K$, i.e., $x K$ is a two-sided ideal of S. Therefore by 3.1 we have $x K=a S$ for some a and hence K is principal.

Notation 3.5. $\quad p$ and q are prime numbers with $p \neq w \neq q ; K$ and L are maximal right ideals of S containing p and q respectively; $K^{*}=\{d \in$ $D: d K \subseteq S\} ; L^{*}=\{d \in D: d L \subseteq S\} ; A=K K^{*} ; B=L L^{*}$. Recall that, as in the proof of 3.3 , we can identify A with $\mathrm{End}_{S}(K)$ and B with $\mathrm{End}_{S}(L)$.

Theorem 3.6. With the notation of 3.5 we have $A \cong B$ as rings if and only if K is isomorphic as a right S-module to either L or $j^{-1} L j$.

Proof. Note that conjugation by j induces an automorphism of S. Thus the "if" part of the statement is easy to prove.

Suppose that $f: A \rightarrow B$ is an isomorphism of rings. As in the proof of 3.4, there is a non-zero element x of S such that $f(a)=x^{-1} a x$ for all $a \in A$. Hence $B=x^{-1} A x$, so that $L=B L=x^{-1} A x L$. Thus $A x L=x L$. Suppose that $x L$ is not contained in K. Then $K+x L=S$. But $A K=K$ and $A x L=x L$. Therefore $A S=S$, i.e., $A \subseteq S$. But A is a maximal Z-order, by 3.3. Therefore $A=S$, so that $K=A K=S K$. This is a contradiction because K is not a two-sided ideal of S.

This shows that $x L \subseteq K$. Hence $K^{*} x L \subseteq S$ so that $K^{*} x L$ is a non-zero two-sided ideal of S. We apply Theorem 2.1 and have two cases to consider. Suppose first that $K^{*} x L=z S$ for some non-zero $z \in Z$. Then $K K^{*} x L=K z S=z K$, i.e., $z K=A x L=x L$. Therefore $K \cong L$ as right S modules. Second, suppose that $K^{*} x L=z j S$ for some non-zero $z \in Z$. Then $x L=A x L=K K^{*} x L=K z j S=z K S j=z K j=z j j^{-1} K j$, so that $L \cong$ $j^{-1} K j$ and $K \cong j^{-1} L j$.

4. A SIMPLE NUMERICAL TEST

In Section 3 we showed that, with the notation of 3.5 , we have $M_{n}(\mathrm{End}(K)) \cong M_{n}(\mathrm{End}(L))$ for all positive integers $n \neq 1$; and a necessary and sufficient condition for $\operatorname{End}(K) \cong \operatorname{End}(L)$ was given in 3.6. However, the condition in 3.6 is not easy to check in practice. The main aim of this section is to use 3.6 to derive a simple numerical condition which guarantees in particular cases that $\operatorname{End}(K)$ is not isomorphic to $\operatorname{End}(L)$ (but which is far from being a necessary condition).

The next result is well known, but for the reader's convenience we shall sketch a proof in the particular case which we need.

Lemma 4.1. Let x be a non-zero element of S. Then $S / x S$ has $(N(x))^{2}$ elements.

Proof. Because the additive group of S is free A belian of rank 4, we can fix Z-bases u_{1}, \ldots, u_{4} for S and v_{1}, \ldots, v_{4} for $x S$ such that for all t we have $v_{t}=r_{t} u_{t}$ for some positive integer r_{t}. Set $r=r_{1} r_{2} r_{3} r_{4}$. Then $S / x S$ has r elements. Let C be the 4 by 4 diagonal matrix with diagonal entries $r_{1}, r_{2}, r_{3}, r_{4}$. Then $\operatorname{det}(C)=r$. We can think of C as being the matrix corresponding to the mapping $c: S \rightarrow S$ given by $c\left(u_{t}\right)=v_{t}$ for all t. Let B be the matrix corresponding to the mapping $b: S \rightarrow S$ defined by $b(s)=x s$ for all $s \in S$. Then $b^{-1} c$ is an automorphism of the additive group S, so that the determinant of the corresponding matrix is a unit of Z. Therefore $\pm \operatorname{det}(B)=\operatorname{det}(C)=r$. But $\operatorname{det}(B)$ is the determinant of the image of x under the regular representation of D in $M_{4}(Q)$, and $N(x)$ is the determinant of the image of x under the reduced representation of D in $M_{2}(Q(i))$. Therefore $\operatorname{det}(B)=(N(x))^{2}$, so that $(N(x))^{2}=\operatorname{det}(C)=r$.

Lemma 4.2. With the notation of 3.5 suppose that $f: K \rightarrow L$ is an isomorphism of right S-modules, and let x be a non-zero element of K. Then $N(x) / p=N(f(x)) / Q$.

Proof. We shall use $|X|$ to denote the number of elements in a set X. Because S / K is a simple $S / p S$-module with $S / p S \cong M_{2}(Z / p Z)$, we have $|S / K|=p^{2}$. Hence by 4.1 we have $(N(x) / p)^{2}=|S / x S| / p^{2}=|S / K|$. $|K / x S| / p^{2}=|K / x S|=|f(K) / f(x S)|=|L / f(x) S|=|S / L| .|L / f(x) S| / q^{2}$ $=|S / f(x) S| / q^{2}=(N(f(x)) / q)^{2}$.
Theorem 4.3. With the notation of 3.5 suppose that S has no element of norm pq. Then A is not isomorphic to B.

Proof. Suppose that $A \cong B$. Then by 3.6 we know that K is isomorphic to either L or $j^{-1} L j$. Without loss of generality we may suppose that there is a right S-module isomorphism $f: K \rightarrow L$. Taking $x=p$ in 4.2 gives $p=N(p) / p=N(f(p)) / q$, i.e., $N(f(p))=p q$; this is the desired contradiction.

Theorem 4.4. Let n be any positive integer. Then there is a division algebra D of generalised rational quaternions and n pairwise non-isomorphic maximal Z-orders A_{1}, \ldots, A_{n} in D such that $M_{r}\left(A_{s}\right) \cong M_{r}\left(A_{t}\right)$ for all s and t and for all positive integers $r \neq 1$.

Proof. Let p_{1}, \ldots, p_{n} be, in increasing order, the first n primes which are congruent to $3 \bmod (4)$. We fix a prime number w such that $w \equiv$ $3 \bmod (4)$ and $w \geq 4 p_{n}^{2}$. With this choice of w, let S be as in Section 2. By
4.3 it is enough to show that if $s \neq t$ then S has no element of norm $p_{s} p_{t}$. Suppose to the contrary that there is an element x of S such that $N(x)=p_{s} p_{t}$ with $s \neq t$. We have $x=(a+b i+c j+d k) / 2$ for some $a, b, c, d \in Z$. Then $N(x)=\left(a^{2}+b^{2}+w\left(c^{2}+d^{2}\right)\right) / 4$. Thus $a^{2}+b^{2}+$ $w\left(c^{2}+d^{2}\right)=4 N(x)=4 p_{s} p_{t}<4 p_{n}^{2}$. Hence $a^{2}+b^{2}+w\left(c^{2}+d^{2}\right)<w$, so that $c=d=0$. This gives $4 p_{s} p_{t}=a^{2}+b^{2}$, which is a contradiction because $4 p_{s} p_{t}$ is not the sum of two squares.

5. TWO EXAMPLES

We know that every two-sided ideal of S is principal. We shall now give two examples in each of which we construct a second maximal Z-order A with $M_{2}(A) \cong M_{2}(S)$ and A not isomorphic to S; in the first example every ideal of A is principal, but in the second example A has a non-principal ideal.

Example 5.1. Take $w=23$ and let S be as in Section 2. Set $x=(1+$ $j) / 2$ and $K=3 S+x S$. We have $N(x)=6$ and $x \notin 3 S$. Because $S / 3 S \cong$ $M_{2}(Z / 3 Z)$ it follows that K is a maximal right ideal of S. A s in the proof of 3.3 set $A=K K^{*}$. Then $M_{2}(A) \cong M_{2}(S)$ by 3.1. No element of S has norm 3, so that K is not principal. Hence A is not isomorphic to S (3.4).

It remains to show that every ideal of A is principal, and it is enough to do this for the maximal ideals of A. The maximal ideals of S are $p S$ for primes $p \neq w$, together with $j S$ where $(j S)^{2}=w S$. Because $M_{2}(A) \cong$ $M_{2}(S)$ it follows that the maximal ideals of A are $p A$ for primes $p \neq w$, together with a unique maximal ideal M such that $M^{2}=w A$. But $j K=$ $K j \subseteq K$ so that $j \in A$. A Iso $j^{-1} A j K=j^{-1} A K j=j^{-1} K j=j^{-1} j K=K$, so that $j^{-1} A j \subseteq A$. It follows that $j A=A j$. Thus $j A$ is a two-sided ideal of A with $(j A)^{2}=w A$. Therefore $M=j A$.

Example 5.2. Take $w=43$ and let S be as in Section 2. Set $x=(1+$ $2 i+j) / 2, K=3 S+x S$, and $A=K / K^{*}$. As in 5.1 we find that K is a maximal right ideal of S and that $M_{2}(A) \cong M_{2}(S)$. A so as in 5.1 there is a maximal ideal M of A such that $M^{2}=w A$. But this time we shall show that M is not principal.

With the aim of obtaining a contradiction we suppose that $M=v A$ for some $v \in A$. The isomorphism between $M_{2}(A)$ and $M_{2}(S)$ induces an isomorphism between $M_{2}(A / M)$ and $M_{2}(S / j S)$. Hence A / M has the same number of elements as $S / j S$, namely w^{2}. Because $M=v A$ it follows that $N(v)=w$. But $v K \subseteq K$ so that $3 v \in S$. Hence $3 v=(a+b i+$ $c j+d k) / 2$ for some $a, b, c, d \in Z$. Therefore $a^{2}+b^{2}+w\left(c^{2}+d^{2}\right)=$ $4 N(3 v)=36 w$ where $w=43$. Thus 43 divides $a^{2}+b^{2}$. Because -1 is not a square in $Z / 43 Z$ it follows that 43 divides both a and b. But $a^{2}+b^{2} \leq$
36.43. Hence $a=b=0$. We have $c^{2}+d^{2}=36$, so that either $c^{2}=36$ and $d=0$ or $c=0$ and $d^{2}=36$. Hence without loss of generality we have either $v=j$ or $v=k$. Note that K contains $v x, x j$, and $x k$. A lso, $3 \in K$, so that the norm of every element of K is divisible by 3 . If $v=j$ then K contains $x j-j x=2 k$, which is a contradiction because $N(2 k)=172$. If $v=k$ then K contains $k x+x k=k$, which is again a contradiction.

6. CONNECTION WITH GOLDIE'S QUESTION

In [7, Theorem B], Goldie showed that if R is a prime ring in which every one-sided ideal is principal then $R \cong M_{n}(S)$ for some positive integer n and some integral domain S, and the question arose naturally as to whether every one-sided ideal of S has to be principal. It has been known for a long time that the answer is " No ": the best-known examples are due to Swan [10] where the ring S is a maximal order over the ring of integers of a four-dimensional extension of Q, and to W ebber [11] where S is the first W eyl algebra.

The construction in Section 2 gives a further infinite family of examples all of which are maximal Z-orders. Let w and S be as in Section 2. Because S is a maximal Z-order it follows from Eichler's theorem [9, Theorem 34.9] that every one-sided ideal of $M_{2}(S)$ is principal. But every one-sided ideal of S is principal if and only if $w=3$ or $w=7$; this follows immediately from Hey's formula for the class number of S (see [6]). Without using Hey's formula it is easy to show directly that, if $w \geq 11$, then the only elements of S which have norm 2 are $1+i, 1-i$, and their negatives; hence $(1+i) S$ is the only principal maximal right ideal of S which contains 2, and the other two maximal right ideals of S which contain 2 are therefore not principal.

Perhaps an even more interesting infinite family of examples among maximal Z-orders is the following. Let p and q be distinct odd primes which are congruent to $3 \bmod (4)$; set $i^{2}=-1$ and $j^{2}=-p q$; and let T be the ring of all generalised quaternions of the form $(a+b i+c j+d k) / 2$ where a, b, c, d are integers which are either all even or all odd. Then T is a maximal Z-order (see for instance [5, Sect. 105]). A s in the last paragraph, every one-sided ideal of $M_{2}(T)$ is principal. Set $P=p T+j T$. It is easy to check that $j T=T j$, so that P is a two-sided ideal of T. Also P^{2} contains both p^{2} and $j^{2}=-p q$, from which it follows that $P^{2}=p T$. Hence if $P=x T$ for some x then $N(x)=p$; but T has no elements of norm p. Therefore P is a non-principal two-sided ideal of T. Because

$$
\left(\begin{array}{ll}
P & P \\
T & T
\end{array}\right)
$$

is a principal right ideal of $M_{2}(T)$ it is isomorphic to $M_{2}(T)$. It follows that $P \oplus T \cong T \oplus T$ as right T-modules, so that P is a stably free non-free two-sided ideal of T. The case in which $p=3$ and $q=7$ was studied by more elementary methods in Section 3 of [4].

ACKNOWLEDGMENT

Part of this work was done while the author was a visitor at Rutgers University, and he expresses his thanks for the hospitality and facilities provided by the R utgers M athematics D epartment.

REFERENCES

[1] M. A uslander and O. Goldman, M aximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.
[2] A. W. Chatters, M atrices, idealisers, and integer quaternions, J. Algebra 150 (1992), 45-56.
[3] A. W. Chatters, Non-isomorphic rings with isomorphic matrix rings, Proc. Edinburgh Math. Soc. 36 (1993), 339-348.
[4] A. W. Chatters and M. M. Parmenter, Stably free modules over rings of generalized integer quaternions, Canad. Math. Bull. 38 (1995), 408-411.
[5] L. E. Dickson, "A Igebras and Their A rithmetics," Stechert, N ew Y ork, 1938.
[6] M . Eichler, U ber die Idealklassenzahl total definiter Q uaternionenalgebren, Math. Z. 43 (1938), 102-109.
[7] A. W. Goldie, Non-commutative principal ideal rings, Arch. Math. 13 (1962), 214-221.
[8] T. Y. Lam, A lifting theorem, and rings with isomorphic matrix rings, in "Five Decades as a M athematician and Educator-On the 80th Birthday of Prof. Y. C. W ong," W orld Sci. Press, Singapore, 1994.
[9] I. R einer, "M aximal Orders," A cademic Press, N ew Y ork, 1975.
[10] R. G. Swan, Projective modules over group rings and maximal orders, Ann. of Math. 76 (1962), 55-61.
[11] D. B. W ebber, Ideals and modules of simple Noetherian hereditary rings, J. Algebra 16 (1970), 239-242.

