
p ( )

URL: http://www.elsevier.nl/locate/entcs/volume82.html 9 pages

Probability, Truth and Flow Graph

Zdzis law Pawlak
1

University of Information T echnology and Management

Newelska 6, 01-447 Warsaw, Poland

Abstract

In 1913 Jan  Lukasiewicz proposed to use logic as mathematical foundations of proba-

bilit y.He claims that probability is \purely logical concept" and that his approach

frees probability from its obscure philosophical connotation. He recommends to

replace the concept of probability b y the concept of a truth value, which can be

regarded as a degree of truth, i.e., a number betw een 0 and 1, of propositional func-

tions (called in his work inde�nite propositions). F urther he shows that all laws of

probability can be obtained from a properly built logical calculus.

In this paper we show that the idea of  Lukasiewicz can be also expressed di�er-

ently. Instead of using truth values in place of probability, stipulated by  Lukasiewicz,

w epropose, in this paper, using of deterministic o w analysis in o w networks

(graphs). In the proposed setting, ow is governed by some probabilistic rules (e.g.,

Bayes' rule), or by the corresponding logical rules, proposed by  Lukasiewicz, though,

the formulas ha veentirely deterministic meaning, and need neither probabilistic

nor logical in terpretation. They simply describe ow distribution in o wgraphs.

How ever, ow graphs introduced here are di�erent to those proposed by F ordand

Fulkerson, for optimal ow analysis, because they model rather ow distribution in

a plumbing netw ork, then the optimal ow.

The ow graphs considered in this paper can be also used as a description of a

decision algorithms,where branc hes of the graph are in terpreted as decision rules.

This feature causes that o wnet works can be also used as a new tool for data

analysis, and knowledge representation.

1 Introduction

In [3] Jan  Lukasiewicz proposed to use logic as mathematical foundations of

probability. He claims that probability is \purely logical concept" and that

his approach frees probability from its obscure philosophical connotation. He

recommends to replace the concept of probability b y truth values of inde�nite

propositions, which are in fact propositional functions.
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Let us explain this idea more closely. Let U be a non empty �nite set, and

let �(x) be a propositional function. The meaning of �(x) in U , denoted b y

j�(x)j, is the set of all elements of U , that satis�es �(x) in U: The truth value

of �(x) is de�ned as cardj�(x)j=cardU: For example, if U = f1; 2; 3; 4; 5; 6g
and �(x) is the propositional function x > 4, than the truth value of �(x) =

2=6 = 1=3: If the truth value of �(x) is 1, then the propositional function is

true, and if it is 0, then the function is false. Thus the truth value of any

propositional function is a number between 0 and 1. F urther, it is shown that

the truth values can be treated as probability and that all laws of probability

can be obtained b ymeans of logical calculus.

In this paper we show that the idea of  Lukasiewicz can be also expressed

di�erently. Instead of using truth values in place of probability, stipulated by

 Lukasiewicz, we propose, in this paper, using of deterministic ow analysis

in ow networks (graphs). In the proposed setting, ow is governed b y some

probabilistic rules (e.g., Bay es' rule), or b y the corresponding logical calcu-

lus proposed by  Lukasiewicz, though, the formulas have entirely deterministic

meaning, and need neither probabilistic nor logical interpretation. They sim-

ply describe ow distribution in ow graphs. However, ow graphs introduced

here are di�erent to those proposed b y F ordand Fulkerson for optimal ow

analysis, because they model rather, e.g., ow distribution in a plumbing net-

work, than the optimal ow.

The ow graphs considered in this paper are basically meant not to phys-

ical media (e.g., water) ow analysis, but to information ow examination

in decision algorithms. T othis end branches of a ow graph are interpreted

as decision rules. With ev erydecision rule (i.e., branch) three coeÆcients are

associated, the strength, certainty and coverage factors. In classical decision al-

gorithms language they hav e probabilistic interpretation. Using  L ukasiewicz's

approach we can understand them as truth values. However, in the proposed

setting they can be interpreted simply as ow distribution ratios between

branches of the ow graph, without referring to their probabilistic or logical

nature.

This interpretation, in particular, leads to a new look on Bay es' theorem,

which in this setting, has en tirelydeterministic explanation.

The presented idea can be used, among others, as a new tool for data

analysis, and knowledge representation.

We start our considerations giving fundamental de�nitions of a ow graph

and related notions. Next, basic properties of ow graphs are de�ned and

inv estigated. F urther,the relationship between ow graphs and decision al-

gorithms is discussed. Finally, a simple tutorial example is used to illustrate

the consideration.
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2 Flow Graphs

A ow graph is a directed, acyclic, �nite graph G = (N;B; �), where N is a

set of nodes, B � N � N is a set of dir ected br anches, � : B !< 0; 1 > is a

ow function.

Input of x 2 N is the set I(x) = fy 2 N : (y; x) 2 Bg; output of x 2 N

is de�ned as O(x) = fy 2 N : (x; y) 2 Bg and �(x; y) is called a strength of

(x; y).

Input and output of a graph G, are de�ned b y I(G) = fx 2 N : I(x) =

;g; O(G) = fx 2 N : O(x) = ;g, respectively.

Inputs and outputs of G are external nodes of G; other nodes are internal

nodes of G.

With ev erynode x of a ow graph G we associate its inow and outow

de�ned as �+(x) =
P

y2I(x)

�(y; x); ��(x) =
P

i2O(x)

�(x; y); respectively. An

inow and an outow of G are de�ned b y �+(G) =
P

x2I(G)

��(x); ��(G) =

P
x2O(G)

�+(x); respectively.

We assume that for any internal node x; �+(x) = ��(x) = �(x), where

�(x) is a troughow of x.

Obviously �+(G) = ��(G) = �(G), where �(G) is a troughow of G.
Moreover, we assume that �(G) = 1:

The abov e formulas can be considered as ow conservation equations [2].

3 Properties of Flow Graphs

With every branch of a ow graph we associate the certainty and the coverage

factors.

The certainty and the coverage of (x; y) are de�ned as follo ws

cer(x; y) =
�(x; y)

�(x)
; cov(x; y) =

�(x; y)

�(y)
(1)

respectively, where �(x) is the normalized troughow of x, de�ned b y�(x) =P
y2O(x)

�(x; y) =
P

y2I(x)

�(y; x). Immediate consequences of de�nitions giv en

abov e are: X

y2O(x)

cer(x; y) = 1;(2)

X

x2I(y)

cov(x; y) = 1;(3)

cer(x; y) =
cov(x; y)�(y)

�(x)
;(4)

cov(x; y) =
cer(x; y)�(x)

�(y)
:(5)
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Obviously the abov eproperties hav e a probabilistic character, e.g., equations

(3) and (4) can be interpreted as Bayes' formulas. Howev er,these properties

can be interpreted in deterministic way and they describe ow distribution

among branches in the network.

Notice that Bay es' formulas given abov e hav e a new mathematical form.

Bayes' theorem is expressed b y means of strength of decision rules, which

simpli�es essentially computations.

4 Paths and Connections

A (directed) path from x to y for x; y 2 N denoted [x : : : y], is a sequence

of nodes x1; : : : ; xn such that x1 = x; xn = y and (xi; xi+1) 2 B for every

i; 1 � i � n� 1: The certainty of a path [x1 : : : xn] is de�ned b y

cer[x1 : : : xn] =

n�1Y

i=1

cer(xi; xi+1);(6)

the coverage of a path [x1 : : : xn] is

cov[x1 : : : xn] =

n�1Y

i=1

cov(xi; xi+1);(7)

and the strength of a path [x : : : y] is

�[x : : : y] = �(x)cer[x : : : y] = �(y)cov[x : : : y]:(8)

The set of all paths from x to y(x 6= y) denoted < x; y >, will be called a

connection from x to y. In other words, connection < x; y > is a sub-graph

determined b ynodes x and y:

The certainty of connections < x; y > is

cer < x; y >=
X

[x:::y]2<x;y>

cer[x : : : y];(9)

the coverage of connections is < x; y >

cov < x; y >=
X

[x:::y]2<x;y>

cov[x : : : y];(10)

and the strength of connections is < x; y >

� < x; y >=
X

[x:::y]2<x;y>

�[x : : : y]:(11)

Let x; y (x 6= y) be nodes of G. If we substitute the sub-graph < x; y > b y

a single branch (x; y) such that �(x; y) = � < x; y > then cer(x; y) = cer <

x; y >, cov(x; y) = cov < x; y > and �(G) = �(G0), where G
0 is the graph

obtained from G b y substituting inG (x; y) instead of the subgraph < x; y >.

4



P awlak

5 Decision Algorithms

With every branch (x; y) we associate a decision rule x! y, read if x then y;

x will be referred to as a condition, whereas y { de cisionof the rule. Such a

rule is characterized b ythree n umbers, �(x; y); cer(x; y) and cov(x; y):

Thus every path [x1 : : : xn] determines a sequence of decision rules x1 !

x2; x2 ! x3; : : : ; xn�1 ! xn:

F rom previous considerations it follows that this sequence of decision rules

can be in terpretedas a single decision rule x1x2 : : : xn�1 ! xn, in short x� !

xn, where x
� = x1x2 : : : xn�1, characterized b y

cer(x�; xn) = cer[x1 : : : xn];(12)

cov(x�; xn) = cov[x1 : : : xn];(13)

and

�(x�; xn) = �(x1)cer[x1 : : : xn] = �(xn)cov[x1 : : : xn]:(14)

Similarly, every connection < x; y > can be interpreted as a single decision

rule x! y such that:

cer(x; y) = cer < x; y >;(15)

cov(x; y) = cov < x; y >;(16)

and

�(x; y) = �(x)cer < x; y >= �(y)cov < x; y > :(17)

Let [x1 : : : xn] be a path such that x1 is an input and xn an output of the

ow graph G, respectively. Such a path and the corresponding connection

< x1; xn > will be called complete.

The set of all decision rules xi1
xi1

: : : xin�1
! xin

associated with all com-

plete paths xi1
: : : xin

will be called a decision algorithm induced b y the ow

graph.

The set of all decision rules xi1
! xin

associated with all complete con-

nections < xi1
; xin

> in the ow graph, will be referred to as the combined

decision algorithm determined by the ow graph.

6 Inference in Flow Graphs

Reasoning in deductive logic consists in using inference rules, which are im-

plications in the form, if � then 	, where � is called the premises (reason)

and 	 { the consequence of the rule. Inference rules allow us to obtain true

consequences from true premises. F undamental rules of inference are modus

ponensand modus tollens.

Modus ponenshas the follo wing form:
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if �! 	 is true

and � is true

then 	 is true

and modus tollens is as follows:

if �! 	 is true

and � 	 is true

then � � is true

Modus tollens can be regarded as the inv erse of modus ponens, i.e., gives

reason for a consequence.

In reasoning about data (data analysis) the situation is slightly di�erent.

Instead of true sentences we consider propositional functions, which are true to

a \degree", i.e., they assume truth valueswhic h lie between 0 and 1, in other

words, they are probable, not true. In the ow graph setting the concepts of

truth (or probability) is replaced by the ow in tensity in branches of the ow

graph, and logical inference is boiled down to ow distribution analysis. Thus

a ow graph can be regarded as schema of reasoning about data patterns { i.e.,

a network of decision rules, which lead from propositional functions expressing

properties of initial data to other propositional functions about data.

This idea can be formulated more exactly as follows:

If < x; y > is a connection in G, then

�(y) =
�(x)cer < x; y >

cov < x; y >
=

�(x; y)

cov < x; y >
;(18)

and

�(x) =
�(y)cov < x; y >

cer < x; y >
=

�(x; y)

cer < x; y >
:(19)

F ormulas (17) and (18) are direct consequences of (3) and (4), respectively

{ consequently they are Bayes' rules. Obviously, they play similar rule in

data analysis to that play ed b ymodus ponens and modus tollens in logical

reasoning.

Let us stress once more that formulas (17) and (18) can be interpreted

in probabilistic or logical terms, howev erin our setting they simply describe

deterministic ow distribution in ow graphs.

7 An Example

Now we will illustrate ideas introduced in the previous sections by means of a

simple example concerning votes distribution of various age groups and social

classes of v oters between political parties.
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Fig. 1. Social class and Age group votes distribution

Fig. 2. P arty votes distribution

Consider three disjoint age groups of voters y1 (old), y2 (middle aged) and

y3 (young) { belonging to three social classes x1 (high), x2 (middle) and x3

(low). The voters voted for four political parties z1 (Conservatives), z2 (Lab or),

z3 (Liber alDemocrats) and z4 (others).

Social class and age group votes distribution is shown in Fig. 1.

First we want to �nd votes distribution with respect to age group. The

result is shown in Fig. 2.

F romthe ow graph presented in Fig. 2 we can see that, e.g., party z1

obtained 19% of total votes, all of them from age group y1; party z2 { 44%

votes, which 82% are from age group y2 and 18% { from age group y3, etc.

If we want to know how votes are distributed between parties with re-

spects to social classes we hav e to eliminate age groups from the ow graph.

Employing the algorithm presented in section 5 we get results shown in Fig. 3.

F rom the ow graph presented in Fig. 3 we can see that party z1 obtained

22% votes from social class x1 and 78% { from social class x2, etc.

7
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Fig. 3. Social class and Party relationship

Remark. Due to the round-o� errors formulas (1)� (16) may not be always

satis�ed.

We can also present the obtained results employing decision algorithms.

For simplicity we present only some decision rules of the decision algorithm.

F or example,from Fig. 2 we obtain decision rules:

If Party (z1) then Age group (y1) (0:19)

If Party (z2) then Age group (y2) (0:36)

If Party (z2) then Age group (y3) (0:08), etc.

The number at the end of each decision rule denotes strength of the rule.

Similarly, from Fig.3 we get:

If Party (z1) then Social class (x1) (0:04)

If Party (z1) then Social class (x2) (0:14), etc

We can also invert decision rules and, e.g., from Fig. 3 we hav e:

If Social class (x1) then Party (z1) (0:04)

If Social class (x1) then Party (z2) (0:02)
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If Social class (x1) then Party (z3) (0:04), etc

F rom the examples given abov e one can easily see the relationship between
the role of modus ponens and modus tollens in logical reasoning and using ow
graphs in reasoning about data.

8 Conclusions

In this paper we hav e shown a new mathematical model of a ow networks,
which can be used to decision algorithm analysis. In particular it has been
revealed a new interpretation on Bayes' theorem, where the theorem has en-
tirely deterministic meaning, and can be used to decision algorithm study.
In this paper we hav e shown a new mathematical model of a ow networks,
which can be used to decision algorithm analysis. In particular it has been re-
v ealed a new interpretation on Bay es' theorem, where the theorem has entirely
deterministic meaning, and can be used to decision algorithm study.
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