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We construct many pairwise non-isomorphic maximal Z-orders 4 and B which
have isomorphic n by n matrix rings for every positive integer n # 1. In most cases
A also has the property that every one-sided ideal of M,(A) is principal but not
every one-sided ideal of A is principal.  © 1996 Academic Press, Inc.

1. INTRODUCTION

Maximal Z-orders are some of the most natural and well behaved of all
non-commutative rings. Yet even for these rings the isomorphism type of
M,(A) does not determine that of 4. Examples are already known of
non-isomorphic orders 4 and B in a finite-dimensional central simple
algebra such that M,(A) = M,(B) [2, 3, 10]. But the examples in [2] and
[3], although numerous, are not maximal orders; those in [10] are maximal
orders but they are relatively complicated and the underlying commutative
ring is the ring of integers of a four-dimensional algebraic number field.

As in [8] we say that rings 4 and B are matrix-isomorphic if M,(A4) =
M,(B) for every positive integer n # 1. We shall show that, given a
positive integer r, there are r matrix-isomorphic pairwise non-isomorphic
maximal Z-orders (Theorem 4.4). The most difficult part of such construc-
tions is usually that of showing that the rings are not isomorphic, but in
this case there is a sufficient condition which is easy to check numerically
(Theorem 4.3). The same construction gives an infinite family of maximal
Z-orders A such that every one-sided ideal of M,(A4) is principal but not
every one-sided ideal of A is principal; a slightly different construction
gives infinitely many such A with a stably free non-free two-sided ideal
(Section 6).
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2. CONSTRUCTION OF THE MAXIMAL Z-ORDER §

The ring S which we shall construct is a maximal Z-order in a division
algebra of generalised rational quaternions. We shall show that S has the
additional property that every two-sided ideal is principal, and this will be
useful when we consider in Section 3 the question of determining when the
endomorphism rings of two maximal right ideals of S are isomorphic. We
shall use Z and Q to denote respectively the ring of rational integers and
the field of rational numbers.

Throughout the rest of this paper, w will denote the prime number with
w = 3mod(4). Let D be the rational division algebra of generalised
quaternions with basis 1, i, j,ij where i> = —1, j>= —w, and jj = —ji.
Set k = ij. A typical element x of D has the form x =a + bi + ¢j + dk
for unique elements a, b, c,d of Q. The conjugate x*, trace Tr(x), and
norm N(x) of x are defined by x* =a — bi — ¢j — dk, Tr(x) = x +x* =
2a, and N(x) = xx* = x*x = a® + b2 + w(c? + d?).

Set u =(1+j)/2. Then u? = Tr(wu — N(u) = u — (1 + w)/4 where
(1 +w)/deZ Set S=2Z[iul,ie., S is the subring of D generated by i
and u. It is easy to check that the additive group of S is free Abelian of
rank 4 with Z-basis 1, i, u, iu. It is routine to check that the discriminant
D(S) of S has the value D(S) = —w?; one way of doing this is to use the
formula D(S) = det(Tr(x,x;)) where x;, x,, x5, x, form a Z-basis for S. It
is well known that S is a maximal Z order in D (see for instance Section
105 of [5]), but this is also a consequence of the following more precise
result.

THEOREM 2.1.  Let S be as abouve and let I be a non-zero ideal of S. Then
either I = zS or I = zjS for some non-zero z € Z.

Proof. Let p be a prime number with p # w. Then p does not divide
D(S), so that S/pS is a semi-simple Z/pZ-algebra. Also j & pS, so that
iu —ui =i &pS. Thus S/pS is a semi-simple four-dimensional Z/pZ-
algebra which is not commutative. Therefore S/pS = M,(Z/pZ). In par-
ticular, pS is the unique maximal ideal of S containing p.

Now let P be any maximal ideal of S which contains w; we shall show
that P =jS. We have j 'ijj = —i and j 'kj = —k, from which it follows
readily that j~'Sj = S. Thus jS = Sj and (jS)? = wS. Therefore jS C P.
We have 2u —1=j. Hence u — (1 +w)/2 €jS. Therefore S/jS =
(Z/wZ)[x], where x is the image of i in S/jS. But x2= —1and —1is
not a square in Z/wZ. Therefore (Z/wZ)[x] is a field. Hence jS is a
maximal ideal of § and P =j§.

This shows that the maximal ideals of S are jS and pS for all primes
p # w, and for such p we have S/pS = M,(Z/pZ). The result now follows
by a standard argument.
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3. ENDOMORPHISM RINGS OF MAXIMAL RIGHT
IDEALS OF §

Throughout this section w and S will be as in Section 2, and p and ¢
will denote prime numbers with p # w # g. Note that we do allow p = ¢,
and also that we allow p =2 or g = 2. Let K and L be maximal right
ideals of S containing p and g respectively. We shall show that we always
have M,(End (K)) = M,(S) = M,(Endg(L)), and that it is almost true
that End(K) = End(L) as rings if and only if K = L as right S-modules
(see 3.6 for the precise result).

THEOREM 3.1. Let p be a prime number with p # w and let K be a
maximal right ideal of S which contains p. Set A = End(K). Then M,(A) =
M,(S).

Proof. Recall from the proof of 2.1 that S/pS = M,(Z /pZ). Thus both
S/K and K/pS are simple right §/pS-modules so that S/K = K/pS. But
S is a maximal Z-order and so is hereditary (see for instance [1, Theorem
2.9] or [9, Theorem 21.4]). Hence K is projective and Schanuel’s lemma
gives K@ K=S@®pS=S8@a&S. Therefore M,(A) = M,(End(K)) =
M,(End(S)) = M,(S) as rings.

Remark 3.2. By using more sophisticated methods it can be shown that,
with the notation of 3.1, we have M, (A4) = M,(S) for every positive integer
n # 1; thus 4 and S are matrix-isomorphic as defined in [8]. One way of
doing this is to apply Eichler’s theorem [9, Theorem 34.9] to the ring
M,(S) to show that every maximal right ideal of M,(S) is principal, and
hence that K @ S = § @ S. Of course 3.1 is trivial if 4 = §, but we shall
show that this is not always the case.

COROLLARY 3.3. A is a maximal Z-order.

Proof. Because K is a non-zero right ideal of the integral domain S, we
can identify Hom(K, S) with K* = {d € D: dK c S}. Also because K is
projective, we have KK* = {d € D:dK c K}. We shall identify 4 with
KK*. Thus A is a Z-order in D, and its maximality follows readily from
the fact that M,(A) = M,(S).

From now on we shall identify Homy(K, §) with K* and A with KK* as
in the proof of 3.3.

PropPosITION 3.4.  With the notation of 3.1 we have A = S if and only if
the maximal right ideal K is principal.

Proof. If K = xS for some x then x # 0 and x '4x = S.
Conversely, suppose that f: S — A is an isomorphism of rings. Because
D is the quotient ring of both § and A4, we can extend f to an
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automorphism g of D. But g acts as the identity function on the centre Q
of D. It follows from the Skolem—Noether theorem that there is a
non-zero element x of D such that g(d) = x!dx for all d € D. Because
D can be formed from S by inverting the non-zero elements of Z, we can
suppose without loss of generality that x € S. We have 4 = g(S) = x~!Sx.
Hence K = AK = x"'SxK, i.e., xK = SxK, i.e., xK is a two-sided ideal of
S. Therefore by 3.1 we have xK = aS for some a and hence K is principal.

Notation 3.5. p and g are prime numbers with p # w # ¢q; K and L
are maximal right ideals of S containing p and g respectively; K* = {d
D:dKc S}, L*={deD:dL cS}; A =KK*, B=LL* Recall that, as
in the proof of 3.3, we can identify 4 with End((K) and B with End(L).

THEOREM 3.6. With the notation of 3.5 we have A = B as rings if and
only if K is isomorphic as a right S-module to either L or j~'Lj.

Proof. Note that conjugation by j induces an automorphism of S. Thus
the “if” part of the statement is easy to prove.

Suppose that f : 4 — B is an isomorphism of rings. As in the proof of
3.4, there is a non-zero element x of S such that f(a) =x 'ax for all
a €A. Hence B =x'4x, so that L = BL =x 'AxL. Thus AxL = xL.
Suppose that xL is not contained in K. Then K +xL = §. But AK = K
and AxL = xL. Therefore AS =S, ie, ACS. But 4 is a maximal
Z-order, by 3.3. Therefore A = S, so that K = AK = SK. This is a contra-
diction because K is not a two-sided ideal of S.

This shows that xI. € K. Hence K*xL. € S so that K*xL is a hon-zero
two-sided ideal of S. We apply Theorem 2.1 and have two cases to
consider. Suppose first that K*xL. = zS for some non-zero z € Z. Then
KK*xL = KzS§ = zK, i.e., zK = AxL = xL. Therefore K = L as right S-
modules. Second, suppose that K*xL = zjS for some non-zero z € Z.
Then xL = AxL = KK*xL = KzjS = zKSj = zKj = zjj 'Kj, so that L =
j'Kjand K =L

4. A SIMPLE NUMERICAL TEST

In Section 3 we showed that, with the notation of 3.5, we have
M, (End(K)) = M, (End(L)) for all positive integers n # 1; and a necessary
and sufficient condition for End(K) = End(L) was given in 3.6. However,
the condition in 3.6 is not easy to check in practice. The main aim of this
section is to use 3.6 to derive a simple numerical condition which guaran-
tees in particular cases that End(K) is not isomorphic to End(L) (but
which is far from being a necessary condition).
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The next result is well known, but for the reader’s convenience we shall
sketch a proof in the particular case which we need.

LEMMA 4.1. Let x be a non-zero element of S. Then S /xS has (N(x))?
elements.

Proof. Because the additive group of S is free Abelian of rank 4, we
can fix Z-bases u,,...,u, for S and v,,...,v, for x§ such that for all ¢ we
have v, = r,u, for some positive integer r,. Set r = ryr,ryr,. Then S/xS
has r elements. Let C be the 4 by 4 diagonal matrix with diagonal entries
Fi, Ty, T3, 14 Then det(C) =r. We can think of C as being the matrix
corresponding to the mapping ¢ : S — S given by c(u,) = v, for all ¢. Let
B be the matrix corresponding to the mapping b : S — S defined by
b(s) =xs for all s € S. Then b !c is an automorphism of the additive
group S, so that the determinant of the corresponding matrix is a unit of
Z. Therefore +det(B) = det(C) = r. But det(B) is the determinant of the
image of x under the regular representation of D in M,(Q), and N(x) is
the determinant of the image of x under the reduced representation of D
in M,(Q(i)). Therefore det(B) = (N(x))?, so that (N(x))* = det(C) =r.

LEMMA 4.2. With the notation of 3.5 suppose that f : K — L is an
isomorphism of right S-modules, and let x be a non-zero element of K. Then

N(x)/p = N(f(x))/0.

Proof. We shall use | X| to denote the number of elements in a set X.
Because S/K is a simple S/pS-module with S/pS = M,(Z /pZ), we have
|S/K|=p? Hence by 4.1 we have (N(x)/p)*>=1S/xS|/p?=|S/K]|-
|K/xS|/p? = |K/xS| = | f(K)/f(xS)| = |L/f(0)S| = |S/LI |L/f(0)S1/q?
=1S/f(0)Sl/q* = (N(f(x))/q)>.

THEOREM 4.3.  With the notation of 3.5 suppose that S has no element of
norm pq. Then A is not isomorphic to B.

Proof. Suppose that 4 = B. Then by 3.6 we know that K is isomorphic
to either L or j~'Lj. Without loss of generality we may suppose that there
is a right S-module isomorphism f: K — L. Taking x = p in 4.2 gives
p =N(p)/p =N(f(p)/q, ie., N(f(p)) = pq; this is the desired contra-
diction.

THEOREM 4.4. Let n be any positive integer. Then there is a division
algebra D of generalised rational quaternions and n pairwise non-isomorphic
maximal Z-orders Ay, ..., A, in D such that M(A,) = M,(A,) forall s and t
and for all positive integers r # 1.

Proof. Let p,,..., p, be, in increasing order, the first n primes which
are congruent to 3mod(4). We fix a prime number w such that w =
3mod(4) and w > 4p2. With this choice of w, let S be as in Section 2. By
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4.3 it is enough to show that if s # ¢ then S has no element of norm p, p,.
Suppose to the contrary that there is an element x of § such that
N(x) =p,p, with s #¢t. We have x = (a + bi + ¢j + dk)/2 for some
a,b,c,d € Z. Then N(x) = (a® + b?> + w(c?® + d?))/4. Thus a® + b% +
w(c? + d?) = 4N(x) = 4p,p, < 4p?. Hence a?+ b? + w(c® +d*) <w,
so that ¢ =d = 0. This gives 4p, p, = a*> + b?, which is a contradiction
because 4p, p, is not the sum of two squares.

5. TWO EXAMPLES

We know that every two-sided ideal of S is principal. We shall now give
two examples in each of which we construct a second maximal Z-order A4
with M,(A) = M,(S) and A not isomorphic to S; in the first example
every ideal of A is principal, but in the second example A4 has a
non-principal ideal.

ExamMpLE 5.1. Take w = 23 and let S be as in Section 2. Set x = (1 +
j)/2 and K = 3S + xS. We have N(x) = 6 and x & 3S. Because /3§ =
M,(Z/3Z) it follows that K is a maximal right ideal of S. As in the proof
of 3.3 set 4 = KK*. Then M,(A) = M,(S) by 3.1. No element of S has
norm 3, so that K is not principal. Hence A is not isomorphic to S (3.4).

It remains to show that every ideal of A is principal, and it is enough to
do this for the maximal ideals of 4. The maximal ideals of S are pS for
primes p # w, together with jS where (jS)? = wS. Because M,(A) =
M,(S) it follows that the maximal ideals of 4 are pA for primes p # w,
together with a unique maximal ideal M such that M? = wA. But jK =
Kj c K sothat j € A. Also jAjK = j'AKj = j 'Kj = j 'jK = K, so that
j '4j c A. It follows that j4 = Aj. Thus j4 is a two-sided ideal of A with
(jA)? = wA. Therefore M = jA.

ExampLE 5.2. Take w = 43 and let S be as in Section 2. Set x = (1 +
2i +j)/2, K=3S +x§,and 4 = K/K*. As in 5.1 we find that K is a
maximal right ideal of S and that M,(A) = M,(S). Also as in 5.1 there is a
maximal ideal M of A such that M? = wA. But this time we shall show
that M is not principal.

With the aim of obtaining a contradiction we suppose that M = vA4 for
some v € A. The isomorphism between M,(A) and M,(S) induces an
isomorphism between M,(A/M) and M,(S/jS). Hence A/M has the
same number of elements as S /jS, namely w?2. Because M = vA it follows
that N(v) =w. But vK C K so that 3v € S. Hence 3v =(a + bi +
cj +dk)/2 for some a,b,c,d € Z. Therefore a® + b? + w(c? + d?) =
4N(3v) = 36w where w = 43. Thus 43 divides a® + b% Because —1 is not
a square in Z/43Z it follows that 43 divides both a and b. But a® + b? <
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36.43. Hence a = b = 0. We have c¢® + d* = 36, so that either ¢*> = 36
and d = 0 or ¢ = 0 and d? = 36. Hence without loss of generality we have
either v =j or v = k. Note that K contains vx, xj, and xk. Also, 3 € K, so
that the norm of every element of K is divisible by 3. If v =j then K
contains xj — jx = 2k, which is a contradiction because N(2k) = 172. If
v = k then K contains kx + xk = k, which is again a contradiction.

6. CONNECTION WITH GOLDIE’S QUESTION

In [7, Theorem B], Goldie showed that if R is a prime ring in which
every one-sided ideal is principal then R = M,(S) for some positive
integer n and some integral domain S, and the question arose naturally as
to whether every one-sided ideal of S has to be principal. It has been
known for a long time that the answer is “No’: the best-known examples
are due to Swan [10] where the ring S is a maximal order over the ring of
integers of a four-dimensional extension of Q, and to Webber [11] where §
is the first Weyl algebra.

The construction in Section 2 gives a further infinite family of examples
all of which are maximal Z-orders. Let w and S be as in Section 2.
Because S is a maximal Z-order it follows from Eichler’s theorem [9,
Theorem 34.9] that every one-sided ideal of M,(S) is principal. But every
one-sided ideal of S is principal if and only if w = 3 or w = 7, this follows
immediately from Hey’s formula for the class number of S (see [6]).
Without using Hey’s formula it is easy to show directly that, if w > 11,
then the only elements of S which have norm 2 are 1 + i, 1 — i, and their
negatives; hence (1 + i)S is the only principal maximal right ideal of §
which contains 2, and the other two maximal right ideals of S which
contain 2 are therefore not principal.

Perhaps an even more interesting infinite family of examples among
maximal Z-orders is the following. Let p and g be distinct odd primes
which are congruent to 3 mod(4); set i> = —1and j2 = —pg; and let T be
the ring of all generalised quaternions of the form (a + bi + ¢j + dk)/2
where a, b, ¢, d are integers which are either all even or all odd. Then T is
a maximal Z-order (see for instance [5, Sect. 105]). As in the last para-
graph, every one-sided ideal of M,(T) is principal. Set P = pT + jT. It is
easy to check that jT = Tj, so that P is a two-sided ideal of 7. Also P?
contains both p? and j?> = —pq, from which it follows that P? = pT.
Hence if P =xT for some x then N(x) = p; but T has no elements of
norm p. Therefore P is a non-principal two-sided ideal of 7. Because

7 7)
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is a principal right ideal of M,(T) it is isomorphic to M,(T). It follows that
PeT=T@aT as right T-modules, so that P is a stably free non-free
two-sided ideal of T. The case in which p = 3 and ¢ = 7 was studied by
more elementary methods in Section 3 of [4].
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