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In this paper, we consider an optimal control problem of microbial fermentation process
in which glycerol is converted to 1,3-propanediol by Klebsiella pneumoniae in fed-batch
culture. During the period of reaction, the variation of pH value is monitored to determine
glycerol replenishment quantity, guaranteeing that microorganism can always keep growing
fast under enough nutrition. Every time pH value is lower than seven, the quantity of
glycerol added is such that pH value returns seven again. Glycerol is poured into reactor at
discrete time instant and the quantity is controllable. The problem is to determine for each
discrete time instant the glycerol quantity to add and maximize the final concentration
of 1,3-propanediol. We present a controlled explicit nonlinear impulsive dynamical system
of fed-batch culture with state independent vector measures as controls and study the
existence, uniqueness, boundedness, continuous dependence and Gâteaux differentiability
of its solution with respect to controls. We then propose a multiple objective programming
model and demonstrate the regularity of cost functionals and weak compactness of
admissible control set. Finally we discuss the existence of optimal control and implement a
hybrid particle swarm optimization algorithm to solve the model optimally. Computational
results are presented on a numerical example.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there has been growing interest in microbial production of 1,3-propanediol (1,3-PD) throughout the
world because of its lower cost, higher production and no pollution [1]. Among various microbial production of 1,3-PD, the
dissimilation of glycerol to 1,3-PD by Klebsiella pneumoniae has been widely investigated since 1980s [2]. The experimental
investigations showed that the fermentation of glycerol by K. pneumoniae is a complex bio-process in that the microbial
growth is subjected to multiple inhibitions of substrate and products [3]. At present, the researches about the quantitative
description of the cell growth kinetics of multiple-inhibitions and the metabolic overflow kinetics of substrate consumption
and product formation have particularly been attractive in the fermentation of glycerol by K. pneumoniae [4].

Only over the past several years has great progress been made in studying the nonlinear dynamical system of continuous
culture. Model analysis and simulations for the dynamical system of continuous culture were made [5]. In [6], a parameter
identification model of continuous culture was established to obtain the optimal parameters by constructing an optimization
algorithm. The stability analysis and optimal control problem for the dynamical system of continuous culture were studied
together with optimality conditions [7,8]. In contrast to continuous culture, the dynamics of microbial bio-conversion in
fed-batch cultures just started. Gang Wang proposed the explicit nonlinear impulsive dynamical system of fed-batch culture
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driven by measure and developed a hybrid particle swarm optimization algorithm to carry on parameter identification
for the explicit impulsive system [9]. However, the optimal control problem for the explicit impulsive dynamical system
has not yet been investigated. Our main contribution is to present the controlled explicit impulsive dynamical system of
fed-batch culture with state independent vector measures as controls and discuss the existence, uniqueness, boundedness
and regularities of solutions with respect to controllable variables. And then we study properties of cost functionals and
admissible control set and existence of optimal controls. Finally, we offer a numerical example and secure an optimal
control by using the hybrid particle swarm optimization [9].

The rest of the paper is organized as follows. In Section 2, some basic notations and terminologies are introduced.
In Section 3, we present a controlled explicit nonlinear impulsive system. Section 4 is devoted to the existence, uniqueness,
boundedness and regularities of solutions for the controlled explicit nonlinear impulsive system with respect to controls.
In Section 5, we develop the optimal control problem for controlled impulsive system of fed-batch culture and demonstrate
the existence of optimal control. In Section 6, a numerical example is given to justify the optimal control problem we
addressed. Section 7 concludes.

2. Some notations and terminologies

Let Λn � {1,2, . . . ,n}, I1 � [0, t1) be the time interval of batch culture, I2 � [t1, T ] be the time interval of fed-batch
culture, I � I1 ∪ I2, D � {t1, t2, . . . , tn} ⊂ [t1, T ), where ti are the impulsive moments of adding glycerol and alkali and
0 = t0 < t1 < t2 < · · · < tn < tn+1 = T . T ∈ (0,+∞) denotes the stopping time of fed-batch process. Let PWCr(I, R5) denote
the space of piecewise right continuous bounded functions on I with values in R5 having left-hand limits. Furnished with
the sup norm topology

‖z‖pwc = sup
{∥∥z(t)

∥∥: t ∈ I
}
, ∀z ∈ PWCr

(
I, R5),

it is a Banach space.
Let Mc(I, Rn) denote the space of bounded countably additive vector measures on the sigma algebra B of subsets of

the set I with values in Rn . We assume that μ({0}) = 0 for each μ ∈ Mc(I, Rn). We equip this vector space with the total
variation norm

‖μ‖var � |μ|(I) � sup
π

{∑
A∈π

∥∥μ(A)
∥∥}

,

where the supremum is taken over all partition π of the internal I into a finite number of disjoint members of B given by

π �
{

0 = t0 � t1 � t2 � · · · � tn � tn+1 = T , Ai = (ti, ti+1], n ∈ N
}
.

With respect to this norm topology, Mc(I, Rn) is a Banach space. For any A ∈ B, define the variation of μ on A by

V (μ)(A) � V (μ, A) � |μ|(A).

Clearly this induces a countably additive bounded positive scalar valued measure V (μ) on B now that μ is countably
additive and bounded. Here, we represent the space of real valued countably additive bounded signed measures by Mc(I).

3. Controlled explicit nonlinear impulsive system

In this section, we will develop the controlled explicit nonlinear impulsive system of fed-batch culture based on explicit
nonlinear impulsive system of microbial bioconversion in fed-batch culture given in the literature [9]. Since alkali is added
into the reactor to decrease the influence of the inhibition of substrates and multi-products while adding glycerol and to
neutralize the product acetate, which has little effect on the productivity of 1,3-PD, we ignore its effect in the dynamical
system. Consequently, we make the following assumptions.

(H1) The glycerol concentration is uniform in reactor while adding glycerol to the reactor, time delay and nonuniform
space distribution are ignored.

(H2) The feed rate of glycerol can be infinitely large. Consequently, it is possible to add the substrate instantaneously to
the reactor at various discrete time instants.

The fed-batch culture of glycerol bioconversion to 1,3-PD includes batch culture in the early stage and later fed-batch
culture. Let W � {x ∈ R5 | x1 ∈ [0.001, x∗

1], x2 ∈ [100, x∗
2], xi ∈ [0, x∗

i ], i = 3,4,5}. Mass balances of biomass, substrate and
products in fed-batch cultures are written as follows (see [9]):

dx(t) = f
(
x(t)

)
dt + g

(
x(t−)

)
να(dt), t ∈ I, x(0) = x0, (3.1)

where να ∈ Mc(I) and να(dt) = ∑
ti�t αiδti (dt), where δti denotes the Dirac measure concentrated at ti and αi is dilution

rate at time ti ∈ D . x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T ∈ W is the state variable and x1(t), x2(t), x3(t), x4(t), x5(t) are the
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concentrations of biomass, glycerol, 1,3-PD, acetic acid and ethanol at time t in reactor, respectively. x0 ∈ W is the initial
state.

f
(
x(t)

) = (
σ x1(t),−q2x1(t),q3x1(t),q4x1(t),q5x1(t)

)T
, (3.2)

g
(
x(t−)

) = (−x1(t−),−x2(t−) + c,−x3(t−),−x4(t−),−x5(t−)
)T

. (3.3)

Here the specific growth rate of cells σ , specific consumption rate of substrate q2 and specific formation rate of product qi
are expressed by Eqs. (3.4)–(3.7), respectively:

σ = σm

(
x2(t)

x2(t) + ks

)n1 5∏
i=2

(
1 − xi(t)

x∗
i

)ni

, (3.4)

q2 = m2 + σ

Y2
+ Δ2

x2(t)

x2(t) + k2
, (3.5)

qi = mi + σ Yi + Δi
x2(t)

x2(t) + ki
, i = 3,4, (3.6)

q5 = q2

(
b1

c1 + σ x2(t)
+ b2

c2 + σ x2(t)

)
(3.7)

where c = ki Fi Cs0/(1 + ki)Fi , where Cs0 is the concentration of glycerol added and ki Fi and Fi are the volumes of
added glycerol and alkali at time ti ∈ D , i ∈ Λn , n � (n1,n2,n3,n4,n5)

T ∈ N0 = (1,2,3,4,5)5. Under anaerobic conditions
at 37 ◦C and pH 7.0, the maximum specific growth rate of cells σm is 0.67 h−1, and Monod saturation constant ks is
0.28 mmol/L. The critical concentrations of biomass, glycerol, 1,3-PD, acetate and ethanol for cell growth are x∗

1 = 10 g/L,
x∗

2 = 2039 mmol/L, x∗
3 = 939.5 mmol/L, x∗

4 = 1026 mmol/L and x∗
5 = 360.9 mmol/L, respectively. b1, b2, c1, c2, mi , Yi , Δi ,

ki , i = 2,3,4, are parameters given in the previous report [4].
Next, we formulate the controlled explicit nonlinear impulsive system of fed-batch culture. Since the quantity of added

glycerol and alkali can be changeable relatively in a prescribed range, the volume of adding glycerol is a controllable variable
each time. Define the range set of glycerol volume V �

∏n
i=1[0.2 · v0

i ,1.8 · v0
i ], where v0 � {v0

1, v0
2, . . . , v0

n} is a fed-batch
flow strategy of glycerol provided by the experiment. Hence we may define the admissible control set

Uad �
{

u ∈ Mc
(

I, R5) ∣∣∣ u :B → R5, u(dt) =
n∑

i=1

uiδti (dt), ui = (0, ν,0,0,0)T , ν ∈ Mc(I)

}
, (3.8)

where ν({ti}) = [(1 + k(ti))ω({ti})]/[∑t�ti
(1 + k(ti))ω({ti}) + V 0]. Here k(t) is a continuous bounded function on I which

satisfies k(0) = 0 and k(t) = ki when t ∈ D , where ki is the ratio of the volume glycerol to that alkali added at ti , nonnegative
and bounded. And ω ∈ Mc(I) and ω(dt) = ∑

t�ti
V iδti (dt), where V i ∈ V denotes the volume of adding glycerol, i ∈ Λn .

Thus, the controlled explicit nonlinear impulsive system of fed-batch can be formulated below:

dx(t) = f
(
x(t)

)
dt + h

(
x(t−)

)
ν(dt) + c(t)u(dt), t ∈ I, x(0) = x0, (3.9)

where

h
(
x(t−)

) = (−x1(t−),−x2(t−),−x3(t−),−x4(t−),−x5(t−)
)T

, (3.10)

c(t) = 1/
[
1 + k(t)

]
. (3.11)

Here the function f (·) is identical with function f (·) of (3.2), ν ∈ Mc(I) and u ∈ Uad.

4. Existence, uniqueness and regularity

For the study of optimal control problem, it is necessary to guarantee the existence, uniqueness and regularity of solu-
tions to the controlled explicit nonlinear impulsive system with respect to the control laws.

4.1. Existence and uniqueness

First let us give the definition of an integral solution to the controlled impulsive system (3.9).

Definition 4.1. Suppose x0 ∈ W and u ∈ Uad, x(t) ∈ PWCr(I, R5) is said to be an integral solution of the controlled sys-
tem (3.9) provided that it satisfies the following integral equation:

x(t) = x0 +
t∫

0

f
(
x(s)

)
ds +

t∫
0

h
(
x(s−)

)
ν(ds) +

t∫
0

c(s)u(ds), t ∈ I. (4.1)
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Lemma 4.1. Suppose τ ∈ M+(I) with τ ({0}) = 0 and a(t), ψ(t), t � 0 are nonnegative bounded measurable functions on I , K (·) is
positive integrable function on I and satisfies the following inequality (see [10]):

ψ(t) � a(t) +
t∫

0

K (s)ψ(s)τ (ds), t ∈ I.

Then

ψ(t) � a(t) +
t∫

0

exp

{ t∫
0

K (θ)μ(dθ)

}
a(s)K (s)τ (ds), t ∈ I.

Next we discuss some properties of the solutions of the impulsive system (3.9) and the functions f (·), g(·) and c(·).

Theorem 4.1. There exists a finite positive number r such that x(t) ∈ Br for any t ∈ I , where Br � {x ∈ W | ‖x‖pwc � r}.

Proof. From the formula (4.1), we have

∥∥x(t)
∥∥ � ‖x0‖ + Kr

t∫
0

(
1 + ∥∥x(s)

∥∥)
ds + L

t∫
0

(
1 + ∥∥x(s)

∥∥)
V (ν,ds) +

t∫
0

V (u,ds).

Define β(A) � Krλ(A) + LV (ν, A), A ∈ B. Hence it follows from the preceding inequality that

∥∥x(t)
∥∥ �

(‖x0‖ + Krλ(I) + LV (ν, I) + V (u, I)
) +

t∫
0

∥∥x(t)
∥∥β(ds).

By Lemma 4.1, we can conclude that∥∥x(t)
∥∥ �

(‖x0‖ + Krλ(I) + LV (ν, I) + V (u, I)
)

exp
{
β(I)

}
.

Set r = (‖x0‖ + Krλ(I) + LV (ν, I) + V (u, I))exp{β(I)} and we have ‖x‖pwc � r, which completes the proof. �
Theorem 4.2. The function f (·) defined in (3.9) satisfies that

(1) f (·) is Borel measurable in t on I .
(2) f (·) is locally Lipschitz continuous having at most linear growth on PWCr(I, R5), that is, there exists a constant Kr > 0, for each

r > 0, such that∥∥ f (x) − f (y)
∥∥ � Kr‖x − y‖pwc, ∀x, y ∈ Br,

and ∥∥ f (x)
∥∥ � K (t)

(
1 + ‖x‖pwc

)
, ∀x ∈ W

where Br is defined in Theorem 4.1, K ∈ L+
1 (I, λ), L+

1 (I, λ) denotes the set of bounded nonnegative Lebesgue integrable functions
on I , λ denotes the Lebesgue measure.

(3) f (·) is Gâteaux differentiable on R5 with the derivatives bounded and uniformly measurable.

Proof. The proofs of (1) and (2) are given in Theorem 1 [10]. We now turn to the proof of (3). From Eq. (3.2), we can have
that ∇ f1(x),∇ f2(x), . . . ,∇ f5(x) all exist and are continuous with respect to the state x. Thus, the Jacobian matrix of the
function f (·) can be written as J f (x) = (∇ f1(x),∇ f2(x), . . . ,∇ f5(x))T . Therefore, the function f (·) is Gâteaux differentiable
on R5. Again because x ∈ W and the continuity of the Jacobian of the function f (·), we can conclude that the derivative of
f (·) is bounded and uniformly measurable, which completes our proof. �
Theorem 4.3. The function h(·) given by Eq. (3.10) satisfies that

(1) h(·) is locally Lipschitz having at most linear growth on PWCr(I, R5) with respect to the measure V (ν), that is, there exists a
positive constant L such that for any x, y ∈ PWCr(I, R5),∥∥h(x) − h(y)

∥∥ � L‖x − y‖pwc,
∥∥h(x)

∥∥ � L
(
1 + ‖x‖pwc

)
. (4.2)

(2) h(·) is Gâteaux differentiable on R5 with the derivatives bounded and uniformly measurable.
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Proof. (1) From Eq. (3.10), we can easily obtain that Eq. (4.2) holds.
(2) Since the Jacobian matrix Jh of the function h(·) is an identity matrix, we conclude that the function h(·) is Gâteaux

differentiable on R5. It is clear that its derivatives are bounded and uniformly measurable. �
Theorem 4.4. The function c(t) defined by Eq. (3.11) is continuous on I and locally integral with respect to the measure V (u) induced
by vector measure u.

Proof. It is easy to verify that c(t) is continuous on I from the continuity of the function k(t). On the other hand, the local
integrability of the function c(t) is easy to conclude with respect to the measure V (u) because c(t) is continuous and k(t)
is bounded on I . �
Theorem 4.5. For each x0 ∈ W and u ∈ Uad , the controlled system (3.9) has unique integral solution in PWCr(I, R5).

Proof. See [10, Theorem 1]. �
4.2. Continuous dependence and Gâteaux differentiability of solutions on controls

Here we discuss the regularity properties of the piecewise continuous solutions of (3.9) with respect to the controlled
variables. Later we denote the solutions of (3.9) with respect to the controls by x(· ; u).

Theorem 4.6. For a given initial value x0 ∈ W , there exists M > 0 such that the piecewise solution of the controlled system (3.9)
satisfies that∥∥x(t; u1) − x(t; u2)

∥∥ � M‖u1 − u2‖var, ∀u1, u2 ∈ Uad, t ∈ I.

Proof. Define M = sup{‖c(t)‖: t ∈ I}. Then let u1, u2 ∈ Uad and xu1 , xu2 ∈ PWCr(I, R5) the corresponding integral solutions.
In terms of Eq. (4.1), Theorems 4.1–4.3, we can have that

∥∥x(t; u1) − x(t; u2)
∥∥ � M‖u1 − u2‖var +

t∫
0

∥∥x(s; u1) − x(s; u2)
∥∥α(ds), t ∈ I,

where α(A) � Krλ(A) + LV (ν, A), ∀A ∈ B. Now using Lemma 4.1, it follows from the preceding inequality that

∥∥x(t; u1) − x(t; u2)
∥∥ � M‖u1 − u2‖var exp

{ t∫
0

α(ds)

}
, ∀t ∈ I.

Set K = M exp{α(I)}, and we can obtain∥∥x(t; u1) − x(t; u2)
∥∥ � K‖u1 − u2‖var. �

Theorem 4.7. For a given initial value x0 ∈ W , the piecewise solution of the controlled system (3.9) is continuously Gâteaux differen-
tiable with respect to the control u ∈ Uad .

Proof. See [11, Corollary 3.2]. �
5. Optimal control problem

The optimal control problem using the productivity of 1,3-PD and the total volume of consumed glycerol as cost func-
tionals, based on the controlled explicit nonlinear impulsive system (3.9), can be formulated as follows.

(P1) max J1(u) � φ
(
x(T ; u)

)
� x(T ; u)T Gx(T ; u)/T 2,

min J2(u) � ‖ω‖var,

s.t. dx(t) = f
(
x(t)

)
dt + h

(
x(t−)

)
v(dt) + c(t)u(dt),

x(0) = x0,

x(t) ∈ W ,

u ∈ Uad,
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where ω ∈ Mc(I) and ω(dt) = ∑
t�ti

V iδti (dt), where V i ∈ V denotes the volume of adding glycerol as explained previously,
i ∈ Λn and w involves the flow policy of glycerol at the impulsive moments, that is, its value at ti equals the volume V i of
added glycerol at time ti . Here we use linear weighting method to transform the multiple objective optimal control problem
into simple objective one. Hence (P1) is equivalent to the following optimization problem:

(P2) min J (η) � a/ J1(u) + b J2(u)

= aT 2/x(T ; u)T Gx(T ; u) + b‖ω‖var,

s.t. dx(t) = f
(
x(t)

)
dt + h

(
x(t−)

)
v(dt) + c(t)u(dt),

x(0) = x0,

x(t) ∈ W ,

u ∈ U .

Here G is a 5 × 5 diagonal matrix, a,b ∈ [0,1] and η = (a,b, u)T ∈ U � [0,1] × [0,1] × Uad ⊂ R7. The properties of cost
functionals and admissible control set play the important role in the study of optimal control problem. First we give the
weak compactness of the admissible control set.

Definition 5.1. A subset U of Mc(I, R5) is said to be compact if it satisfies

(1) U is bounded,
(2) there exists a nonnegative countably additive finite scalar valued measure κ on B such that, for any A ∈ B,

limκ(A)→0 V (u)(A) = 0 uniformly with respect to u ∈ U ,
(3) for each A ∈ B, the set {u(A), u ∈ U } is a relatively compact subset of R5.

Theorem 5.1. The admissible control set Uad defined in (3.8), a subset of Mc(I, R5), is compact.

Proof. First, we show that Uad is bounded. By the expression (3.8), for u ∈ Uad and J ∈ B, we have

‖u‖var = sup
π

{∑
A∈π

∥∥u(A)
∥∥}

= sup
π

{∑
A∈π

∣∣ν(A)
∣∣} = ‖ν‖var.

However, for any A ∈ B, V (ν)(A) < (1+ M1)M2/V 0, where M1 � maxt∈I ‖k(t)‖ and M2 � maxi∈Λn V i . Again because V i ∈ V
and V is a bounded closed set, we obtain that

‖u‖var � (1 + M1)M2/V 0.

Next, we will prove (2). Let κ � V (ν). By definition of the measure ν , we can easily see that κ is a nonnegative countably
additive finite scalar valued measure on B. For any A ∈ B, it follows from Jordan decomposition of the measure ν that
V (ν) = ν+ + ν− , where ν+ and ν− are two mutually singular positive measures. Hence, since ν = ν+ − ν− , for A ∈ B,
ν(A) → 0 when κ(A) → 0. Thus, by (3.8), one arrives at the following result V (u)(A) → 0 for any A ∈ B.

Finally, it is easy to verify that the set {u(A), u ∈ Uad} is relatively compact in R5. This completes the proof. �
Theorem 5.2. The functionals φ(·) and J2(·) defined in (P1) satisfy that

(1) φ(·) is continuous and bounded on bounded sets of R5 and there exist constants C1 and C2 such that for u ∈ Uad

C1‖x‖pwc � φ(x) � C2‖x‖pwc, ∀x ∈ Br ⊂ R5,

where Br is the same as that in Theorem 4.1.
(2) J2(·) is continuous on Mc(I, R5).

Proof. (1) Let C1 and C2 denote the minimum and maximum eigenvalues of the diagonal matrix G , respectively, and then,
for any x ∈ Br , we see that C1‖x‖pwc � φ(x) � C2‖x‖pwc holds.

(2) Let u1, u2 ∈ Uad. Since Uad is compact, there exists a positive constant δ such that ‖u1(A) − u2(A)‖pwc � δ for any
A ∈ B. Hence we have

‖u1 − u2‖var = sup
π

{∑
A∈π

∥∥(u1 − u2)(A)
∥∥}

= sup
π

{∑
A∈π

∥∥u1(A) − u2(A)
∥∥}

� N
∥∥u1(I) − u2(I)

∥∥ � Nδ,

where N is the number of finite members of the partition supremum is reached over, which finishes the proof. �
Next, we will prove the existence of optimal control for (P1).
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Table 1
Optimal flow strategy u∗ of glycerol.

Time (h) 5.33–5.83 5.83–6.13 6.13–7.15 7.15–7.83 7.83–8.83

Volume (ml) 1.4227 1.4227 1.9917 2.1561 2.1561

Table 2
Optimal flow strategy u∗ of glycerol (continued).

Time (h) 8.33–12.16 12.16–18.53 18.53–18.1 18.1–19.83

Volume (ml) 1.9917 1.7072 1.4134 0.9889

Theorem 5.3. Consider the system given by (3.10) with the cost functionals (5.1) and admissible control set Uad defined in (3.8). Then
there is an η∗ = (λ∗

1, λ
∗
2, u∗) ∈ U minimizing the functional J (·) given by (5.1), where u∗ is the desired optimal control.

Proof. Since Uad is compact, in view of Theorems 5.1 and 5.2, we have

inf
{

J (η), η ∈ U
} = m > −∞.

Let {ηn}∞n=1 be a minimizing sequence such that

lim
n→∞ J (ηn) = m.

By Theorem 5.2, there exist a subsequence of the sequence {un}∞n=1, relabeled as {unk }∞k=1, and an element u∗ ∈ Uad so that
unk

ω−→ u∗ as k → ∞. Let xn, x∗ ∈ PWCr(I, R5) denote the corresponding piecewise continuous solutions of the impulsive
system (3.9), respectively. Similarly, there are the sequences {ak}∞k=1, {bk}∞k=1 and a∗ , b∗ in the interval [0,1] satisfying
that ak → a∗ and bk → b∗ as k → ∞. In fact, we mean that there exists a subsequence {ηnk }∞k=1 of {η}∞n=1 such that
ηnk � (ak,bk, unk )

T ω−→ η∗ � (a∗,b∗, u∗)T ∈ U as k → ∞.
Now define

en(t) = ∥∥xn(t) − x∗(t)
∥∥, t ∈ I, n ∈ N.

Using Theorem 4.6, one can easily verify that

en(t) � M‖un − u∗‖var, ∀t ∈ I.

Thus, we have limn→∞ en(t) = 0, ∀t ∈ I and conclude that

lim inf
k→∞

J (ηnk ) � J
(
η∗),

which shows that the cost function J (·) is weakly lower semicontinuous on U . Since U is compact, this implies that J (·)
attains its minimum on U , that is,

m � J
(
η∗) � lim inf

k→∞
J (ηnk ) � lim

n→∞ J (ηn) = m,

which finishes our proof. �
6. Numerical example

In this example, the initial value x0 = (0.115 g/L,495 mmol/L,0,0,0)T and the power n = (1,1,2,1,1)T . Fed-batch be-
gan at t1 = 5.33 h. The impulsive moments have been determined by the experiment. By using the hybrid particle swarm
optimization algorithm [9], we obtain an optimal strategy of adding glycerol in the dynamical process of microbial bio-
conversion to 1,3-PD in fed-batch culture. Tables 1–3 give optimal values of flow volumes of glycerol every 100 seconds
during the flow period. Fig. 1 shows the comparison of 1,3-PD concentrations between experimental and computational
results, where the points and real line denote the experimental values and the computational curve, respectively. The max-
imum of 1,3-PD obtained by (P2) is 895.725 mmol/L, a∗ = b∗ = 0.720542 and J2(u∗) = 815.40 ml, but the maximum
concentration of 1,3-PD is 875.7 mmol/L in the experiment.

7. Conclusion

In this paper we have presented a controlled explicit nonlinear impulsive dynamical system of fed-batch culture. We
then demonstrated the existence, uniqueness and regularity of solutions to the controlled system in association to the
controllable variables. At last optimal control problem of the controlled nonlinear impulsive system is proposed and the
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Table 3
Optimal flow strategy u∗ of glycerol (continued).

Time (h) 19.83–23.83 23.83–24.16 24.16–25.1 25.1–27.13

Volume (ml) 0.6893 0.3447 0.6892 0.3447

Fig. 1. Comparison of 1,3-PD concentrations between optimal and experimental results, respectively.

questions of the existence of optimal controls are discussed. And we supply a numerical example to justify the existence of
optimal control problem for controlled explicit nonlinear impulsive dynamical system of fed-batch culture.

Next, it is intended to delve into the necessary conditions of optimality for optimal control problem of the controlled
explicit nonlinear impulsive dynamical system of fed-batch culture and the questions of optimization algorithm for the
optimal control problem.
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