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Cysteine proteases of positive strand R N A  viruses and 
chymotrypsin-like serine proteases 

A distinct protein superfamily with a common structural fold 

Alexander E. Gorbalenya, Alexei P. Donchenko, Vladimir M. Blinov and Eugene V. Kotmin 

Institute of Poliomyelitis and Viral Encephalitides of the USSR Academy of Medical Sciences, 
142782 Moscow Region, USSR 

Received 11 October 1988 

Evidence is presented, based on sequence comparison and secondary structure prediction, of structural and evolutionary 
relationship between chymotrypsin-like serine proteases, cysteine proteases of positive strand RNA viruses (3C proteases 
of picornaviruses and related enzymes of come-, nepo- and potyviruses) and putative serine protease of a sobemovirus. 
These observations lead to re-identification of principal catalytic residues of viral proteases. Instead of the pair of Cys 
and His, both located in the C-terminal part of 3C proteases, a triad of conserved His, Asp(Glu) and Cys(Ser) has been 
identified, the first two residues resident in the N-terminal, and Cys in the C-terminal fl-barrel domain. These residues 
are suggested to form a charge-transfer system similar to that formed by the catalytic triad of chymotrypsin-like prote- 
ases. Based on the structural analogy with chymotrypsin-like proteases, the His residue previously implicated in catalysis, 
together with two partially conserved Gly residues, is predicted to constitute part of the substrate-binding pocket of 3C 
proteases. A partially conserved ThrLys/Arg dipeptide located in the loop preceding the catalytic Cys is suggested to 
confer the primary cleavage specificity of 3C toward Glx/Gly(Ser) sites. These observations provide the first example 

of relatedness between proteases belonging, by definition, to different classes. 
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1. INTRODUCTION 

Cyste ine  and  serine p ro teases  a re  usua l ly  regard-  
ed as unre la ted  enzyme classes [1,2]. Specif ical ly ,  
3C pro teases  (3C Pr°) involved  in p o l y p r o t e i n  p ro -  
cessing o f  p icornav i ruses  and  s imi lar  enzymes  o f  
th ree  g roups  o f  p lan t  viruses ( come- ,  nepo-  and  

p o t y v i r u s e s ) ,  for  some o f  which  p r inc ipa l  ca ta ly t ic  
res idues  have  been ident i f ied  as Cys by  inh ib i to r  
s tudies  [3,4], were t r ad i t i ona l l y  c o m p a r e d  to  cys- 
te ine  pro teases  such as ca theps ins  and  p a p a i n  
[5 -8 ] .  O f  the  few res idues  conserved  in all  a l igned 
sequences  o f  3C P~°, on ly  two,  Cys and  His ,  b o t h  
nea r  the  C- te rminus ,  were cons ide red  as poss ib le  
ca ta ly t i c  ones,  based  on  the  a na logy  wi th  cel lular  
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cysteine proteases; notably, however, in the latter 
the catalytic Cys is located near the N-terminus (cf. 
[5]). The functional importance of these two 
residues has been subsequently confirmed by site- 
directed mutagenesis [9], though direct test of the 
hypothesis has not been reported. Due to the dif- 
ferent location of the (putative) catalytic Cys 
residues and to the lack of overall sequence 
similarity, it was suggested that 3C-like proteases 
were not evolutionarily related to other cysteine 
proteases [5], their formal analogy being explained 
by convergence. The considerable similarity be- 
tween the regions of 3C proteases around the 
putative catalytic Cys to those surrounding the 
catalytic Set of chymotrypsin-like proteases no- 
ticed by us [10,11] was also attributed to con- 
vergence [8]. Hence, the general consensus that 
3C-like proteases constitute an entirely indepen- 
dent enzyme family. However, two very recent 
observations encouraged re-evaluation of this con- 
cept. First, it has been shown that the His residue 

implicated in catalysis is not conserved in the 
putative protease of a nepovirus [12]. Second, we 
have tentatively identified, in a sobemovirus, a 
serine protease significantly similar to 3C Pr° [13]. 

Using an algorithm for stepwise multiple se- 
quence alignment, we here present a new version of 
the complete sequence alignment of 3C-like pro- 
teases. Previously not detected conserved His and 
Asp (Glu) residues have been revealed, which, 
together with the Cys (Ser) residue identified 
earlier, might constitute a catalytic triad similar to 
that of chymotrypsin-like serine proteases. 
Moreover, a significant overall similarity at the 
primary and secondary structure levels between 
3C-like and chymotrypsin-like proteases was 
revealed, allowing tentative identification of other 
functionally important sites of the former. We 
hypothesize that 3C-like and chymotrypsin-like 
proteases provide a previously unprecedented case 
of structural and evolutionary relatedness between 
proteases of different classes. 
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(B)  

1 HRV14 
2 PV1 

3 ECHO 
4 HRV~ 

5 H R V l a  

6 H R V l b  
7 HRV89 

8 CVB~J 

9 BEV 

10 TI~EV 

11 EMCV 
12 FMDV 

13 HAV 

15 TBRV 

16 TVMV 
17 TEV 

1 8  SBMV 

CONSENSUS 

5 0  

10 2 0  3 0  4 0  
: GPNTEFALSLLRKNIMTIT  . . . . .  TSKSEFTBLSI -HDR 

: .8PSFDYAVAM~KRNIV'f 'AT . . . . .  TSKSEFTMLGV-HDN 
: SPAFEFAVAMMKRNASTVK . . . . .  TEYSEFTMLSI -YDR 

: GPEL~IEFGMSLIKHNSCVIT . . . . .  TENSKFTGLGV-YDR 

: GPEEEFGRSILKNNTCVIT . . . . .  T G N ~ T G L S I - H D R  

: G P E I E E F G R S I L K N N T C V I T - - - - - T I ~ T G L S I - Y D R  
: GPEEEFGRSLLKHNCCVVT . . . . .  TDKGKFTSLSI -YDQ 

: G P A F E F A V A M M I ( I ~ T g K - - - - - T E Y S E F T M L S I - Y D R  

: GPLFDFGVSLLKKNIRTVK . . . .  -TSAGEFTALQV-YDT 

: S G G K V L R Q A S ~ F C A K N I V A P I T F Y Y P D K A E V T Q S C L L L - R A H  
: .GIM~PVMDFEKYVAKHVTAPIGFVYP-TGVSTQTCLLV-RGR 

: . . . . . . . .  SG~dM~TDLQKMVMGN-TKpVELNLDGKTV~ICCATSV-FGT 

: . . . . . . . . .  SQSTLEIAGLVRKNLVQFGVGEKNGCVRWVMNRLGV-KDD 

: M S L D Q S S V A I - M S K C R - - - A N L V - - - - - - F G S T N L Q I V M V - P G R  

: .AGDGL-LPAARFVCCYLS . . . . .  TSGSFVSAMQY-KNK 

: . . . . . . . . . .  SKALLKSVRDFI@RIS~CVNLLENSSDGHSERLFSISFSP 

: GESLFKGPRDYNPISSTICHLTNESDSHTTSLYGIBFGP 

: TGGEPKSLVAVKSGDSTLG . . . . .  F G A R V Y H E - G M - - - D  

+ K + +G+ 

R 

6 0  70  8 0  9 0  100  

1 : VCVIPTH . . . .  AQPGD--DVLV . . . . .  N G Q K I R V K D K Y K L - - V D P E N I N - - L E L T V L T  
2 : V A I L P T H  . . . .  A S P G E - - S I V I  . . . . .  D G K E V E I L D A K A L - - E D Q A G T N - - L E I T I I T  

3 : WAVLPRH . . . .  A K P G P - - S I L M  . . . . .  N D Q E V G V L D A K E L - - V D K D G I N - - L E L T L L K  

4 : FVVVPTH . . . .  A D P G K - - E I Q V  . . . . .  D G I T T K V I D S Y D L - - Y S K N G I K - - L E I T V L K  

5 : I L I I P T H  . . . .  ADPGR--EVQV . . . . .  N G V H T K V L D S Y D L - - Y N R D G V K - - L E I T V I Q  

6 : T L I I P T H  . . . .  ADPSR--EVQV . . . . .  N G I H T K V L D S Y D L - - Y N R D G V K - - L E I T V I Q  

7 : VMVLPTH . . . .  S D P G S - - E I L V  . . . . .  DGVKVKVSDSYDL- -HNHEGVK- -LE ITVVK 
8 : WAVLPRH . . . .  A K P G P - - T I L M  . . . . .  NDQEVGVLDAKEL- -VDKDSTN- -LELTLLE 

9 : VVVLPRH . . . .  A M P G K - - T I E M  . . . . .  N G K D I E V L D A Y D L - - N D I < T D T S - - L E L T I V K  
10 : LFVVNRH . . . .  VAETDWTAFKL . . . . . .  KDVRHERHTVALR-SVNRSGAK--TDLTFIK 

11 : TLVVNRH . . . .  MAESDWTSIVV . . . . .  R G V T H A R S T V K I L - A I A K A G K E - - T D V S F I R  
12 : AYLVPRH . . . .  LFAEKYDKIMLD---GRAMTDSDYIR~d~FEF-EIKVKr~QE~ILS"D~ALMV 
13 : WLLVPSH . . . .  AYKFEKDYEMMEFYFNRGGTYYSISAGNV-VIQSLDVG-FQDVVLMK 

14 : R F L A C K H - - F F T H I K T K L R V E I V - - - M D G R R Y Y H Q F D P A N - - - - I Y D I P D ' - - S E L V L Y S  

15 : SVRMTRHQALRFQEGEQLTVIFS- - -STGESQLIRWHKYH- - -MREEPG- 'SE IVTWL 
16 : Y I I A N Q H  . . . .  LFRRNNGELT'I . . . . .  KTMH-GEFKVI<NSTQI_QMI<PVES-RDIIVIK 

17 : F I I T N K H  . . . .  LFRRNNGTLLV . . . . .  QSLH-GVFKVI<NTTTLQQHLIDG-RDMI I IR  

18 : VLMVPHH . . . .  VWYNDKPHTAL AKNSRSVDTEIR~-EVEAACAI~PRIDFVLVK 

CONS ++ H + + E+ ++ 

D 
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110 120 130 140 150 160 

1 : LDRN. 
2 : LKRN 
3 :  LNRN. 
4 : LDRN 
5 : LDRN. 
6 : LDRN 
7 : LIRN 
8 :  LNRN 
9 : LKMN. 

10 : VTK8 
11 : 

12 : 
13 : 

14 : 
15 : 
1 6  : 
17 : 

EKF-RDIRGFIS-E-DLESVD-ATLVVHSNNFT--NT--ILEVGPV 
"EKF-RDIRPHIPTQ-ITETND-BVLIVNTSKYP--NM'-YVPVGAV 
EKF-RDIRBFLARE-EVEVNE-AVLAINTSKFP--NM--YIPVGQV 
.EKF-RDIRRYIPNN-EDDYPN-CNLALLANQPE--PT--IINVSDV 
EKF-RDIRKYIPET-EDDYPE-CNLALSANQDE--PT--IIKVSDV 
.EKF-RDIRKYIPET-EDDYPE-CNLALSANQVE--PT--I!Ktq3DV 
EKF-KDIRKYLPSR-EDDYPA-CNLALLANQDE--PT--I!BVGDA 
.EKF-SDI88FVAKE-EVEVNE-AVLAINTSKFP--NM-'YI~VC~QV 
EKF-RDIRAMVPDQ-ITDYNE-AVVVVNTSYYP--QL--FTCVBRV 
. P L F - K D N V N K F C S N - K D D F P A - R N D W T B I M N T - - B L A - - F V Y , S S N F  

LSSG . . . . . . . .  PLF-RDNTSKFVKA-SDVLPT-GAAPVTGIMNT--DiP-MMYTSTF 
LHR6 NCV-RDITKHF-RD-TARMKK-STPVVBVVNNA--DVSRLIFSSEA 
VPTI . . . . . . . .  PKF-RDITQHFIKK-GDVPRALNRLATLVTTVN--BTPMLIBEBPL 

HPSLEDVSHSCNDLFCNDPDKELPSVFSADFLS-CKYNKFGGFYE--AQYRDIKVRTK 
APSLPSLSPDLKDLFLEDKEVDLPNHFKTIGYV-CRVDNTAFHYDLLDTYP~VI~KTPL 
MAKD. ' F - P P F P Q K L K F R - Q P T I K D - - R V C M V S T N F g '  Q K S V S S L  
M P K D  F-PPFPQKLKFR-EPQREE--RICLVTTNFQ . . . . .  TKSMSSM 

18 : VPT . . . . .  

CONS ÷ F 

AVWRKLAVR-STKVLA-PVHSTAVQTF8 . . . . . .  GgDSKQL 

D +  + + + + 

I "- 

2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
? : 

10 : 
11 : 

12 : 
13 : 

14 
15 
1 6  

17 

= 

= 

= 

.= 

170 180 190 200 210 220 

---TMASLIN--LSSTPTNRMIRYDYATK . . . .  TGQCGG-VLCAT-6---KIFBIH-V 
---TEQGYLN--LSBRQTARTLMYNFPTR . . . .  ~SgC88"VITCT'G-----KVISMH--V 
---TDYGFLN--LGGTPTKRMLMYNFPTR . . . .  ASQC68-VLMST-B---KVLSIH-V 
---VSYSNIL--LSBNQTARgI..KYSYPTK . . . .  gBYEBF:r-VLYKI'-G---QVL6IH-V 
---VSYGNIL--LSBNQTARMLKYNYPTK . . . .  SSYCSS-VLYKI -G- - -Q ILB IH-V  
---VSYSNIL--LSSNQTARPLKYNYPTK . . . .  SSYCGG-VLYKI 'B- - ' -QILBIH-V 
---VSYBNIL--LSBTNTARMIKYHYPTK . . . .  AGYCSB-VLYKV-B-- -SILBIH-V 
---TEYI~FLN--LGSTPTKRM;LMYNFPTR- -- - ~ ~  T-8?----KVLSIH-V 
---KDYSFLN--LABRPTHRVLMYEFPTK . . . .  PCBQCG~B-WISM,8--~KIVBVH-V 
- - - L I C . ~ N H 3 P V N T T T B ~ ~ N Y R A C f T R - - - ~ I I C N V ~ M a K K A I ~ V S I @ - I - ' S  
---LKASVSVPVETBQTFNHCIHYKANTR . . . .  KBWCBSALLADL-BBSKKILBIH-S 
---LTYKUIVVCMDSDTMPBLFAYK~ATR . . . .  ~ S Y C B B ~ A / L ~ b K ~ - - B ~ D T F I V 8 " ; ~ t - S  
KMEEKATYVHKKNDGTTVDLTVDQAMRBKBEBLPSRCBASALVSSNQSIQNAILBIH-V 

m u  • • 

---KECLTIQSGNYVNKVSRYLEYEAPTI . . . .  PEUCSSLVIAHI-SGKHKIVSVH-V 
---PLKSVVGNELYLHEIPEKITFHYESR'-----NOIX~BI~[ILCQI--KI~Iq~/glqL--V 
---VSESSH---IVHKEDTSFMQHWITTK . . . .  ~ V S I I I } B - - - t 4 I L S I H S L  
- - - V S D T S C ' - - T F P S S D B I F I d K H N I g T I < - - - ~ L V S - T R I ~ B - - - F I g B I H S A  

1 8  -- 

CONS 

. . . .  F S G L B I < - - A K A L D N A W E F T H T A P T A  . . . .  K G N S B T P L Y T R D  . . . . .  B I V B M H - -  

+ T K  G C 8  + +  6 ++8~HN 
R 

1 0 6  
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230  240  250  

1 : GS-NSRQGFSAQLKK-QYFV . . . . . . . . .  E K Q - -  
2 : GG-NGSH6FAAALKR-SYFT . . . . . . . . .  QSQ--  
3 : GG-NGHI-~FSAALLR-HYFN .EEQ--  
4 : 8G-NGRDGFSAMLLR-SYFT . . . . . . . . .  DVQ- -  
5 : GS-NGRDGFSAMLLR-SYFT . . . . . . . . .  D I Q - -  
6 : SG-NGRDSFSAMLLR-SYFT . . . . . . . . .  D T Q - -  
7 : SG-NGRDSFSAMLLK-SYFS E T Q - -  
8 : S8-NSHQI3FSAALLK-HNFN . . . . . . . . .  DEQ- -  
? : GS-NGAQGFAASLLR-RYFT . . . . . . . . .  A E Q - -  

10 : AG-GGGLAAATI ITK-EL IEAAEKSMLALEPQ- -  
11 : A S - S M B I A A A S I V S Q - E M I R A V - - - V N A F E P Q - -  
12 = AG-GNGVSYCSCVSR-SMLQKM-KAHVDPEPHHE 
13 : AS-GNSILVAKLVTQ-EMFQNI . . . . .  D K K I E - -  

m 

14 : ASIQSKISCASLLPPLEPIA .QAQ-- 
15 : AS-KDKTSWADIMPP-NTLA. E L Q - -  
16 : THTTNSSNYFVEFPE-KFVATY . . . . . .  L D A A - -  
17 : SNFTNTNNYFTSVPK-NFMELL . . . . . .  TNQE- -  

[ 3 8 ]  
[ 3 9 ]  
C40]  
[ 4 1 ]  
[ 4 0 ]  
C42]  
C43]  
C44] 
C45]  
C46]  
[ 4 7 ]  
[ 4 8 ]  
[ 4 9 ]  

[ 5 0 ]  
[ 1 2 ]  
[ 5 1 ]  
[ 5 2 ]  

18 : TSYVDIGTSNRAINM-HFIMSC . . . .  LVSKME--  [ 5 3 ]  

CONS S + + Q 
E 

Fig. 1. Alignment of amino acid sequences of 3C-like proteases. (A) A dendrogram schematically depicting the course of alignment 
in the order of decreasing similarity. Branch lengths are in approximate inverse proportion to the degree of sequence similarity observed 
at each step. AS values in SD units are indicated for each step. (B) The resulting protease alignment (sequences of 3C Pm of HRVla, 
HRV89, CVB3 and BEV published recently and those not included in A were added by hand, based on their unambiguous alignment 
with 3C pr° of other entero- and rhinoviruses). The aligned sequences are numbered arbitrarily, beginning from the first position of 
the alignment. Between residues 81 and 120, the alignment of CPMV and TBRV proteases with those of other viruses was uncertain 
and was corrected by the HELIX program comparing multiple pre-aligned sequences in a diagonal plot and revealing conserved regions 
(in preparation). Below the aligned sequences the derived consensus (CONS) is shown. A residue (or two homologous residues) was 
included in the consensus if it occurred in at least 14 out of 18 sequences. Residues belonging to one of the following groups were 
scored as homologous: D, E, N, Q; S, T; K, R; V, L, I, M; F, Y, W. +,  hydrophobic residues (V, L, I, M, F); *, putative catalytic 
residues. Dots: residues invariant in picornaviral 3C Pr°. Sequences were from the references indicated at the end of the alignment. The 
proteases of potyviruses (NI, proteins) have terminal extensions [51,52]. Cleavage sites flanking the putative protease of SBMV are 

discussed in [13]. 

2. S E Q U E N C E  A L I G N M E N T  O F  3 C - L I K E  
P R O T E A S E S  

A m i n o  ac id  sequences  o f  3C-l ike p ro teases  were 
a l igned  by  the  O P T A L  p r o g r a m  which  p e r f o r m s  
s tepwise  op t ima l  a l ignmen t  o f  mul t ip le  a m i n o  ac id  
sequences  and  its s ta t is t ical  assessment  b y  a M o n t e  
C a r l o  p r o c e d u r e  [14,15]. A l ignmen t s  were 
s ta t i s t ica l ly  cha rac te r i zed  by  a l ignmen t  scores  (AS) 
as  fo l lows:  A S  = S ° - S~/~ where  SO is the  score  
ca lcu la t ed  for  an  a l ignmen t  o f  two  sequences,  or  a 

g r o u p  o f  sequences,  by  use o f  the  M D M 7 8  a m i n o  
ac id  res idue c o m p a r i s o n  mat r ix ,  S r is the  m e a n  
score  for  a l ignments  o f  25 r a n d o m  p e r m u t a t i o n s  o f  
the  same  sequences ,  a n d  w is the  s t a n d a r d  devia-  
t ion .  The  a l ignmen t  o f  3C-l ike  pro teases ,  toge the r  
wi th  the  A S  values  o b t a i n e d  a t  each  s tep,  is shown 
in f ig.1.  The  a l ignmen t  o f  all  the  sequences was 
h igh ly  s igni f icant  (fig. 1A), con f i rming  tha t  3C-l ike 
p ro teases  mos t  p r o b a b l y  cons t i tu te  a monophy le t i c  
p r o t e i n  f ami ly  [16]. 

The  genera l  p remise  under ly ing  any  func t iona l  
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implications of sequence comparisons is that com- 
mon functions (primarily catalytic) should be per- 
formed by conserved amino acid residues [16]. 
Upon alignment of picornaviral 3C Pr°, 9 invariant 
residues (5 GIy, two His, one Cys and one Asp) 
were revealed (fig.lB). Of special interest was the 
conservation of His 56 (numbering of the alignment 
shown in fig.lB) in the relatively variable N- 
terminal half of 3C Pro. Addition of the sequences 
of more distantly related plant viral (putative) pro- 
teases reduced this number to only 3, namely 
His 56, Gly 2°3 and Gly zl9, with the putative catalytic 
Cys 2°2 replaced by Ser in the SBMV protein [13]. 
On the other hand, His z21 and Asp 125, which are 
conserved in picornaviral proteases and were 
previously tentatively implicated in catalysis [5-8], 
are substituted by non-homologous residues in 
nepovirus and in poty- and sobemovirus proteins, 
respectively. 

3. COMPARISON OF 3C pr° AND 
CHYMOTRYPSIN-LIKE PROTEASES 

The mutual orientation of the conserved His 56 
and Cys(Ser) 2°2 residues in 3C-like proteases 
resembles that of the respective catalytic residues 
in chymotrypsin-like serine proteases (His 57 and 
Ser 195, according to the chymotrypsin numbering 
system [17]) but not in cellular cysteine proteases. 
The similarity of sequence stretches surrounding 
the (putative) catalytic Cys residues of 3C Pr° to 
those around the catalytic Ser of chymotrypsin-like 
proteases has been noticed and discussed previous- 
ly [11]. These observations prompted a further, 
more detailed comparison between the two enzyme 
families. 

Secondary and tertiary structures of chymotryp- 
sin-like proteases are better conserved than amino 
acid sequences [17]. Thus it seemed important to 
compare them with 3C-like proteases at these levels 
of organization. Since X-ray data for 3C-like en- 
zymes are not available, only secondary structure 
predictions could be used to this end. Secondary 
structures of 3C-like proteases were predicted by 
the ALBEAL program based on the algorithm of 
Finkelstein and Ptitsyn [18,19]. To improve 
prediction quality, a-helix and B-strand potentials 
were averaged according to the amino acid se- 
quence alignment shown in fig.1. This type of 
analysis was restricted to picornaviral 3C pr° for 

which the sequence alignment was most reliable. 
Comparison of the resulting secondary structure 
profile with those determined for 5 chymotrypsin- 
like proteases by the same approach and by X-ray 

crystallography revealed reasonable similarity 
(fig.2). Obviously, 3C Pr° belong to the class of pro- 
teins of which chymotrypsin-like enzymes are 
typical representatives [20]. The latter are known 
to comprise 12 ~-strands (A to L in fig.2C). 11 of 
12 strands and a C-terminal a-helix could be iden- 
tified in the predicted profile (fig.2A,C) though the 
strength of prediction varied considerably. 
Curiously, the secondary structure of 3C Pr° ap- 
peared to be predicted somewhat better than that 
of chymotrypsin-like enzymes, with stronger /•- 
strand prediction and counterparts available for all 
12 strands revealed in the latter by X-ray analysis 
(fig.2B,C). It must be emphasized that spacing of 
the (predicted) ~-strands was very similar in the 
proteases of the two families. Similarity in the 
positions of deletions and insertions which are 
usually associated with loops in protein structure 
[21] is also notable (fig.2C). A specific element of 
3C Pr° which is absent in chymotrypsin-like pro- 
teases is the strongly predicted N-terminal a-helix. 

A salient feature of chymotrypsin-like proteases 
is that they consist of two topologically similar do- 
mains comprising 6 strands each [22]. This sym- 
metrical organization is clearly seen in the 
secondary structure profile of 3C Pr°, better in fact 
than in the chymotrypsin-like proteases themselves 
(cf. fig.2A and B). Moreover, each domain is com- 
posed of two half-domains [22], and these could 
also be discerned in the 3C Pr° profile. 

These observations encouraged aligning amino 
acid sequences of 3C Pr° and chymotrypsin-like 
proteases by superposition of consecutive /~- 
strands and C-terminal a-helices (fig.3). The most 
striking feature of the alignment was the 
equivalent location of the catalytic His and Ser 
residues of chymotrypsin-like proteases and the 
respective conserved residues of 3C Pr°, i.e. His ad- 
jacent to the C-terminus of strand C and Cys(Ser) 
in the loop preceding strand J (fig.3). Moreover, 
Glu(Asp) at the N-terminus of strand F in 3C Pr°, 
which was conserved also in plant viral proteases 
(fig.lB), appeared to match the third catalytic 
residue of chymotrypsin-like proteases, Asp 1°2 
(fig.3). Also notable was the coincidence or 
homologous replacement of a number of addi- 
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Fig.2. Comparison of secondary structures of 3C P'° and chymotrypsin-like proteases. (A) An averaged plot of secondary structure 
probabilities for chymotrypsin-like proteases. For each position (X axis) containing no gaps in sequence alignment [21], average #- 
and a-potentials (Y axis) were calculated as follows: P = [(SGPA+ SGPB)/2+ (CHY+TRP + ELA)/3]/2 where the protease 
abbreviations stand for respective B- and a-potentials calculated by the ALBEAL program. Solid line: B-strand probability; broken 
line: a-helix probability. Horizontal brackets delineate domains and half-domains (see text). (B) An analogous plot for 3C er°. Here, 
P = [(PVI + HRVI4 + HRV2 + HRVI b + ECHO)/5 + (EMCV + TMEV)/2 + FMDV + HAV]/4. Designations as in A. (C) A schematic 
linear representation of secondary structures. Filled rectangles, B-strands; empty rectangles, tz-helices. Upper row: average predicted 
profile for chymotrypsin-like proteases; middle row: average profile derived from X-ray data for chymotrypsin-like proteases; bottom 
row: average predicted profile for 3C Pr°. B-strands are designated A to L according to [13]. Arrows indicate regions where positions 

containing gaps (presumably indicating deletions and insertions) were omitted from the profile calculations (panels A and B). 

t iona l  amino  acid residues, ma in ly  hydrophobic ,  as 
should  be expected o f  B-strands.  Quant i ta t ive  
eva lua t ion  of  the a l ignment  by  use of  the MDM78 

mat r ix  demons t ra ted  that  the level o f  similari ty 
between 3C P'° and  eukaryot ic  chymotryps in- l ike  
proteases was no t  lower t han  that  between the lat- 
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Fig.3. Sequence alignment of 3C Pr° and chymotrypsin-like proteases based on secondary structure superposition. 12 consecutive ~'- 
strands designated as in fig.2, C-terminal helices and some adjacent conserved regions were aligned. The number of residues in each 
secondary structure element is shown. For 3C Pro the data are from the prediction shown in fig;2, and for chymotrypsin-like proteases 
from X-ray analysis. Strands I and L which were predicted ambiguously in 3C Pr° are shown in parentheses. For some long if-strands 
and for the C-terminal helices only partial sequences are included. Numbers stand for lengths of spacers and terminal extensions. 
Amino acid residues having at least one identical or homologous (see legend to fig.2B) counterpart in the other sequence set are 
designated by capitals. Colons: positions occupied by identical or homologous residues in at least 1/2 of the sequences of each of the 

sets; asterisks: putative catalytic residues. 

ter and prokaryotic proteases (not shown). These 
observations made us hypothesize that His 56, 
Glu(Asp) 1°2 and Cys 2°2 of  3C P~° might constitute a 
catalytic triad similar to that of  chymotrypsin-like 
proteases [17]. In chymotrypsin-like proteases, 
substitution of  Glu for Asp z°2 has not been 
described (cf. [2,21]). However, it is possible to 
speculate that the presence of  Cys in the place of  
Ser 195 might confer additional flexibility to the 
catalytic center, permitting both Glu and Asp as 
members of  the catalytic triad. 

4. A CHYMOTRYPSIN-LIKE STRUCTURAL 
FOLD IN 3C Pr° 

The above observations strongly suggest that 
3C pr° should be similar to chymotrypsin-like pro- 
teases also at the level of  the tertiary structure. We 
hypothesize that the 3C pr° molecule consists of  two 
twisted antiparallel B-barrels connected by a long 
loop. The hydrophobic core of  each barrel is con- 
stituted by 6 B-strands. Secondary structure predic- 
tions for non-picornaviral 3C-like proteases (not 
shown) and their sequence similarity to 3C Pr° 
(fig. IB) suggest that these enzymes might form an 
analogous fold. The proposed fl-sheet topology of  
poliovirus 3C Pr° is shown in rigA. This arrange- 
ment of  /~-strands is compatible with recently 
reported data on site-directed and random 
mutagenesis of  this protease. Specifically, substitu- 
tion of  Val or Ala for GIy 51 (hereafter in this sec- 
tion the poliovirus numbering is used), presumably 
disrupting a/~-turn, was lethal, whereas substitu- 
tion of  Asp (a residue frequently occurring in fl- 
turns [23]) in the same position resulted in a viable 
virus [24]. Substitutions in strands E and F which 
cou ld  cause local deformations of  the/3-sheet ex- 
erted relatively mild effects on viral reproduction 
[24-26], and a substitution of  Ser for  Cys 153 in 
strand J appeared to be without effect on the ac- 
tivity of  3C P'° expressed in E. coli [9]. Moreover, 

the processing defects inflicted by substitutions in 
strands E and F were similar (namely, impairment 
of  the cleavage at the C-terminus of  3C Pr° itself 
[24,25]), in accord with our proposal that these 
strands might interact with each other in native 
3C Pt°. 

Based on the analogy with chymotrypsin-like 
proteases, we predict that the three putative 
catalytic residues, two of  which, His and 
Asp(Glu), reside in the N-terminal domain of  
3C Pr°, and the 3rd, Cys(Ser), in the C-terminal 
one, should be juxtaposed in the interdomain cleft. 
This suggests that the mechanism of  peptide bond 
cleavage catalysis by 3C Pr° may be similar to that 
described for chymotrypsin-like proteases involv- 
ing formation of  a three-residue charge-transfer 
system [27,28]. The involvement of  Cys (in all 3C- 
like enzymes except the putative protease of  
SBMV) and Glu (in some 3C-like proteases) in 
such a system is a novel theme expanding the ex- 
isting ideas of  proteolysis mechanisms. Despite the 
similarity in the positioning of  the (putative) 
catalytic residues in 3C p~° and chymotrypsin-like 
enzymes, Cys and Ser are not as easily inter- 
changeable in the triad as could be imagined. Thus 
Cys 147 to Ser substitution in poliovirus 3C Pr° com- 
pletely abolished its protease activity [9]. In 
nature, however, such substitutions appear to 
work as exemplified by the putative protease of  
SBMV; presumably this is gratified by some com- 
pensatory substitution(s). 

Substrate-binding pockets of  chymotrypsin-like 
proteases are formed by three non-contiguous 
segments [29-31]. Two conserved sites in the 
strands K and L were implicated in supporting the 
'wails' of  the cavity, while a more variable site in 
the loop preceding the catalytic Set is thought to 
constitute its base, being the main determinant of  
cleavage specificity. It is tempting to speculate that 
equivalent segments of  3C-like proteases are also 
involved in substrate binding. This is especially 
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Fig.4. Proposed #-sheet topology for 3C Pr° of PVI. Arrow- 
headed rectangles: #-strands; cylinders: a-helices. To delineate 
secondary structure elements, predictions for 3C Pr° of  PV were 
used, with some corrections based on average predictions. The 
numbering is for 3C vr° of  PV and does not correspond to that 
in fig.lB. In the right part of  the figure strands are designated 
as in figs 2C and 3. Residues outside secondary structure 
elements which are (partially) conserved in other 3C w° are also 
shown. Plus signs: putative catalytic residues; dots: residues 

subjected to mutagenesis (see text). 

plausible as strand K is highly conserved 
throughout the family, including nearly invariant 
His and GIy residues, and strand L also contains a 
partially conserved Gly residue, similarly to the 
substrate-binding site of chymotrypsin-like pro- 
teases (figs 1B and 3). The importance of His TM for 
substrate binding might explain the inactivation of 

poliovirus 3C l'r° upon substitution of Gly for this 
residue [9]. As for the putative specificity site, in 
3C-like proteases it contains a partially conserved 
dipeptide ThrArgt43(Lys) (positions 193-194 in 
fig.lB). This is interesting in view of the con- 
served, despite the high divergence of enzymes 
themselves, cleavage specificity of 3C-like pro- 
teases which act primarily at Q, E/G,S dipeptides 
[7]. On the other hand, variations observed in this 
segment of the proteases may account for different 
requirements to the residues flanking cleavage sites 
revealed upon site-directed mutagenesis of picor- 
naviral and potyviral polyproteins [32,33]. Cer- 
tainly, other regions of 3C P~° might also contribute 
to their specificity, as emphasized by the above- 
mentioned effects of mutations in strands E and F 
on cleavage at specific sites. 

Along with these similarities, considerable struc- 
tural and functional differences seem to exist be- 
tween chymotrypsin-like and 3C-like proteases. 
Both types of enzymes are generated via pro- 
teolytic processing of precursors, which involves 
liberation of the N-terminus in cellular proteases, 
and of both termini in 3C-like proteases [2,7]. 
However, chymotrypsin-like protease precursors 
have only very low activity, activation achieved 
through formation of an electrostatic bridge be- 
tween the new N-terminal residue (which is always 
lie or Val) and the invariant Asp residue adjacent 
to the catalytic Ser. In 3C-like proteases, which are 
cleaved from viral polyproteins autocatalytically 
[34], this mechanism is not operational. Ac- 
cordingly, the above residue pair is not conserved 
in this family, the position near the (putative) 
catalytic Cys becoming variable (fig. I B). Another 
notable difference is the absence, in 3C-like en- 
zymes, of the system of disulphide bonds which are 
conserved in chymotrypsin-like proteases, making 
their structure rigid [17]. A highly conserved site in 
3C vr° is the sequence PheArg(Lys)Asp 85 (positions 
122-125 in fig.lB). Previously it was suggested 
that Asp s5 could be involved in catalysis [8]. 
However, this is unlikely as in our model this se- 
quence lies in the loop connecting the two domains 
(fig.4). Possibly it may function by binding some 
ligand other than the substrate. 

5. EVOLUTIONARY IMPLICATIONS 

The significant structural similarity between 3C- 
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l ike and  chymot ryps in - l i ke  p ro teases  s t rong ly  
f avor s  thei r  d ivergent  r a the r  t han  convergent  
e v o l u t i o n a r y  or igin .  Moreove r ,  as the  p ro teases  o f  
the  two  famil ies  p r o b a b l y  share  the  two-ba r r e l  
o r g a n i z a t i o n  a n d  the  pos i t ions  o f  the  (puta t ive)  
ca ta ly t i c  res idues,  it  is logical  to  suggest  tha t :  (i) 
the i r  c o m m o n  ances to r  has  a l r e ady  been  a p ro -  
tease,  and  (ii) the  d ivergence  o f  the  famil ies  suc- 
ceeded  the ini t ia l  dup l i ca t i on  lead ing  to  the  
t w o - d o m a i n  s t ruc ture  (cf. [22]). I t  is no t  clear  at  
p resen t  wha t  was the  na tu re  o f  the  hypo the t i ca l  
ances to r  p ro tease .  Howeve r ,  we have  a rgued  in 
p rev ious  pape r s  tha t  3C Pr° have some fea tures  
which  cou ld  be expected  in a p r i m o r d i a l  p ro t ease  
[11,35]. In teres t ingly ,  it  has  been very  recent ly  p ro -  
posed ,  s ta r t ing  f r o m  qui te  d i f fe ren t  obse rva t ions ,  
t ha t  Cys might  be the  predecessor  o f  Ser in the  
ca ta ly t i c  sites o f  enzymes o f  several  classes [36]. 
Tha t  enzymes  poss ib ly  s imi lar  to  the  ances t ra l  
fo rms  are  f o u n d  in posi t ive  s t r and  R N A  viruses,  is 
in t r igu ing  in view o f  the  ideas  re la t ing thei r  
genomes  to  p r i m o r d i a l  genet ic  systems [35,37]. 

Acknowledgements: The authors are grateful to Dr A.V. 
Finkelstein for help with secondary structure prediction, to Drs 
L.I. Brodsky, K.M. Chumakov and A.L. Drachev for help with 
computer programming, and to Professor V.I. Agol for useful 
discussions. Thanks are also due to Dr C. Fritsch for sending 
a preprint of his work. 

R E F E R E N C E S  

[1] Antonov, V.K. (1983) The Chemistry of Proteolysis, 
Nauka, Moscow, in Russian. 

[2] Neurath, H. (1984) Science 224, 350-357. 
[3] Pelham, H.R.B. (1978) Eur. J. Biochem. 85, 457-462. 
[4] Gorbalenya, A.E. and Svitkin, Yu.V. (1983) Biokhimia 

48, 385-395. 
[5] Argos, P., Kamer, G., Nicklin, M.J.H. and Wimmer, E. 

(1984) Nucleic Acids Res. 12, 7251-7267. 
[6] Nicklin, M.J.H., Toyoda, H., Murray, M.G. and 

Wimmer, E. (1986) Bio/Technology 4, 33-42. 
[7] Palmenderg, A.C. (1987) J. Cell. Biochem. 33, 191-198. 
[8] Wellink, J.E. and Van Kammen, A. (1988) Arch. Virol. 

98, 1-26. 
[9] Ivanoff, L.A., Towatari, T., Ray, J., Korant, B.D. and 

Petteway, S.R. (1986) Proc. Natl. Acad. Sci. USA 83, 
5392-5396. 

[10] Blinov, V.M., Gorbalenya, A.E. and Donchenko, A.P. 
(1984) Dokl. Akad. Nauk SSSR 279, 502-505. 

[11] Gorbalenya, A.E., Blinov, V.M. and Donchenko, A.P. 
(1986) FEBS Lett. 194, 253-257. 

[12] Greif, C., Hemmer, O. and Fritsch, C. (1988) J. Gen. 
Virol. 69, 1517-1529. 

[13] Gorbalenya, A.E., Koonin, E.V., Donchenko, A.P. and 
Blinov, V.M. (1988) FEBS Lett. 236, 287-290. 

[14] Pozdnyakov, V.I. and Pankov, Yu.A. (1981) Int. J. 
Peptide Protein Res. 17, 284-291. 

[15] Gorbalenya, A.E., Blinov, V.M., Donchenko, A.P. and 
Koonin, E.V. (1988) J. Mol. Evol. 28, in press. 

[16] Doolittle, R.F. (1986) Of URFs and ORFs: A Primer on 
How to Analyze Derived Amino Acid Sequences, 
University Science Books, Mill Valley, CA. 

[171 Greer, J.J. (t981) J. Mol. Biol. 153, 1027-1042. 
[18] Finkelstein, A.V. (1975) Dokl. Akad. Nauk SSSR 223, 

744-747. 
[19] Ptitsyn, O.B. and Finkelstein, A.V. (1983) Biopolymers 

22, 15-25. 
[20] Richardson, J.J. (1981)Adv. Protein Chem. 34, 167-339. 
[21] Craik, C.S., Rutter, W.J. and Fletterick, R. (1983) 

Science 220, 1125-1129. 
[22] McLachlan, A.D. (1979) J. Mol. Biol. 128, 49-79. 
[23] Schulz, G.E. and Schirmer, R.H. (1979) Principles of 

Protein Structure, Springer, New York. 
[24] Dewalt, P.G. and Semler, B. (1987) J. Virol. 61, 

2162-2170. 
[25] Kean, K.M., Agut, H., Fichot, O., Wimmer, E. and 

Girard, M. (1988) Virology 163, 330-340. 
[26] Dewalt, P.G. and Semler, B. (1988) Abstracts of the 1988 

ICN-UCI International Conference on Virology, p.7. 
[27] Blow, D.M., Birktoft, J.J. and Hartley, B.S. (1969) 

Nature 221, 337-340. 
[28] Sprang, S., Standing, T., Fletterick, R.J., Stroud, R.M., 

Finer-Moore, J., Xuong, N.-H., Hamlin, R., Rutter, 
W.J. and Craik, C.S. (1987) Science 237, 905-909. 

[29] Craik, C.S., Largman, C., Fletcher, T., Roszniak, S., 
Barr, P., Fletterick, R. and Rutter, W.J. (1985) Science 
228, 291-297. 

[30] Graf, L., Craik, C.S., Patthy, A., Roszniak, S., 
Fletterick, R.J. and Rutter, W.J. (1987) Biochemistry 26, 
2616-2623. 

[31] Delbaere, L.T.J. and Brayer, G.D. (1985) J. Mol. Biol. 
183, 89-103. 

[32] Parks, G.D. and Palmenberg, A.C. (1987) J. Virol. 61, 
3680-3687. 

[33] Dougherty, W.G., Carrington, J.C., Cary, S.M. and 
Purks, T. (1988) EMBO J. 7, 1281-1287. 

[34] Palmenberg, A.C. and Rueckert, R.R. (1982) J. Virol. 41, 
244-249. 

[35] Gorbalenya, A.E., Donchenko, A.P. and Blinov, V.M. 
(1986) Mol. Genet. 1, 36-41. 

[36] Brenner, S. (1988) Nature 334, 528-530. 
[37] Eigen, M. and Schuster, P. (1979) The Hypercycle: 

Principle of Natural Self-Organization, Springer, Berlin. 
[38] Stanway, G., Hughes, P., Mountford, R.C., Minor, P.D. 

and Almond, J.W. (1984) Nucleic Acids Res. 11, 
5629-5643. 

[39] Racaniello, V.C. and Baltimore, D. (1981) Proc. Natl. 
Acad. Sci. USA 78, 4887-4891. 

[40] Werner, G., Rosenwirth, B., Bauer, E., Seifert, J.-M., 
Werner, J.-F. and Besemer, J. (1986) J. Virol. 57, 
1084-1093. 

[41] Skern, T., Sommergruber, W., Blaas, D., Gruendler, P., 
Fraundorfer, F., Pieler, C., Fogy, I. and Kuechler, E. 
0985) Nucleic Acids Res. 12, 7859-7875. 

113 



Volume 243, number 2 FEBS LETTERS January 1989 

[42] Hughes, P.J., North, C., Jellis, C., Minor, P.D. and 
Stanway, G. (1988) J. Gen. Virol. 69, 49-58. 

[43] Duechler, M., Skern, T., Sommergruber, W., Neubauer, 
C., Gruendler, P., Fogy, I., Blaas, D. and Kuechler, E. 
(1987) Proc. Nail. Acad. Sci. USA 84, 2605-2609. 

[44] Lindberg, A.M., Stalhandske, P.O.K. and Pettersson, U. 
(1987) Virology 156, 50-63. 

[45] Earle, J.A.P., Skuce, R.A., Fleming, C.S., Hoey, E.M. 
and Martin, S.J. (1988) J. Gen. Virol. 69, 253-263. 

[47] Pevear, D.C., Calenoff, M., Rozhon, E. and Lipton, 
H.L. (1987) J. Virol. 61, 1507-1516. 

[47] Palmenberg, A.C., Kirby, E.M., Janda, M.R., Drake, 
N.I., Potratz, K.F. and Collett, M.C. (1984) Nucleic 
Acids Res. 12, 2969-2985. 

[48] Carrol, A.R., Rowlands, D.J. and Clarke, B.E. (1984) 
Nucleic Acids Res. 12, 2461-2472. 

[49] Najarian, R., Caput, D., Gee, W., Potter, S.J., Renard, 
A., Merryweather, J., Van Nest, G. and Dina, D. (1985) 
Proc. Natl. Acad. Sci. USA 82, 2627-2631. 

[50] Lomonosoff, G.P. and Shanks, M. (1983) EMBO J. 2, 
2253-2258. 

[51] Domier, L.L., Franklin, K.M., Shahabuddin, M., 
Hellmann, G.M., Overmeyer, J.H., Hiremath, S.T., 
Siaw, M.F.E., Lomonosoff, G.P., Shaw, J.G. and 
Rhoads, R.E. (1986) Nucleic Acids Res. 14, 5417-5430. 

[52] Allison, R., Johnston, R.E. and Dougherty, W.G. (1986) 
Virology 154, 9-20. 

[53] Wu, S., Rinehart, C.A. and Kaesberg, P. 0987) Virology 
161, 73-80. 

114 


